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Abstract—Peer-to-peer based (P2P) VoD systems have proven
to be an effective solution for scalable video distribution. In
P2P VoD, each peer contributes storage to replicate videos and
assist video delivery. A fundamental question is how to optimally
replicate video content across the peers so as to maximize
their upload capacity. We study this question within the context
of a large-scale P2P network where peers are grouped into
different geographical regions, and downloading a video across
regions is more expensive than within a region. Our analysis
addresses the combined challenge of (1) optimizing the replica
allocation (placement) with respect to an arbitrary stochastic
demand distribution, and (2) finding an optimal assignment
of video requests to peers. The problem addressed can model
other applications including inventory problems. Our main result
is that optimal replica placement in single- and multi-region
environments is of max percentile nature. We derive optimal
algorithms and show that they have low complexity and thus very
practical. We use numerical analysis and simulation to evaluate
the system performance and study its behavior. Our results can
be used to provide valuable insights on the design of P2P VoD
systems.

I. INTRODUCTION

Video-on-Demand (VoD) services have experienced an ex-
plosive growth in recent years. Traditional VoD systems are
based on a client-server architecture which incurs expensive
provisioning costs and has limited scalability. The peer-to-
peer (P2P) approach has emerged as an effective solution for
scalable content distribution. It has been successfully used
by file download and live video streaming systems [1], [2].
Recently, there have been various efforts to build peer-based
VoD systems, for example using managed devices [3], [4]. In
a P2P VoD system, peers use their storage space and upload
bandwidth to replicate video content, serving it to other peers
on-demand. Compared to live streaming, VoD users are less
synchronous and may not have the same content to share with
others. The lack of synchrony is mitigated by letting peers
serve content that is different than that being currently viewed.

We focus on a managed P2P environment in which peers
remain owned and under the control of the content provider,
e.g., like cable set-top boxes. In such a system, video servers
must still be deployed to complement missing content and
guarantee quality of service. Hence, the P2P network acts as a
mechanism to offload the provider’s servers in the data centers.
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The effectiveness of a P2P network is largely dependent on
the number and location of video replicas at the peers [3].
A fundamental design issue in P2P VoD is to determine the
right replica placement (allocation) strategy so as to make best
use of the upload capacity of peers. While there exists various
literature on P2P replica placement, it is mainly geared towards
file sharing systems. For example, [5] optimized the network
bandwidth usage in replication; while [6] maximized file
availability. These works pay little attention to the bandwidth
limitation of peers, a key concern for VoD. More recently,
the placement problem has been studied for P2P VoD [7],
[8]. However, these works focus on flat networks, and do
not consider hierarchical network topologies often used in
practice.

In this paper, we seek to derive replica placement strategies
that enable content providers to maximize the use of peers’
upload bandwidth, hence minimizing the cost of servicing
video requests. Such strategies should account for arbitrary
video access distributions to accommodate the diversity of
usage patterns exhibited by existing VoD services such as
Netflix, IPTV, and YouTube [4]. Perhaps as importantly, they
should account for the provider’s network topology, typically
hierarchically structured. To this end, we consider a multi-
region P2P model where peers are grouped into different
regions, and serving a video across regions is more expensive
than within a region. Service can be granted by dedicated
servers as fall back, but at higher cost. The multi-region
model is a natural fit for the network of a large content
provider. For example, cable operators use video hub offices in
each metropolitan area (all inter-connected) to serve the local
subscribers [9], [10]. The model can be generalized to a more
complex architecture where the regions are organized into a
k-level hierarchy, as shown in a technical report [11].

Optimizing system-wide video servicing costs requires us
to deal with a placement problem, namely determining the
quantities and locations of the movie replicas across the re-
gions. This problem is to be addressed under a realistic service
assumption that the number of offered movies can be high
(e.g., Netflix’s catalog includes more than 100,000 titles [12]).
For each of these movies the demand distribution (which
can be derived from operator predictions) may be completely
arbitrary; and differs from that of the other movies. Since
the expected revenue of any placement (allocation) depends



on the way incoming requests are handled, we also need to
deal with an assignment problem, namely, find a maximal
matching between the movie demands and peer servers. Of
course, the two problems affect each other and therefore a
combined solution must be derived.

This combined problem may seem at first sight to be
quite challenging. The difficulty is that in order to find an
optimal allocation one must: 1) Examine all possible (multi-
dimensional) demand realizations; 2) consider for each of
them the optimal assignment; 3) account for the ensemble
of all these solutions to derive the expected revenue of the
allocation; and 4) optimize over all allocations. Nonetheless,
our analysis reveals that the problem benefits from certain
structural properties which allow one to decompose it and
derive an optimal solution using exact analysis.

We believe that this work is a first attempt to deal in an exact
way with the combination of the assignment and allocation
problems under arbitrary stochastic demand and in one model.
Our main result is that optimal replica placement in a single-
and multi-region P2P networks is of max percentile nature; that
is, it is based on the tail distributions of the demand. This is in
contrast to past results where various replication solutions are
based on the proportional mean (we discuss their performance
in detail in Section X). We show that the problem can be
formulated as a (linear) revenue optimization problem which
is analytically manageable, and that it possess a balancing
property which narrows the state space of the solution to that
of symmetrically-full balanced allocations.

We derive optimal algorithms for the problem and demon-
strate that they are of relatively low complexity and thus very
practical. The optimality of the solution and the algorithms can
be used either to achieve optimal operation or as a benchmark,
or to provide operational guidelines for the design of P2P
replication schemes. We use numerical analysis and simulation
to validate our results and study the system’s behavior. We
demonstrate how to evaluate the performance of alternative
placement strategies relative to that of the optimal.

The rest of this paper is organized as follows: In Section III
we describe the model and the problem. In Section IV we
expose the reader to the principles of the analysis by first
presenting the solution to the problem of a single region. Then,
in Sections V, VI and VII we turn to the more general multi-
region problem: Section V deals with the assignment problem;
Section VI analyzes balanced-allocations which are a key to
the overall solution, and Section VII provides the solution of
the placement problem. In Section VIII we provide efficient
implementation of the algorithms. Finally, Section X uses
the solution to evaluate the system performance. Most of the
article proofs, an efficient implementation of the algorithms,
and a generalization of the analysis for a k-level hierarchy are
presented in [11].

II. RELATED WORK

There have been previous investigations of P2P content
placement, the majority of which focus on different envi-
ronment settings and goals. Several studies have considered

content placement in file sharing systems. For example, [5]
was perhaps the first to study a network model similar to ours,
where peers can be connected using an exponential expansion
topology. Their goal is to place movie replicas in peers to
minimize the average number of links traversed in a download
process. The optimization is done from a viewpoint of a single
random downloader rather than for the aggregate demands,
as in our case. The major result of [5] suggests that optimal
replication should be proportional to the mean demand. In
contrast, under our VoD-oriented model optimal replication
follows a max percentile solution (Section X discusses in detail
the performance of these allocations). [6] tried to optimize file
availability when peers are infrequently online. [13] studied a
similar problem where peers are associated with weights. [14]
proposed a replication protocol for file sharing applications
in mobile ad hoc networks aiming to reduce the average file
querying time. The goal in [15] is to minimize the number of
access failures assuming that every requesting peer randomly
accesses a peer server. These works focus on a different goal
than ours, and consequently establish different placement rules
such as square root or log proportional.

There have been several works on replica placement in
VoD environments. [3] studied large-scale P2P VoD sys-
tem deployed in the Internet and demonstrated that movie
replication is a key design issue. They propose a heuristic
replication algorithm based on proportional mean, which we
compare against in our performance evaluation. [4] introduced
a gateway-based P2P architecture and considered popularity-
based content placement driven by a heuristic linear program.
These works serve as a good exposition to the problem,
motivating our work.

Relatively close works to ours are [7], [8]. [7] proposes
the RLB algorithm and proves it to be optimal. The analy-
sis is carried out under the assumption that the number of
movies is much smaller than the number of peers. When
assumed otherwise, max-percentile algorithm preforms better
than RLB, as it can seen in Section X. [8] provided an
asymptotic analysis of the system as the number of peers
approaches infinity. The solution is an approximate one since
it is based on approximating an integer non-linear problem by
real value problem. Furthermore, these works are limited to a
small-scale flat P2P network, and do not consider hierarchical
network topologies used in practice by providers. Note that
in a single region setup the solution in [8] is identical to
the proportional mean solution in [5]. [10] considers a large-
scale VoD service with a hierarchical network infrastructure
that resembles our multi-region approach. Also, [16] suggested
a replica system in CDN with geographical distances. While
we consider stochastic demand (which includes as a special
case deterministic demand), the previous two articles assume
a deterministic demand.

The work in [17] proposed a push-to-peer architecture and
content replication strategies, where movie parts are encoded
using rateless code and pushed on set-top boxes so as to
serve them on-demand. That work tackles a different goal,
no optimization of placement with respect to demand is
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attempted. The work in [18] analyzed the conditions for
catalog scalability under this architecture. [19] considered
a time slotted replication model where video requests are
assigned to randomly selected peers. They show that the cache
replacement strategy can be expressed as a dynamic program.
However, the solution has exponential time complexity. Al-
ternative solutions, e.g [20], propose to use the set of peers
interested in a specific video to form a P2P tree dedicated
to that video, and use it to broadcast the video to all the
tree members; such approaches benefit from flexibility and
scalability while may be sensitive to the delay and some
uncertainty that may be caused by a tree structure (as opposed
to receiving the video directly from a peer who holds it as
done in our work).

III. THE MODEL AND THE PROBLEM

We consider a system consisting of user terminals (peers)
designed to download and playback movies to the users.
In addition to its download and playback capabilities, each
terminal is equipped with storage and upload capabilities.
These capabilities can be used to store movies at the terminals
and upload them to other terminals upon request. A movie
request made by a peer and which cannot be served by another
peer is processed and granted by a central server.

We consider a topology as depicted in Figure 1. The system
consists of k regions numbered 1, 2, ..., k. The peers from
the same region can talk to each other directly via a video
hub, whose bandwidth capacity is large enough to allow each
peer in the region both to download and upload a movie
concurrently. Note that a peer can be viewed as both server
(when it uploads), which we will call a peer-server and a client
(when it downloads), which we will call a peer-client. The k
hubs are connected to each other via a high speed backbone
network. This allows a peer-server in region i to upload a
movie to a peer-client in region j.

Having described the topology, we next make the following
modeling assumptions:

1) Peer storage capacity: We assume that each peer-server
can store 1 movie. This assumption will be relaxed in
Section IX.

2) Number of Peers and Peer-Servers: The total number
of peers is s. We assume that each peer can be utilized
as a peer server and thus the number of peer-servers is s.
We assume that each region contains s/k peers-servers
(mathematically, assume that s is divisible by k).

3) Peers occupancy (analysis assumption): For the sake
of presentation, we will assume throughout the analysis
that each server contains exactly one movie replica (no
empty servers). This implies that the number of replicas
in a region is s/k. This assumption is relaxed in Section
IX.

4) Peer Upload/Download capacity: We assume that each
peer-server can upload to any peer-client. At a given
time a peer-server can upload only to one peer-client;
this is based on assuming that the upload capacity is
in the order of the playback capacity and the download
capacity is greater than (or equal to) the upload capacity
(both are approximately the case in today’s networks).

5) Movie demand: We assume that there are m movies,
indexed 1, 2, ....,m, in the system. We consider a static
demand reflecting the demand at peak hours. Let N j

i be
a random variable denoting the number of requests for
movie i made by peer-clients in region j. We assume
symmetric demands, namely that the regional demands
are statistically identical. That is, all the {N j

i }kj=1

variables are identically distributed; let Ñi denote a
generic variable having the same distribution.

We do not make any assumption on the distribution
of Ñi, namely it can be of an arbitrary distribution1.
Further, we do not assume independence between the
demands, namely N j

i1
and N j

i2
are not necessarily

independent of each other and so are N j1
i and N j2

i . The
set {N j

i }, 1 ≤ j ≤ k, 1 ≤ i ≤ m is the demand set, or
in short, the demand. We will use {N j

i } to denote this
demand.

6) Request service cost parameters: Consider a request
made by a client in region i. The request can be
downloaded from either of: 1) A peer-server in region
i, 2) A peer-server in a different region. In the event
that it cannot be served by the peer servers it can
always fall back to be served by a central server (which
is significantly more costly). We denote the cost of
downloading (serving) the request in these cases by
Cloc (local cost), Crem (remote cost) and Cser (central
server). We assume that the costs obey Cser ≥ Crem ≥
Cloc. The latter inequality results from the structure of
the system implying that downloading a movie across
regions is more expensive than within a region.

A. The problem

The objective of the system is to minimize the cost of
servicing the requests. To this end, we assume that each
request is granted either from the peer system or from the

1While the mathematical analysis will hold for any arbitrary distribution,
one can pick a more restrictive distribution to reflect the physical peer model.
To this end, it may make sense to assume that the total demand in a region is
bounded from above by the number of peer-clients in the region (equaling
the number of peers, s/k) since a client cannot request more than one
movie. Also, one possible reasonable choice of the distribution is a binomial
distribution B(s/k, pi) where pi would model the probability that a single
peer-client is interested in movie i.
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central server. Let gser, grem and gloc denote the number
of requests granted (served) from the server, from a remote
region or from a local region, respectively. Since all requests
are granted, obviously gser + grem + gloc is the number of
requests, N . The system request service cost is given by

C = Cser · gser + Crem · grem + Cloc · gloc, (1)

and the objective is to minimize this service cost.
An example of the system matching modeling is in Figure 2.

In this example, we have k = 2 regions, each with s/k = 4
peer-servers. The number of requests granted (served) from
the server, from a remote region and from a local region, are
1, 1 and 3, respectively. Therefore the cost in this case is
Cser + Crem + 3 · Cloc.

To this end, one should note that the system operation
divides into two parts. First, at off-line mode, replicas of the
movies are placed at the peers2. This replica placement can be
based on the knowledge of the demand distribution. Second,
once the replicas are placed in the peers, the system is faced
with an actual demand, which is a realization of the demand
distribution, at which time the system needs to decide how to
assign the movies to the various demands. We call the former
the replica placement problem and the latter the assignment
problem. Note that the assignment problem can be solved in
isolation; nonetheless the solution of the placement problem
depends on that of the assignment problem.

To this end, let Lj
i denote the number of movie i replicas

that are stored in region j, and Li the number of movie i
replicas placed in the whole system; These obey

∑m
i=1 L

j
i =

s/k (see Assumption 3 above) and
∑k

j=1 L
j
i = Li. The set

L = {Lj
i}, which is called an Allocation, is the output of the

replica placement problem and the input to the assignment
problem.3 Formally the problems can be stated as follows:

1) The assignment (matching) problem: Given an alloca-
tion, L = {Lj

i}, a demand realization, denoted by
nj
i , i = 1, ...,m, j = 1, ..., k, and the service cost

parameters Cser, Crem, Cloc, assign (match) the servers
to the demands as to minimize the service cost C.

2) The replica placement(allocation) problem: Given the
movie demand distributions {N j

i }, i = 1, ...,m, j =

2In practice, content is pushed to the peers during off-peak hours.
3Note that the formulation takes into account only the number of replicas

in a region and not the specific servers at which they are placed. This stems
from the fact that the storage of each server is 1 and thus all servers in the
region are interchangeable.

1, ..., k, the service cost parameters Cser, Crem, Cloc,
and a matching algorithm solving the assignment prob-
lem, determine the replica allocations L = {Lj

i}, i =
1, ...,m, j = 1, ..., k, of each movie in each region as
to minimize the expected cost E[C].

Our objective in this work is to solve the replica placement
problem; this, in turn, will be assisted by a solution of the
assignment problem. For the convenience of the reader a
glossary of notation is provided in [11].

B. Transforming the Cost Function to a Revenue Function

For the analysis of the assignment and replica placement
problem it will be convenient to transform the cost value
problem to a revenue value problem. The way we defined
the transformation is critical, and defining it differently may
complicate the analysis. The transformation is established
next:

Claim 3.1: The following holds:
1) A matching algorithm M solves the assignment problem

iff M maximizes the following function:

R = (Cser − Crem)gglo + (Crem − Cloc)gloc

where gglo, gloc represent the number of requests granted
by all the peers (i.e. Global Matching, equals gloc+grem)
and the number of requests granted by peers of the same
region (i.e. Local Matching), respectively.

2) An allocation L solves the placement problem iff the
allocation maximizes E(R).

Proof: This proof is presented in [11].

For convenience we set Rglo
.
= Cser − Crem ≥ 0 and

Rloc
.
= Crem−Cloc ≥ 0. We will denote the revenue objective

function to be:

R = Rglo · gglo +Rloc · gloc. (2)

By Claim 3.1 we have that a matching algorithm M solves
the assignment problem iff M maximizes the revenue objective
function, R, and an allocation L solves the placement problem
iff it maximizes the expected value of the revenue objective
function, E(R).

IV. ANALYSIS EXPOSITION: A SINGLE REGION SYSTEM

For the sake of exposition we start our analysis by consid-
ering the case of a simplistic system, consisting of a single
region, say region 1. This system is a simple special case of
the full model presented in Section III. For the sake of brevity,
the analysis in this section will focus on stating the results
and providing some intuitive explanations without providing
rigorous proofs. 4

In this system, peers can download movies only from the
local region’s peers. Thus, the number of requests granted in
the global matching is equal to the number of requests granted

4Of course, rigorous proofs are not needed, since this system is a special
case of the general model whose results will be proved in the subsequent
sections.



in the local matching, i.e gglo = gloc. Therefore, the objective
function is equivalent to maximize the number of requests
granted by the local peers.

To solve the replica placement problem, one must first find
an optimal solution to the assignment problem. This is true
since the assignment problem addresses a single demand real-
ization case while the replica problem addresses the ensemble
of all possible demand realizations. The first ingredient in our
placement solution is therefore to derive an optimal solution
to the assignment problem, whose main advantage is that
it provides a closed form expression of the revenue (R) of
the solution. Recalling that the demand for movie i and the
number of servers holding movies i are denoted by L1

i and
n1
i , respectively, the solution we derive is given by:

R =

m∑
i=1

min(L1
i , n

1
i ). (3)

The reader may verify that one cannot offer a higher assign-
ment (match), and that this assignment is indeed possible.

This equation expressing the revenue of an optimal as-
signment now serves as our first key result. It is a key for
addressing the replica placement problem, whose objective can
now be simply stated as maximizing the expected revenue:

E(R) =
m∑
i=1

E(min(L1
i , N

1
i )), (4)

where N1
i is a random variable denoting the number of movie

i requests in region 1.
Our second key result is the observation that since

min(L1
i , N

1
i ) gets non-negative integer values, then each term

in Eq. (4) can be transformed to a simple sum of probabilities:

E(min(L1
i , N

1
i )) =

L1
i∑

j=1

Pr(N1
i ≥ j). (5)

The objective of the replica placement problem is therefore to
maximize the function

E(R) =
m∑
i=1

L1
i∑

j=1

Pr(N1
i ≥ j), (6)

by selecting the set L = {L1
i |1 ≤ i ≤ m} under the

constraint(see modeling Assumption 3 in Section III) that∑m
i=1 L

1
i = s, namely that one places exactly s replicas in

the region.
The structure of this equation serves as a key for the analysis

as well as to its interpretation. The key implied-property of this
equation is that adding a movie i replica to the peer allocation
L given in the above equation will increase the expected
revenue by Pr(N1

i ≥ L1
i + 1). We thus may define a ”delta”

function δi() whose values are δi(l) = Pr(N1
i ≥ l). As such,

the objective function is to select a set L such as to maximize∑m
i=1

∑L1
i

j=1 δi(j) under the constraint
∑m

i=1 L
1
i = s.

Having this view in mind we can now turn to describe our
Max Percentile algorithm whose description may be assisted
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Fig. 3. The Max Percentile ”delta” vectors

by Figure 3, which depicts an example of 3 movies (and there-
fore three δ() vectors). The (Percentile) algorithm is carried
out by going over the δi() vectors and using a greedy approach
to select their highest values. This is done easily by observing
that each δi() vector is monotonically non increasing (as in
Figure 3). Thus the algorithm is carried out by keeping three
types of δi() variables: 1) Already selected variables (dark
background, on the left hand side), 2) Candidates for selection
– at most one element for each i (light background), and 3)
Non-examined variables (white background, on the right hand
side). Using this classification the δi() selection algorithm
progresses by selecting the maximal value element from the set
of candidates (4th element in first vector in the example) and
then adding to the candidate set the element appearing to the
right of the selected candidate (5th in the first vector). The
algorithm terminates when the number of allocated replicas
equals the available number of replicas, s. The reader may
observe that the percentile algorithm indeed selects the s
highest values of the δi() vectors. This completes the Max
Percentile algorithm which will return, as a solution of the
replica placement problem, the selected set L where L1

i equals
the number of elements selected from the δi() vector.

V. MULTI-REGION: THE ASSIGNMENT PROBLEM AND THE
MATCHING ALGORITHM

The assignment problem can be modeled via a maximal
weighted matching problem in weighted graphs (see [21])
where a matching is made between the set of peer-servers that
possess the movies and the set of demands for the movies. An
edge in this bipartite graph is drawn between a peer server that
holds a specific movie and the demand for that movie. The
weight of the edge is its revenue, either Rglo or Rglo + Rloc

according to the case. The solution to this problem can be
achieved via the Hungarian Algorithm at a complexity higher
than Ω((n+ s)2).

In Algorithm 1 below we derive a specific matching al-
gorithm tailored for our problem. Its advantages over the
Hungarian Algorithm are two: 1) Its complexity is linear. 2)
It yields a closed form expression of the revenue it achieves,
as will be given in Eq. (7).

An effective implementation of the assignment algorithm
works in linear time, O(s + n) (See Section VIII). In the
following claim, we will prove that the assignment algorithm



Algorithm 1 The assignment algorithm

Require: An allocation of peer-servers ,L = {Lj
i} and the

demand nj
i , i = 1, ...,m, j = 1, ..., k.

1: for all movie i do
2: for all region j do
3: Take min(Lj

i ,nj
i ) requests from the jth region of

the ith movie, and match them to min(Lj
i , n

j
i ) peer-

servers in the jth region, containing the ith movie.

4: end for
5: Let nrem

i be the number of movie i requests, which we
did not match in Step 2, and let Lrem

i be the number
of unmatched movie i peer-servers.
Then, match the remaining min(nrem

i , Lrem
i ) requests

to the remaining min(nrem
i , Lrem

i ) peer-servers.
6: end for

assigns maximal matching, and give an expression for its
revenue.

Claim 5.1: Given allocation L = {Lj
i} and demand real-

ization nj
i , i = 1, ...,m, j = 1, ..., k, the following claims

hold:

1) The assignment algorithm yields a revenue of:

Rglo

m∑
i=1

min(Li, ni) +Rloc

m∑
i=1

k∑
j=1

min(Lj
i , n

j
i ). (7)

2) The assignment algorithm will maximize the revenue
objective function. Namely, there exists no matching
algorithm with higher revenue.

Proof: The proof is presented in [11].

An immediate and important result of Claim 5.1 is that
for any arbitrary allocation L and for Any stochastic demand
{N j

i } the matching algorithm will maximize the expected
revenue.

Corollary 5.2: Given allocation L conducted by a place-
ment algorithm, the expected revenue, under the assignment
algorithm, will be:

E(RL) =

Rglo

m∑
i=1

E(min(Li, Ni)) +Rloc

m∑
i=1

k∑
j=1

E(min(Lj
i , N

j
i )).

(8)

Moreover, this revenue is maximal over all matching algo-
rithms.

Proof: The proof is presented in [11].
This corollary will guarantee that replica placement problem

is to to maximize the function in (8), when the free variables
of the function are the movies replica, Lj

i .

VI. BALANCED ALLOCATIONS

A. Introduction
Having derived an optimal solution to the assignment

problem, we next aim at solving the placement problem,
namely at finding an optimal allocation. On its face value
this problem seems to be a hard one since the number of
allocations is exponential, which may lead to exponential
complexity. Fortunately, as revealed by our analysis, the place-
ment problem benefits from possessing an important balancing
property which we call the balance principle. This will allow
us to drastically reduce the complexity by searching for an
optimal policy from within a reduced set of allocations, named
balanced allocations, which we define next.

Definition 1: An allocation is a set L = {Lj
i | 1 ≤ i ≤

m, 1 ≤ j ≤ k} of non-negative integer numbers. Let Li :=∑k
j=1 L

j
i . The vector L̂ = (L1, L2, . . . Lm) will be called the

quantity vector . If the quantity vector satisfies
m∑
i=1

Li = s

then L̂ is called a full quantity vector and L is called a full

allocation. If for every region j we have
m∑
i=1

Lj
i =

s

k
then L

is called a symmetrically-full allocation.
Definition 2: Let L be an allocation. Then L is called a

balanced allocation if for every movie i and every two regions
j1 and j2 we have |Lj1

i − Lj2
i | ≤ 1.

The search for an optimal allocation would require, in
principle, examining all the symmetrically-full allocations. As
stated above, balanced allocations turn out to serve a key role
in reducing such a search. A striking result (shown in Theorem
6.1) is that for every arbitrary symmetrically-full allocation L
there exists a symmetrically-full balanced allocation LB which
is at least as good as L. This will serve a key result since it will
allow us to conduct the whole optimization over the (narrow)
space of symmetrically-full balanced allocations.

Theorem 6.1: Given the total number of peer-servers s and
the number of regions k, for every arbitrary full allocation L
(which can be a symmetrically-full allocation) there exists a
balanced and symmetrically-full allocation LB with a higher
or equal expected revenue.

Note that the above theorem is true regardless of the
probability distribution of the demand, {N j

i }.
Before proving this theorem we need to prove several

properties of allocations. The proof of Thm. 6.1 will be
completed at the end of Section VI-C.

B. Properties of allocations
The following two claims regarding balanced allocations

and their quantity vectors will be useful in this section and in
Section VII:

Claim 6.2: Let L be a balanced allocation, whose quantity
vector is L̂ = (L1, L2, . . . Lm). Then

1) For movie i, 1 ≤ i ≤ m, in every region either
⌊
Li

k

⌋
or⌈

Li

k

⌉
peer-servers are allocated.

2) The number of regions with
⌊
Li

k

⌋
+1 peer-severs is equal

to Li mod k .



3) The contribution of movie i to the expected revenue
E(RL) is:

RgloE(min(Li, Ni)) +Rloc

r∑
j=1

E(min(

⌈
Li

k

⌉
, N j

i ))

+Rloc

k∑
j=r+1

E(min(

⌊
Li

k

⌋
, N j

i ))

where r = Li mod k.
Claim 6.3: Given a quantity vector L̂ = (L1, L2, . . . Lm),

the following properties hold:
1) There exists a balanced allocation whose quantity vector

is L̂.
2) Every two balanced allocations, having the same quan-

tity vector L̂, have the same revenue.
The proof of these claims are presented in [11]. The next two
claims are also important. We will used them in Subsection
VI-C and in Section VII:

Claim 6.4: Let C be an integer constant, and let X be a
non-negative integer valued random variable. Then we have:

E(min(X,C)) =
C∑
i=1

Pr(X ≥ i). (9)

Proof: The proof is presented in [11].
Claim 6.5: Let L be an allocation. Let j1 and j2 be regions

such that Lj1
i ≥ Lj2

i + 2. Let L′ be an allocation produced
from L by moving a peer-server with movie i from region j1
to region j2 (i.e. setting L′j1

i ← Lj1
i −1 and L′j2

i ← Lj2
i +1).

Let the expected revenues of L and L′, be denoted E(RL)
and E(RL′

) respectively. Then E(RL′
) ≥ E(RL).

Proof: This proof is presented in [11].

C. Quantity-Equivalent Allocations

In order to prove Theorem 6.1 we will define and use a
quantity-equivalence relation between allocations.

Definition 3: Let L and L′ be allocations. We call them
quantity-equivalent allocation if they have the same quantity
vector (i.e. if for every movie i L and L′ allocate the same
allocation, namely Li = L′

i). The equivalent class of L
is defined to be all the allocations L′ which are quantity-
equivalent to L.

It is easy to see that the relation defined is an equivalence
relation. The following lemmas will lead directly to the proof
of Thm. 6.1:

Lemma 6.6: For every arbitrary full allocation (not nec-
essarily symmetrically-full) L, there exists a balanced and
symmetrically-full allocation LB , which is quantity equivalent
to L.

Lemma 6.7: The expected revenue of LB (as defined in
Lemma 6.6), E(RLB ), is not smaller than that of L, E(RL).
That is E(RLB ) ≥ E(RL).

Proof of Lemma 6.6:
We should look in following algorithm:

Algorithm 2 Balanced Spread Algorithm

Require: A full quantity vector . I.e L̂ = (L1, L2, . . . Lm)

where
m∑
i=1

Li = s.

Ensure: A symmetrically-full balanced allocation.
1: for all movie i do
2: Allocate to every region j,

⌊
Li

k

⌋
replicas of movie i.

3: Set ri ← Li −
⌊
Li

k

⌋
· k (Notice that ri = Li mod k).

4: end for
5: Allocate one additional replica of movie 1 to each of

regions 1, 2 . . . , r1. Then, allocate one additional replica
of movie 2 to each of the regions r1+1, r2+2 . . . , r1+r2
and so on. Note that all region index counting is done
modulo k, guaranteeing circular allocation.

Denote LB to be the allocation returned from a run of the
Balanced Spread Algorithm on the quantity vector of L. In
[11] we presented a proof that LB is a symmetrically-full
balanced allocation, which is quantity-equivalent to L.

Remark 6.8: The construction of the symmetrically-full
balanced allocation depends only on the quantity vector and
not on how the original allocation L allocates its replicas
in any region. The only requirement of the input is that it

represents a quantity vector of a full allocation, i.e.
m∑
i=1

Li = s.

Proof of Lemma 6.7: The proof is presented in [11].

We finally complete the proof of the key theorem of this
section:

Proof of Theorem 6.1: Given a full allocation L, its
symmetrically-full balanced allocation, LB , has a higher (or
equal) revenue than L, as stated in Lemma 6.7.

VII. THE MULTI REGION MAX PERCENTILE ALGORITHM

In this section we describe the Multi Region Max Percentile
Algorithm (and, in short, the MuRMaP algorithm), and prove
that the algorithm constructs the allocation with the highest
expected revenue.

As shown in the previous section (Thm 6.1) within the
class of symmetrically-full allocations the balanced allocations
are better than the unbalanced ones. Therefore, the search for
an optimal allocation is carried out in the (narrow) space of
symmetrically-full balanced allocations. The MuRMaP algo-
rithm will therefore operate by finding the allocations with the
highest expected revenue among these allocations.

The next claim will calculate the increase of the revenue
when inserting a new replica to the allocation:

Claim 7.1: Given allocation L, inserting a replica of movie
i0 to region j0, will increase the revenue by:

Rglo · Pr(Ni0 ≥ Li0 + 1) +Rloc Pr(N
j0
i0
≥ Lj0

i0
+ 1).

The claim is proved in [11].
By Claim 6.3, we know that for every given quantity vector

L̂ = (L1, L2, . . . Lm) there exists a balanced allocation LB

with a quantity vector L̂. The expected revenue of LB , which



is unique to the quantity vector, will be called the balanced
revenue of the quantity vector L̂ and be denoted by RB(L̂).
By inserting a movie to the quantity vector, we increase its
balanced revenue, as the next claim states:

Claim 7.2: Let L̂ = (L1, L2, . . . Lm) be a quantity vector
and let L̂′ be a quantity vector such that L′

i0
= Li0 + 1 and

L′
j = Lj for all j ̸= i0. Then the increase of the balanced

revenue, i.e RB(L̂′)−RB(L̂), is

Rglo ·Pr(Ni0 ≥ Li0 +1)+Rloc Pr(Ñi0 ≥
⌊
Li0

k

⌋
+1). (10)

Proof: The proof is presented in [11].
Remark 7.3: Note that Eq.(10) can be viewed as the

marginal increment in the balanced revenue of the quantity
vector due to an increase in Li0 . Thus, it can be written as a
function δi(Li) which expresses the contribution of movie i
to the balanced revenue of Li. Eq.(10) becomes

δi0(Li0 + 1) =

Rglo · Pr(Ni0 ≥ Li0 + 1) +Rloc Pr(Ñi0 ≥
⌈
Li0 + 1

k

⌉
),

(11)

where we used
⌈
Li+1

k

⌉
=

⌊
Li

k

⌋
+ 1.

Corollary 7.4: The balanced revenue of quantity vector
L̂ = (L1, L2, . . . Lm) is identical to the integration of the
marginal contribution δ. That is

RB(L̂) =
m∑
i=1

Li∑
j=1

δi(j). (12)

This can be proved by a simple induction on
m∑
i=1

Li.

By the previous claim we can construct in a greedy way a
quantity vector, which we call the MuRMaP quantity vector, to
have the highest balanced revenue among all the full quantity
vectors. The MuRMaP quantity vector is constructed by the
following algorithm:

Algorithm 3 Deriving the MuRMaP quantity vector
1: Initiate a new minimum priority queue Q.
2: Initiate a quantity vector L̂ = (L1, L2, . . . Lm) such that

Li = 0 for every movie i .
3: for all movie i do
4: Insert to Q the value of δi(1).
5: end for
6: repeat
7: Take movie i with the maximal value in Q.
8: Li ← Li + 1.
9: Insert to Q the value δi(Li + 1).

10: until
m∑
i=1

Li = s

11: return the quantity vector, L̂ = (L1, L2, . . . Lm)

In Lemma 6.6 we proved that given a full quantity vector,
we can construct a symmetrically-full balanced allocation (See

also Remark 6.8). Therefore, constructing a symmetrically-
full balanced allocation from the MuRMaP quantity vector is
presented in the following algorithm.

Algorithm 4 The max percentile inter region (MuRMaP)
algorithm

1: Run Algorithm 3 for finding the MuRMaP quantity vector
L̂.

2: Run the balanced spread Algorithm (Algorithm 2) on the
quantity vector to yield the MuRMaP allocation.

We will prove that the allocation constructed by the
MuRMaP algorithm, called the MuRMaP allocation is the
solution for the replica placement problem:

Theorem 7.5: The MuRMaP allocation obtains the highest
expected revenue among all the symmetrically-full allocations.

Proof: The theorem is proved in [11].

Corollary 7.6: Running the MuRMaP algorithm (Algo-
rithm 4) followed by the assignment algorithm (Algorithm 1)
yields the highest expected revenue, among all the placement
and assignment algorithms.

A. Optimality of the MuRMaP Allocation Over a Wider Class
of Allocations

The analysis carried out above was based on Assumptions
2 and 3 in Section III assuming that each of the regions in the
system is allocated exactly s/k replicas. That is, the MuRMaP
allocation was shown to be optimal over all allocations for
which

∑m
i=1 L

j
i = s/k, j = 1, ..., k (and thus

∑m
i=1 Li =

s). Below we extend the class of allocation over which the
MuRMaP allocation is optimal.

A partial allocation is defined to be an allocation L such
that

∑m
i=1 Li ≤ s. The following theorem establishes that

the MuRMaP allocation is optimal over the class of partial
allocations.

Theorem 7.7: The MuRMaP allocation has the highest ex-
pected revenue within the class of partial allocations.

Proof: The proof is presented in [11].

B. Server Allocation

All the analysis carried out prior to Section VII was based
on the assumption that each region is allocated s/k servers. A
possible design question that one may want to consider, and
that was not addressed so far, is the server allocation problem
which can be formulated as follows: If one has s servers, then
how many servers one should allocate to each of the regions.

To this end, one may easily conclude from Thm. 7.7 that
among all possible server allocations, allocating s/k servers
to each region is an optimal allocation. Of course, this result
is quite intuitive due to the symmetric demand in the regions.
Nonetheless - Thm. 7.7 provides a formal proof of this result.



VIII. COMPLEXITY OF ALGORITHMS: OPTIMIZATION

The MuRMaP algorithm and the assignment algorithm were
written above in a way to clarify their presentation (and not
to reduce their complexity). They can be implemented effi-
ciently to reduce their complexity: the assignment algorithm
can be implemented in O(s + n) time complexity, where
n is the number of requests, and the MuRMaP algorithm
can be implemented efficiently and have time complexity of
O(s ·(d+log s)), where d is the complexity of calculating one
element in the probability mass function of the demand dis-
tribution (namely, the complexity of computing Pr(Ni = j)).
More details on the implementation is given in [11].

IX. MULTIPLE MOVIES IN A PEER

The analysis given so far dealt with peers storing a single
movie. Next, we examine systems where peers can store
multiple movies. To this end, we propose to use a heuristic
algorithm operating as follows: first, the number of replicas
in a region is determined by the Max Percentile algorithm
operating on sc peers, where c is the number of copies a
peer can hold. Then, the sc/k replicas destined for a region
are sorted in the order of ’their marginal contribution’ to
the revenue, namely, in the order they were selected by the
MuRMaP algorithm. Placement of these sc/k replicas in a
region is roughly done in an elevator type approach: First
place the first s/k largest replicas in decreasing marginal
contribution order starting at peer-server 1 of the region and
ending at server s/k of the region. Then, place the next largest
s/k replicas, starting at server s/k and ending at server 1.
Then, continue placing from server 1 to server s/k, and so
on. This will provide a relatively balanced spread of marginal
contributions over the s/k servers.

X. PERFORMANCE EVALUATION

We use numerical analysis and simulation to evaluate the
system’s performance. We study video servicing costs and
fraction of the demand that can be sustained as a function
of the system parameters. The diversity of movies is a crucial
parameter for the system performance: the larger the number
of movies and the larger the weight of esoteric movies in
this population, the harder it is on the system to satisfy their
demand. Motivated by previous analytical works [5], [8] and
empirical studies on the usage patterns in VoD [22], [4], we
assume that the movie demand follows a Zipf distribution.
Since it is unclear how future demands will behave (the prior
references mentioned above used a Zipf parameter of values
0.56 - 1.5, depending on the study) we consider a wide range
of Zipf distributions and vary the Zipf parameter from 0.5
to 1.5. We assume that the aggregate demand consists of n
requests, where each of the request picks a movie i with
probability pi,

∑
i pi = 1, and pi follows a Zipf distribution.

Single-Region. Figure 4 shows the number of requests
granted by the P2P network as a function of the Zipf parameter
for a single-region P2P setting consisting of a catalog of
m = 60, 00 movies, s = 5000 servers, and aggregate demand
of n = 4000 requests. The number of granted requests is
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Fig. 4. Performance of single-region network with n=4,000, s=5,000,
m=60,000.
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Fig. 5. Performance of a large-scale single-region network with s=50,000,
m=60,000, n=40,000 (load 0.8) and 30,000 (load 0.6).

computed from Eq. (4). The figure demonstrates that at low
values of the Zipf parameter the system can grant about 50% of
the requests; This is due to the fact that there are many esoteric
movies and the system simply cannot hold all of them. In this
case the P2P system will require a significant support from the
central server. When the Zipf parameter is large, the system
can handle almost all the requests since there are not many
esoteric movies. For the sake of comparison, we also plot the
performance of the proportional mean allocation [5] and of the
RLB allocation [7]. As shown, both are not as efficient as the
Max Percentile allocation. We repeat the analysis for a larger
catalog of m = 100, 000 movies and observe similar results
(not shown).

Figure 5 demonstrates the impact of the system load on
performance (the number of granted requests) for a large-
scale single-region P2P setting consisting of a catalog of
m = 60, 000 movies and s = 50, 000 servers. The number
of requests is 30, 000 and 40, 000, corresponding to loads of
0.6 and 0.8, respectively. As expected, we see that the number
of granted requests increases with the number of submitted
ones. We also show the performance of proportional and RLB
allocations for the load of 0.8 and observe similar results to
the smaller-scale network in Figure 4.

Max percentile and proportional mean. As shown in
Figure 4 and 5, the performance gap between max percentile
and proportional mean is largest when the Zipf parameter is
small. This happens because the settings include large number
of esoteric movies for which the variability of the demand is
high, resulting in large inaccuracies of proportional mean (and
RLB) allocations. The gap will be large in other scenarios as
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Fig. 6. Performance of a 20-region network with n=40,000, s=50,000,
m=60,000, Rglo=1, Rloc=9.

well. For example, consider a 2-movie system with n peer-
servers. The first movie has a deterministic demand of n
requests and the second one has a stochastic demand of nk
requests w.p 1/k and 0 requests w.p 1−1/k. 5 Max percentile
will allocate n replicas for the first movie, yielding maximum
revenue of n (number of peers), while proportional mean will
allocate n/2 replicas for each of the movies, yielding a smaller
revenue of n(1 + 1/k)/2. Note that as k approaches infinity,
the performance ratio approaches 1/2.

Multi-Region. Next, we study the performance of a multi-
region system. We consider a setting with k = 20 regions,
local revenue of Rloc = 9, global revenue of Rglo = 1, and
remaining parameters as before, m = 60000, s = 50, 000 and
n = 40000. Figure 6 shows the revenue computed by Eq.
(8) as a function of the Zipf parameter. The revenue of Max-
Percentile is compared to that of proportional mean when it is
applied locally to each region. We observe similar behavior to
the single-region case. In a multi-region setting, the number of
locally served requests increases with the Zipf parameter. For
large parameter values, majority of requests are served locally,
and the gap between max-percentile and proportional is small.
The gap is larger for small values of the parameter since many
requests are served from remote regions.

We use simulation to validate our revenue-based model by
measuring the revenue achieved by our placement algorithm
under the multi-region setting above. To this end, we first com-
pute an optimal allocation using the max-percentile algorithm,
populating the peers. Then, we randomly generate demands
according to Zipf distribution and apply optimal matching
(Algorithm 1) 10 times to compute the expected revenue.
Though not shown, we observe that the revenue function given
by Eq (8) matches the measured one.

Storage capacity > 1. Up to this point, we considered
peers storing a single movie. Next, we examine systems where
peers can store multiple movies. To this end, we use the
heuristic algorithm in Section IX. That is, the number of
replicas in a region is determined by the max percentile
algorithm operating on sc peers, where c is the peer’s storage
capacity; in our case c = 5. Then, replicas are sorted in
decreasing order of popularity and placed on the individual

5This can represent the case where the demand depends on the review a
movie is about to receive.
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Fig. 7. Performance of single-region setting where each peer holds 5 movies
and n=12,000, s=15,000, m=75,000.

peers of the region using an elevator-type placement. We use
simulation to evaluate performance: we compute the heuristic
allocation once and apply matching multiple times to derive
mean revenue. We compute the proportional mean allocation
in a similar fashion, and show the performance of both in
Figure 7. When the Zipf parameter is large, the demand
variability is low, and the proportional mean becomes a good
predictor for the distribution’s tail. Hence, both algorithms
produce similar results. The performance gap is larger when
the Zipf parameter is around 1. When the Zipf parameter
is small, both algorithms face the same heuristic decision
whether to place a copy of an esoteric movie, resulting in
similar performance.

XI. CONCLUDING REMARKS

In this paper we formulated the assignment and replica
placement problems of peer to peer video systems in multi-
region systems. We presented an exact solution leading to find-
ing the optimal assignment as well as the optimal allocation.
The optimality was derived under the assumption of symmetric
stochastic demands with arbitrary distributions. Algorithms for
solving the problems were proposed; these are very efficient
and can deal with networks consisting of millions of peers.
The analysis provided in this work can be further extended to
deal with k-level hierarchies. In an ongoing work, we explore
algorithms for solving the problem under asymmetric loads.
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