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Abstract—In this paper we look at TCP data which the network links with significant losses and reorders.
was passively collected from an edge ISP, and analyze itin contrast to previous studies [1], [2], [3], [4] that
to obtain some new results and deeper understanding of attempt to infer the link loss characteristics using active
TCP loss process. The foqus of our study is to .identify the measurements techniques (e.g., by sending back-to-back
roqt cause links, i.e., the links that are responsible for the unicast packets to different destinations or by using
majority of the losses or reorders found on the end-to-end . )
TCP connection. We suggest a new root cause criterion muItlcast-packet. probes) we make |n.ferences. bas.ed. on
and a cost-effective algorithm to identify the root cause |CP traffic passively collected at a single point within
links. The a|gorithm incorporates a new out_of_sequence the network. Passive measurements enable us to Ieverage

packet classification technique. We test our algorithm on large amounts of traffic (millions of TCP sessions)
the collected and simulated data and analytically justify its without the overhead of active probes which may bias
correctness. The simulation results show that the algorithm the results.
has a 95% detection rate with 10% false detection rate. While there were a few passive measurements at-
" \ivteh alzo atnlalyze TCP temporta! IOITS ;r(:qgsf,danv?/ found e mpts in the past, they have different goals and require-
at the burst loss size 1s geometrically Gistribtted. We an-- ,ants and thus cannot be directly compared with our
alyze the TCP time-out loss indication under the Bernoulli . .
study. For instance, [5] and [6] detect shared congestion

loss model, which is the simplest model that can cause a> . .
geometric distribution, and show that the behavior of the |iNks using end-to-end passive measurements, where the

TCP loss process is not different than when tail drop is former requires the senders to cooperate by timestamping
assumed. the packets and the latter requires the measurement point
to observe a reasonable amount of the traffic processed

|. INTRODUCTION by the bottleneck links.

TCP is the transport protocol which is carrying most 1€ closest study to ours is the one done by Padman-

of the current Internet data. Thus understanding f®hanet al.[7] which attempts to estimate the loss rate
characteristics can help ISPs, equipment manufactufd?, Network links. For this end, high complexity analysis
and protocol designers. In this paper we look at Tc/ch as Bayesian inference and Im_ear programming were
data which was passively collected from an edge 1S§5€d- In our case we only want to identify trzat cause
and analyze it to obtain some new understanding of TC!BKS, which are the links that have the highest loss
The data is comprised of two samples that include abdf; "€order rates compared to their neighborhood. This
49 Million TCP sessiorisand over 260 Million packet €nables us to deploy a much simpler algorithm which
headers. The collection from an edge ISP is one of th& developed. This algorithm uses topology information
few done from this vantage point. We concentrate on tH&ch is acquired by performing traceroute to the IP
spatial identification of low performing links and on th@ddresses in the sampled data. We evaluate the perfor-
temporal spreading of the loss process. We also revi@lgnce of the proposed algorithms using simulations and
some measurements that where done at backbone 1$83-world Internet traffic. We found that our algorithm
We believe our data is typical to many stub ASes thBas a very high detection rate and a law false detection

serve private and business clients connected by eithte: ) ) )
dial-up or ADSL modems. One of the challenges in our work was to identify the

Our main focus is to identify the Internet links that ardSS and reorder events. We developed an efficient packet

responsible for poor end-to-end TCP performance, i_g!gssification technique_ v_vhich is used to infer the_loss
and reorder rates of individual TCP flows. Our algorithm

YIn this study we use the term TCP session to refer to a one-wg_iﬁers_from the recent_ algorithm by Jaiswat_ al. [8]
direction of a TCP connection since it does not require the use of both directions of



a TCP connection. Using a one way TCP analysis is —— ;l_gydisgnp'e ??%fli?p'e
useful in the current Internet that shows high percentage # TCP packets| 61,316,032 | 224,982,834
of TCP asymmetricity, e.g., [8] indicates that 10% of # TCP sessions 5,877,269 | 37,531,953
the flows in a backbone ISP are asymmetric while our ABLE |

traces indicate that 5% of the flows in an edge ISP are
asymmetric. In addition, our algorithm is much simpler
since it does not attempt to infer the TCP state, instead,
we leverage the IP identifer field (similar to [9], which
uses this field to actively measure packet reordering).¢o the internet. The results we report here are from
Our temporal analysis looked, at the first time in gyo samples taken at the same ISP but from different
passive TCP study, at the distribution of the loss bufigfcations. For this study, we sampled only the IP and
size. For loss bursts studied based on active measufgp headers of each packet due to privacy concerns, and
ments see [10], [11]. We have found that it roughly, save space. The first sample was taken on July 2002,
matches the geometric distribution; this incites us tpom pusiness ADSL clients, over 2.5 days. Most of the
use the Bernoulli loss model which is the simplestaffic, around 97%, was TCP, spread over 61 million
model to explain such a distribution. To measure th@ssjons and 6 million data packets. The second sample
impact of the loss model on TCP throughput analysis, Weas taken on December 2002 (see Table I). It contains
analytically derive a formula for the probability that the 7 hoyrs of sampling and it includes both business and
loss indication is due to a time-out event. Interestinglgivate clients. This sample has 225 million data packets.
we have found that Bernoulli and tail drop loss modefSye to policy routing and load balancing at the ISP we
have the same structure, which implies that the welliere not always able to capture both directions a TCP

known TCP throughput formulaes in [12], [13], [14]session. For about 5% of the TCP sessions, we only saw
[15] originally developed under the tail-drop assumptiogne direction of the connection.

characterize TCP’s behavior under both loss models.

The remainder of the paper is constructed as follows. lIl. SPATIAL LOSSANALYSIS
We begin in Section Il by describing the experimental In this section we discuss the methodology and al-
setup used to gather the TCP traffic. In Section Iforithms used to identify the root cause links from
we discuss the methodology, the challenges, and th&ssively gathered TCP traces. We employ a comprehen-
algorithms used to identify the low performance links. Isive approach that includes both an algorithmic solution
Section IlI-A we present the root cause identification alvhich correlates topological information with the loss
gorithm and in Section III-B we evaluate its performancand reorder rates of TCP flows and a packet classification
via simulations. In Section 1lI-C we present the rulealgorithm that infers the required flow characteristics.
used to infer and classify the out-of-sequence behaviorOur first step is to derive the network topology formed
in the observed sessions. We apply our methods to reay-the routing paths of the end-to-end TCP sessions. To
world Internet samples and present the results in Sectietermine this topology we collected all the IP addresses
llI-D. The second part of the study that deals witlef the end-hosts found in the TCP traces and performed
the process of consecutive packet losses is describedrateroute from the sampling point to a subset of
Section IV. In Section IV-A we analyze the effect of thehe top 10,000 end-hosts generated the largest number
Bernoulli loss model assumption on the modelling amaf packets. This gave us the network region where most
analysis of TCP throughput. Section V concludes thef our traffic flows, and ensures statistical robustness.
paper. The set of routing paths from the sampling node to the
end-hosts forms a directed acyclic graph (DAG) which
was fairly close to a tree.

The network that hosted our experiment belongs to aTo determine the loss and reorder rates of the paths
large Internet Service Providers in Israel, thus we coutmprising the DAG we develop a packet classification
monitor large amounts of traffic with diverse characterisechnique. The classification technique, detailed in Sec-
tics: both private and business customers connected t@ 111-C, is based on analyzing TCP sequence number
dial-up and ADSL modems. We were connected to and IP identifier patterns and identifies the various causes
mirror port of a Cisco switch that combines multipleof TCP sequencing problems: packet retransmissions by
trunks of client switches to an outgoing router connectddCP senders, and network-generated packet reordering

SUMMARY OF THE TRACES

Il. EXPERIMENTAL SETUP



or duplication. The reorder rate of a path is calculated bgordering or packet duplication.

measuring the ratio of the number of reordered packetsUsing our algorithm we were able to analyze the
to the total amount of packets on this path. Howevdnternet traffic traces and derive root cause links for
estimating loss rates is more challenging since thdomsses and reorders. The obtained results are described
is not necessarily a one-to-one correspondence betwaeBection IlI-D. We avoided packet duplication analysis
packet retransmissions and packet losses. The discrépe to the rareness of such events which may bias the
ancy between these measures is attributed primarilyresults significantly. For example, in our traces only
spurious time-outs [16], [17] which occur when thd.3% of all TCP’s sequencing problems are due to in-
round-trip time (RTT) suddenly increases and may causetwork packet duplication, and similar proportion was
unnecessary retransmissions. also obtained in [8] using samples taken from a backbone

Since we can accurately measure the size of a Id4¥ Of & backbone ISP.
burst that occurs before the measurement point USIR Root Cause Identification Heuristic

sequence numbgr 9aps (see S_ectlon IV.)’ we only r‘eeq_“aiven a set of paths and an associated set of loss rates,
to consider spurious time-out inaccuracies in the case : .
our goal is to detect the lossy links, also termed root

. . T
of retransmissions due to losses after the measuremént > .
cause links. For the loss process we assume a Bernoulli

point. To reduce potential inaccuracies we follow thée del where each link drops a packet independently of
assumptlpn of Benko a}nd veres [18.] that a.Iarge set 8g1ers with some fixed probability. Ideally, we would
consecutlyely r_etransmltted packets is most likely CAUSEIEe to find the links that their loss probability exceed
by.a spurious _tlme-out event, "’.‘”q exclude from the IOglsdesired threshold. However, the link loss rates cannot
ratio computation the retransmission bursts due to IOS%%Sconclusivel deduced from the given input [20], [7]
after the measurement point that their size exceeds Sofle ice theycom lexity of the groblempwe ro’ osé
threshold, e.g., three. The low occurrence of large Iogs alternative root pcausye criteriopn A link: UF)) isp
bursts (€.g., in Figure 9 such bursts account for 1.5% 8Ensidered to be a root cause if the. diﬁerenée between
all bursts), implies that this process would most likel

- o . . . s loss probability and the maximum loss probability of

eliminate the majority of spurious time-out inaccuracieg. .\ < cnterin leavi : :
g or leaving eitheror « is larger than

We assume that the routing paths and their loss agthre-defined thresholdl
reorder rates remain stable during the analysis. Thesgeor the identification process we use the notion of
assumptions are influenced by the findings of previodgerage loss rates. The average loss rate of Jid&noted
passive and active measurement studies [19], [7]. A§ p,, is defined as a weighted loss rate mean taken
example, the findings of Padmanabhetnal. [7] which  over the paths that includesuch thaty, = > jiet, Wit
are based on passive measurements of traffic flowgere t; is the set of links on pathy and w; 3 is
between a wide-range of clients and a popular Internfie weight (number of packets) of pajh Let us now
server indicate that loss rates are likely to remain stabifalyze the properties of the calculated link loss rates.
for periods of minutes. The underlying assumption is that the input loss rates

While estimating a path’s loss rate is a straightforwaggpture the loss probabilities of their paths, and thus
task, deriving the loss rate of an internal network link e ha\l_??“i =1- [l (1 —_pl), Where_pl is the loss
more challenging due to the lack of a unique mappirfjobability of link /. Expanding the weighted mean of
from path loss rates to the loss rate of an individual We getpr =1 —3 ;e wj[Txer, (1 — pi). The latter
link [20]. Therefore, we seek to find a solution tgequation can be alternatively expressed as
a simplified problem: detecting network links that are .

. . = 1-— 1

likely to have high loss or reorder rates compared to pe=pit(1=p)e @)

their neighborhood. We term such links et cause wher_e e = 1— Zj:l_etj w; [pet, k2 (1 — pi) is the

links. In the following section we define this notioncontribution of the links on the paths that share

formally and present a cost-effective heuristic for solvingxcluding! itself, to the average loss rate.

this problem. We then evaluate its performance via sim-

ulations. For simplicity of presentation we describe thi 2Packet reordering can be viewed as a multiplicative measure since
| . h. inth fthe | f there is a high probability that a packet is reordered only once on

algorithm in the context of the 0ss performance measuUff sender to receiver path.

Nonetheless, the proposed heuristic is applicable to othe€¥or clarity we omit the normalization factdr, ., w; from the

multiplicative performance measures, such as packatation. ’



This implies that the average loss rate of a link can be
viewed as a biased estimator of its loss probability. Toa|gorithm Root-Cause-ldentify(G, r)
determine the mean value and the variance of the bjas
we assume that the loss probabilities of the contributing 1. g — ¢
links {k : k,l € tj,k # I} are i.i.d random variables| 2 for each(u,v) € E do
with meany,, and variancer2. For the simplicity of the | 3. jf v - (z,u) € E r(u,v) —r(z,u) > 6
analysis we also assume that all the paths have the samg  or v : (v, w) € E r(u,v) — r(v,w) > §

number of edges. Under these assumptions it can be 5 S —SU(u,v)
shown that 6. return S
. _ _ (1 b1
E<Pl - pl) - <1 pl)gl (12 ,up) ) Fig. 1. Heuristic for identifying the root cause links
Vie—p) = (1—p)*) wi- (2)

2 2\h—1 2(h—1
(o + (U= )" = (L= *070) For the Internet data analysis and the simulatiéns
Using the above equations we can deduce the followas set by default to zero and the weights were assigned
ing observations: in proportion to the amount of traffic on the paths such
« The mean value and the variance of the bias tendttmt the average loss rate of a link represents the ratio
constant values whem is upper bounded by a smallof losses and total packets on this link.
value, as is often the case in modern IP networks. _
. The size of the variance is largely determined by- Performance Evaluation
the term a]% + (1 — pp)?, which is the second In this section we evaluate the average performance of
moment of the success probability random variablghe root cause identification heuristic using simulations.
Specifically, if o2 + (1 — p,)* < 1 the variance of Our main objective is to investigate the effectiveness of
the bias decreases exponentiallyfagcreases.  the detection process including its false alarm and miss
» The accuracy of the estimator is proportional to thgetection characteristics.
weights of the paths that share a link. Therefore, For the simulations we use a DAG topology generated
for a particular setting, e.g., a link that is shared hiyi several steps. First, a random tree is constructed where
many flows of significant weights, the bias may bghe degree of each node is randomly and uniformly
small enough to produce an estimator that tends ¢hosen from the discrete intervidl, d], whered denotes
the real loss probability value. the maximum node degree. Then, each path without
For the detection process we use a simple rule tHagnching is collapsed to a single link. Finally, a small
implements the root cause criterion using the averagember of extra edges (set to 10% of the node count
loss rates of the links. That is, if a link has eithein our simulations) is added to the graph by repeatedly
incoming links or outgoing links with an average losselecting at random a pair of nodes not connected by
rate that is lower by at least than its own average a link. We assume that all flows originate from the root
loss rate, this link is classified as a root cause link. A®de and terminate at the tree leaf nodes. Each leaf node
noted earliery is the detection threshold. It is importantepresents an end-host and thus is assigned the unique
to note, that the difference between the loss probabilitgot to leaf tree path. An additional path is assigned per
estimators for two adjacent links has a bias which is feach extra link by randomly and uniformly selecting a
lower than the estimator bias for a single link. This igoot to leaf DAG path that includes this extra link.
since the terms in the single link bias that are due toFor each simulation configuration we randomly gen-
flows that run through both links cancel each other. Thigate a DAG topology, a loss probability vector with
improves our root cause accuracy and justify the use afsize that matches the number of links in the DAG,
our algorithm. and flow sizes for the paths. We use two alternative
The formal description of the proposed algorithm idistributions to generate the loss probability vector: Zipf
given in Figure 1. The input is a directed acyclic graptistribution with o« = 1, and uniform distribution. The
G = (V,FE) and a rate function- that specifies the range of the loss probabilities is selected tdbe).04 to
average loss rate of each link ifl, whereV and E correspond to typical Internet loss settings [7]. The flow
are the node set and link set, respectively. The outputsiges are randomly selected from the a Zipf distribution
the root cause link set denoted BYy with o = 1.



In each simulation configuration our experiment is : Toelan Tiue Rool Sause pepetons 0 10
repeated000 times, where the links are randomly andéo,s, L ﬁ&ﬁ & 60%59 3 o6 e |
uniformly assigned a permutation of the loss probabilitgos,
vector. This permutation determines the path loss rates,
as described in Section llI-A. In each repetition the roci
cause identification algorithm is used to gather statistics”
per each true and estimated loss probability elementyos” oor oo ooz _oom om oos oo oo oos
such as whether the corresponding link is classified as a
root cause, whether it is classified as a root cause undet
both true and estimated probabilities, and miss detectigre
(false positive) and false alarm (false negatives) rateséo.e f’f ¥

Figures 2—4 depicts the simulation results for a setti 2~
with 200 nodes, maximum degree a@f), and Zipf loss £ g%
probabilities. The upper graph in Figure 2 shows the ¥ ‘ ‘ ‘ ‘ ‘ ‘ ‘
portion of experiments where the links that correspond to K 0005 001 o0ls 002 0025 003 0035 004
an estimated loss probability value are classified as root
causes by our algorithm, marked as total detections; drig 2. Portion of root cause detections in2@0 node topology,
the portion of experiments where such links are classifidgLd: and Zipf loss distribution
as root causes under our algorithm and the root cause
criterion (i.e., those that obey the root cause criterion . e ey T e L R L
for both the estimated and the true loss probabilities), @@c@o i
marked as true detections. For reference, the root caugg
criterion curve (see Section Ill-A) is also presented. Tme
lower graph in Figure 2 presents the same data as a &

02 ®@

function of the true loss probabilities.
From these graphs we see that the likelihood (i.e.,cos 00 oos o002 o025 oos o0 o004 ooss o005

the portion of experiments) of a root cause classification Femaed Frobebites
increases as the loss value increases, which is a desireg
property of the proposed criterion. For large loss proba«s
bilities above0.02 the detection likelihood is more than_os . &
80%. For smaller values the likelihood curve decrease‘s) |t %@%
such that links that correspond to loss probabilities below | %ﬂ
0.001 are classified as a root cause in no more than 25% o **%@’? ® PP 00 00 o go

TR+ w 1+ 4 I
Of the ru ns 0 005 0. 01 0.l 015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Figure 3 illustrates the ratios of detections, miss de- e
tections, and false alarms, in respect to the root calide 3. Ratios of valid and false detections fo2@ node topology,
criterion. For large estimated loss values, e.g., abobe 10 and Zipf loss distribution
0.027 (which covers the upper third of the probability
range), the heuristic has a high detection ratio around
95% and a small ratio of miss detections and false alathe average estimated loss probabilities values. The graph
below 10%. For smaller probabilities there is a drop ifeveals a constant bias which is consistent with Equation
the detection ratio and an increase in the false rati@ds, Computing the bias analytically using Equation 2 we
such that the miss detection ratio reaches 100% f@gt the value 00.0075 (in this configuration the average
very small loss values. This behavior (the increase R@th length is around3 and the average probabilify,
the false ratios for small loss probabilities) is expectdd 0.0038), which is sufficiently close to the bias shown
since small probability values are more vulnerable {8 the graph of0.0067.
estimation errors. However, since we are interested inTo check the consistency of the results we consid-
the upper range of loss probabilities we can safely ignoeeed several DAG configurations where the number of
these high error ratios. nodes, denoted by, ranged from100 to 5000 and the
Figure 4 shows the relationship between the true anthximum node degreé varied fromb5 to 10. For these
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Fig. 4._ Loss pr_obabili_ty estimators for200 node topologyd = 10, Fig. 5. Portion of root cause detections fot @0 nodes topology,
and Zipf loss distribution d = 10, and uniform loss distribution

experiments we obtained similar results and therefore thgue increases, where the exact form of the correlation
corresponding graphs are omitted. To test the sensitivifi§pends upon the link loss distribution and the routing
of the algorithm to the type of distribution used to derivBaths. In general, the estimated loss probabilities have
the loss rates, we repeated the previous settings usfiGonstant but unknown bias compared to the real
a uniformly generated loss probabilities. The resullyopabilities. However for specific settings, e.g., when
indicate that the root cause detection curves (total ap@d nhave only a small number of sporadic links with
true) exhibit slower decrease compared to the Zipf cagfgh losses that are shared by many flows, the estimator
and that error ratio bounds are similar for the two distrjﬂay tend to the real value and thus the heuristic can
butions. Figure 5 shows the root cause detection resufgcessfully identify links that their absolute value is
for a1000 node topology, maximum degrele= 10, and ahove a desired threshold. This is a valuable property

loss probabilities derived using a uniform distributionsince such scenarios are typical in the Internet.
In this configuration the average loss probability is 0.02

generating a bias af.05. Note that this setting may notC- Packet Classification Technique
represent typical Internet scenarios due to the relativelyln order to measure the loss and reorder rates of
high loss rate considered. selected connections we develop a packet classification
The main conclusion that can be drawn from thesechnigque based on examining the out-of-sequence TCP
simulations is that the algorithm is very efficient in depackets and their IP identifier pattern.
tecting the lossy links that obey the root cause criterion. Following Jaiswalet al. [8] we define an out-of-
In the tested configurations it achieves a high detectisaquence (OOS) packet to be a packet that its TCP
ratio, typically above 95%, while maintaining a low errosequence number is smaller than previously observed
ratio, typically below 10% when examining root caussequence numbers in that connection. Such a packet
links in the third upper range of loss probabilities. This generated by one of the following eventd) Re-
detection rate can meet almost any arbitrary threshdtdnsmission.The loss of a data packet triggers the
requirement, due to the monotone increase (decreasefder to retransmit a packet with a previously used
of the detection (false) ratio as a function of the lossequence numbef2) Reordering.The network changes
probability size, by the adequate selection of the loise original ordering and causes a packet to arrive be-
range of the root cause links. fore its proceeding packéB) Duplication. The network
Another conclusion that can be deduced is that theredigplicates the original packet and generates at least two
a positive correlation between the links detected as rqmickets with the same sequence number. Note that the
causes and their true loss probability, i.e., the likelihoazhuses and the impact of these anomalies have been
of classifying a link as a root cause increases as its lasdensively studied [21], [8], [9], [22], [11], [23].



We begin the process by extracting the observed
TCP connections. Given an identified connection we
analyze the data direction headers, i.e., the sender to
receiver data headers, and classify the out-of-sequence
packets. Observe that our technique is dependant on
the data header fields only (i.e., it doesn't rely on the
acknowledgement packets in the reverse direction) and
thus can be applied to each direction of a TCP connection

Is packet
previously
observed?

IsthelD
in-order?

Isthe ID of both
packets different?,

separately.
Our classification technique leverages two header Retransmission
fields: the sequence number field in the TCP header and Duplicate Reor dering

the identification (ID) field in the IP header. The TCP
sequence number field identifies the sequence number
of the first byte of data carried in the segment and is

Fig. 6. Classification process of out-of-sequence packets

Measurement

used to guarantee TCP’s in-order reliable delivery. The Point _
identification field uniquely identifies each transmitted Sender Receiver
IP datagram. In practice, most Berkeley-derived TCP/IP pekt X % oss
implementations guarantee the delivery of unique IDs %ﬂx

by having the IP layer increase a global variable each }
time an IP datagram is sent [24], [9]. This implies that ———
the IDs of a packet flow emitted from a sender forms a pektx Seq<

monotonic increasing sequence, i.e., given two packets T
andy wherex is emitted before; we have that the ID of

x is smaller than the ID of. Since the assumption about \
the ID field is implementation dependent we verified Time Time
its consistency in several common operating systems
including Windows 2000/XP and several Linux variantsFig- 7. Retransmission due to a loss after the measurement point
Thus, we can expect this assumption to be valid for the
larger majority of the sampled traffic.

Given a data packet we denote its IP identifier and succeedingr’s original instance. In this scenario,
sequence number byi(z) and seq(z), respectively. To illustrated in Figure 8, we assume that the original
classify the observed packets we use simple rules to instance was lost before reaching the measurement

identify the scenarios resulting from the different types ~ Point, and thus classify as a retransmission.
of events. « Reordering. Assume that the current packethas

not been previously observed and its ID is out of
order, i.e.,id(z) < id(z"). In this scenario, we
assume that the order of packets was inverted, and
thus classifyz as a reorder.

Duplication. Assume that we observe packeand

a previous instance such that both packets have
equal sequence numbers and equal IDs. In this
scenario, we classify: as a duplicate.

« Retransmission - due to a loss after the mea-
surement point. Assume that we observe packet
and an earlier instance af, denoted byz’, such
that both packets have different IDs and a common
sequence number. In this scenario, illustrated in*®
Figure 7, we assume that the original instance
was lost after passing the measurement point, and
thus classifyx as a retransmission.

« Retransmission - due to a loss before the mea-The complete classification process is illustrated in Fig-
surement point. Assume that current packet ure 6.
has not been previously observed (i.ecq(x) is Our simple classification technique is based on the IP
detected for the first time) and that its ID is iridentifier field assumption and thus is prone to errors
order. Where the in-order property is determinedue to non-standard implementations of TCP/IP stacks.
by comparingz's ID with the ID of the earliest Although we may weaken the effect of this type of error
packet with a sequence number larger thag(z), by observing the reverse direction of the connection (i.e.,
denoted byz”. That is, 2" represents the packetthe acknowledgment path) and inferring TCP’s state (as



Measurement Link type
Sender Point Receiver Internal link in a US service providey
Israeli ISP — Korean ISP
Israeli ISP — UK Software company
pckt X' [S8g=s, -, Israeli ISP — Israeli portal
pckt x” % Israeli ISP — Israeli portal
%\’ Ir}ternal link in an Isra_ell portal
Link between 2 Israeli ISPs
| Israeli ISP — US telecom
pekt x < Israeli ISP and a US ISP
SeaSTaTT——_| 2 US ISPs
\ \ TABLE I
Time Time

WORST LOSSY LINKS HIGHEST TO LOWEST

Fig. 8. Retransmission due to a loss before the measurement point

Link type
Link between 2 Major US ISPs
Israeli cable ISP — small Israeli ISP

done, for example, in [8]), we decided not to do so. One

reason is that the alternative approac_h may prove to be Internal link in an Israeli ISP
less accurate than expected, due to timing related errors US ISPs, Denver - NJ
involved with estimating the sender’s retransmission Israeli ISP — Israeli Portal

time-out (RTO) or RTT parameters, or reverse direction
flow processing errors due to dropped acknowledgements
(ACKs). The one-way classification capability of our
approach is valuable due to the support for asymmetric
connections which is useful in the case of traffic load

balancing by an ISP. : - : : e
The accuracy of the classification is also dependa"’md identified the lossy links. The same identification

upon the comprehensiveness of the viewed data [8]. pypeess was repeated for the packet reordering measure

example, the classification process cannot detect the | gswell. Given that we don’t have previous knowledge on

of an entire congestion window of packets that happe e real error rates of the Internet links we verified our

before the measurement point as well as the loss of trﬁgults by visualization of the graph of the most problem-
first packet in a TCP connection atic nodes and their connected links. This graph is too

dense to be presented in the paper format (for a viewable
D. Internet Measurement Results version we used an A2 size paper). Interestingly, out of

In this section, we apply the root cause identificatiofie 150 worst performing links, only 15% were identified
heuristic to the Internet traffic sample from Dec. 200@s root cause links.
(see Section Il for further details) and evaluate its ef- To our surprise the most lossy link was an internal
fectiveness. In addition, we apply the OOS classificatidink in a US service provider. The second most congest
technique to all the TCP traffic in the Internet sampldik was between an Israeli ISP and a Korean ISP,
and report the obtained results. which we suspect to be a satellite connection. The top

For the link identification process our aim was ttoss root cause links are given in Table Il, sorted by
capture the most lossy links and thus we consideredhe loss rate: highest to lowest. The topological link
reduced topology that includes only thé0 links and locations were derived manually using databases such as
100 nodes with the worst average loss rates, where ttie whois database. Similarly, we give the top reorder
average loss rate of a node or a link is computed bgot cause links in Table Ill. Observe that there is no
matching all the traffic flowing through it and calculatinglirect correlation between the highest lossy links and
the average losses it experiences. We are aware that usivgghighest reordered links. The results also indicate that
this particular setting we might miss most of the last milmost of the top-rated links, i.e., those with significant
losses [7], although, we did capture two last mile link@sses or reorders, are inter-ISP links rather than intra-
that connect portal servers. ISP links. These results are consistent with the findings

Given the resulting forest, i.e., the collection of comef [7] which indicate that links with significant losses
nected components, we applied the root cause heuriséind to be located across AS boundaries.

TABLE 11l
WORST REORDERED LINKSHIGHEST TO LOWEST



July Sample

Dec. Sample

TCP sessions

5877269

37531953

Out-of-sequence

916961 (15%)

2016325 (5.3%)

Reorders
Duplicates

Retransmissions

512877 (10%)
460539 (7.8%)
14970 (1.6%)

1008464 (2.8%)
1067425 (2.8%)
12122 (0.06%)

TABLE IV

SUMMARY OF OUT-OF-SEQUENCE SESSIONS

July Sample

Dec. Sample

TCP Packets

61316032

224982834

Out-of-sequence

2337501 (3.8%)

3503015 (1.5%)

Reorders
Duplicates

Retransmissions

1646638 (70.44%
648596 (27.64%)
42267 (1.8%)

2010863 (57.4%)
1453315 (41.48%)

38837 (1.1%)

TABLE V

SUMMARY OF OUT-OF-SEQUENCE PACKETS

effect only a small portion of the problematic packets
in the Internet, using different classification methods.
Unlike our study, Jaiswadt al. [8] infers the causes of
sequencing problems by observing both directions of a
connection and replicating the sender’'s TCP state.

IV. LOSSBURSTANALYSIS

In this section we study the process of consecutive
packet losses, i.eloss bursts We develop a simple
methodology to infer the degree to which packet loss
occurs in bursts from passive measurements of TCP
traffic, and investigate how efficiently TCP deals with
such bursty losses. Finally, we note that the observed loss
patterns may better match the Bernoulli loss model, and
investigate the effect of this assumption on the modelling
and analysis of TCP throughput.

We begin with inferring loss bursts. As noted earlier in
Section Ill, the inference of losses from retransmissions
is challenging due to spurious time-outs. To handle
this challenge we consider the case were the loss burst

We now proceed to describe packet classificatiman be accurately determined, i.e., when the loss bursts
results. Out of the 40 million TCP sessions 6.7% hamtcur before the measurement point. The estimation
experienced an out-of-sequence event (i.e., an O@Sunbiased if the considered bursts are representative
packet), 3.8% experienced a retransmission event, aaples of the entire ‘population’ of bursts, e.g., when
3.5% experienced a reorder event. A small percentagetiod measured loss bursts are independent of one another
these flows, less than 0.5%, experienced a combinatemd uncorrelated with the location of the measurement
of different types of events. The classification results faoint. Also, to get meaningful results, the amount of
the collected sessions are given in Table IV. For eadata in the reduced sample set should be large enough.
event the table indicates the number of TCP sessionise first requirement is achieved by the location of our
with this event both in absolute numbers and in relaeasurement point very close to one of the connection

tive percentage (in respect to the total session courghd-points, and the second requirement is satisfied by
Overall, 2% of the 286 million packets we observedur Internet traces which contain tens of thousands of
were classified as out-of-sequence packets. As expectadst samples.
the majority of these packets, around 62%, is caused byThe basic idea behind the inference method is to
retransmissions, reordering comes second with 36%, atetect a sequence number gap (due to losses that occur
packet duplication appears to be a rare event that accobefore the measurement point) and count the number of
for only 1.3% of the OOS packets. The classificatioretransmitted packets used to fill this gap. Using this
of the sampled TCP packets is given in Table V. Thimethod we can detect loss bursts that contain variable
table is structured as Table IV and it shows the absoldength packets, which are common in many application
number and relative proportion of the packets (in respdetel protocols that operate above TCP, e.g., HTTP.
to the OOS packets) in each category. Given a trace of TCP packets we classify the packets
We didn’t compare our results with the result of othausing the technique described in Section IlI-C and filter
active measurement studies such as [11], [22] duette results to consider only the retransmissions that
major methodological differences between passive aadcur before the measurement point. After the filtering
active inferences [25]. Instead, we compare our findingge can identify a loss burst using the corresponding
based on traffic samples from an Israeli ISP with thetransmission burst. For this purpose we seek a retrans-
results of a passive measurement study in a Tier-1 mfitted packet, denoted by, that its sequence number is
backbone [8]. Although the results exhibit large variancwer than the previously observed packet, denoted by
it is interesting to see that both studies provide similgt The size of the lost burst is computed by counting
insights, namely that packet reordering and duplicatishe number of unique packets following(and not seen



Normalized Loss Burst Histogram
T T T

before) that cover completely the sequence number gap
[seq(x), seq(y)].

Using passive measurements to infer loss bursts en-
ables us to consider a large amount of data at the
expense of introducing potential inaccuracies. One po-
tential source of errors is the lack of timing analysis in
our technique, e.g., we cannot determine whether all the *
consecutive losses belong to a single congestion window,
and thus may incorrectly interpret multiple bursts as a WkﬁizﬁH
single merged burst. Inaccuracies may also result from  ©* 1
TCP/IP implementations that combine the data of several 6
lost packets into a single retransmission. We expect this "¢ = =+ ¢ & o = % s w
phenomena to have a minor impact on the results due
to the measured rareness of the event in the alternative ~ Fig- 9. Loss burst histograms for Intermnet samples
scenario of retransmission bursts due to losses after the
measurement point. 1

Figure 9 presents the normalized loss burst histograms
for our two Internet samples (see Section II). The largest
burst that we captured was of 31 packets. However, only
a small number of sporadic bursts had more tkan
consecutive losses, and therefore we limit the graphs
accordingly. For the burst computation we considered
0.25% of all the observed retransmission bursts: the L
July 2002 curve is based on 40458 loss bursts, and 1 \ /]
the December 2002 curve is based on 108002 bursts.
As expected, single packet losses account for the large
majority of the bursts, around 83%, and double losses 5+ &+ & 7 &+ & w
occupy 12% of the bursts. It is interesting to see that
both histograms are very similar although derived froffig. 10.  Proportion of time-out loss indications in the Internet
traces with different traffic characteristics (there is gmples
nearly perfect matching for bursts of 7 packets or less,
and minor discrepancy for larger bursts due to the low
number of large size burst samples). We compared tiggovery/retransmit. Figure 10 presents the proportion
loss burst histograms for different times of the dagf time-out indications as the function of the loss burst
morning, early afternoon, evening, and night, and fourgize. The results indicate a low correlation between
them similar. The only significant difference among théhe loss burst size and the amount of time-outs, which
four curves is that the evening losses have more the@ntradicted our initial expectations that the amount of
10% higher probability for a single loss than the otherime-outs in TCP connections is positively correlated
The consistency of the results strengthens the validity with the degree of loss burstiness that the connections
our methodology. experience. This may suggest that TCP efficiently uses

Another aspect of bursty losses we investigate is hdtie recent improvements such as SACK, fast recovery,
efficiently TCP deals with them. Packet loss can band improved RTT estimation to recover from large loss
detected by TCP in one of two ways, either by theursts.
reception of triple-duplicate (TD) ACKs at the sender, The plots of the measured loss burst histograms in Fig-
or by time-outs. To measure the performance of TARe 9 roughly match the geometric distribution. This fits
loss recovery mechanisms we classify the first packetent studies [10], [11] that argue that Internet packet
in each retransmission burst according to its triggdasses can be modeled by loss episodes whose length can
TD ACK or time-out, using the technique of TCP statbe approximated using the geometric distribution. The
replication [26]. That is, the retransmission is classabove results encourage us to revisit the common drop-
fied according to the inferred state, slow-start or fastil modeling assumption, used in many TCP throughput

uly Sample
c Sample

<
@
737

107k

Ratio of Timeout Loss Indications




studies [12], [13], [14], [15] that incorporate the effect To derive an approximation of), we may use
of the TD and TO loss indications. L'Hopital’s rule whenp — 0, as done in [12], and get

In the next section we analytically derive the probadhat Q ~ min{1, %}.
bility that the loss indication is a time-out considering Alternatively, we use a more accurate approximation
the Bernoulli loss model which may better capture thbat considers TCP’s congestion window siié, which
current loss patterns in the Internet. The Bernoulli loss assumed to be uniformly distributed on the discrete
model, which is the most fundamental model to produdeterval [0, w,,..]. The probability that a loss event is
the geometric distribution, may represent the deployméel® is calculated using the taylor series expansion about
of Internet buffer management algorithms such as Rahe pointp = 0
dom Early Detection (RED) [27], which drop packets

uniformly at random during congestion periods. Q ;%1%1;’ Cjﬁi)g[fggp@ 392 + o(p))} )

A. Loss Indication Analysis Given the sawtooth behavior of TCP the average

Our analysis is conducted within the well-knowongestion window size can be approximated in steady
framework of [12]. We preserve the notations and th@ate to? of the maximal value of the congestion window
relevant assumptions of this model: we assume thag] and thus we assig®[W] = 3w, Using this

packets are send in rounds, and a pagket is lost irh@sumption and considering small valueof) can be
round independently of any packet loss in other roundgyproximated

However, we replace the original drop-tail loss assump- .

tion with the Bernoulli loss assumption: each packet in Q ~ min{1, L} (6)
a round is dropped with probability independently of EW]
others. Observe that both approximation methods yield a

Our goal is to analytically deriveR, the probability similar result (different only by a multiplicative factor),
that a loss indication ending a TD period is a time-owbhich closely matches the time-out probability in the
(TO), where the TD period is the period between twdrop-tail model [12],Q ~ min{1, %}. This implies
loss indications. For this purpose we examine the routtht the behavior of the TCP loss process is similar under
at which a loss indication occurs, which is refereed to &sth models, and that the TCP throughput formulas in
the "penultimate’ round. Let be the congestion window[12], [13], [14], [15] can also be used to characterize

size at this round. TCP’s behavior for the Bernoulli loss model.
As shown in [12] a TO would occur if the number of
packets in the penultimate round is less than or equal V. CONCLUSIONS

to three, or that the number of packets successfullyin this study we address the issue of identifying the
delivered in the last round is less than three. Therefotew performance network links from passively collected
Q(w), the probability that a loss is a TO as a functioWCP traffic. We propose a root cause criterion that

of w is given by: reduces the complexity of identifying low-performance
links and consequently develop a comprehensive solution

) 1 if v fof the problem. Our solution includes both a cost-
Q(w) z{ D B k)3 Blwk) 33 B(km) effective identification algorithm and a simple packet
1-(1=p)® O.W. " classification algorithm that infer the various causes of

3 TCP sequencing problems such as packet loss, reordering
Where B(w, k) is the probability thatt packets are gng duplication.
ACKed in a round ofw packets, and the quantity in e find that the identification algorithm is very ef-
the denumerator is due to the condition that there is f@fient in detecting the lossy and reordered links that
least one loss in the round. In the Bernoulli loss modghey the root cause criterion. For lossy links, it typically

B(w, k) = ()p* "1 —p)*. ~ achieves a high detection rate above 95% and a false
After algebraic manipulation we get the followingyetection rate below 10%. Furthermore, we show that our
bound forw > 3 method is able to estimate the true loss and reorder rates
. - Z%:o B(w,k)(1+ (1 —p)¥(=14 (2—p)»)) of the network.internal Ii.nks up to a co.nstant bias, angl
Qw) < 1-(1-p® present scenarios for which the loss estimator tends to its

(4) real value. Applying our algorithms to Internet samples



gathered at an edge ISP we find that the majority of thee] J. Padhye, V. Firoiu, D. Towsley, and J. Krusoe, “Modeling
lossy links are inter-ISP links.

To derive the loss and reorder rates of the obserVﬁg]
sessions we develop a simple methodology that infers’ model of TCP/IP with stationary random losses,” ACM
and classifies the observed out-of-sequence packets. A SIGCOMM Sept. 2000.
novelty of our packet classification technique is that 4]
requires only one direction of the TCP connection, argk;
thus can be applied to asymmetric TCP flows. Using our
Internet samples we find that packet loss is significantly

more frequent than packet reordering and duplication

[16]

Another aspect of our study includes TCP's tem-
poral loss process. We found that the burst loss sii2é]
is geometrically distributed. We then analyze the TCP
time-out loss indication under the Bernoulli loss mode}; g,
which is the simplest model that can cause a geometric
distribution, and show that the behavior of the TCP
loss process is similar under both model. This implié§9]
that the various TCP throughput formulas that consider
TCP’s loss indications are applicable to both models, afz)
thus can be used to characterize TCP’s behavior in the
presence of the two major queuing disciplines used %]
modern routers, tail-drop and RED.
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