Approximation and Heuristic Algorithms for Minimum-Delay Application Layer Multicast Trees

Eli Brosh and Yuval Shavitt
Tel-Aviv University
Application-Layer Multicast

An alternative to IP multicast - provide multicast functionality at the application layer.

- End-Hosts perform packet duplication and routing.
- End-Hosts construct **Overlay Network** on unicast infrastructure
- Overcomes IP multicast limitations (scalability, deployment, etc)

Challenge: construct efficient overlay trees, minimizing the performance penalty involved with AL processing.
Efficiency of Multicast Trees

- Our goal is to construct delay optimized multicast trees.

- Many proposals attempt to minimize the multicasting delay: Narada [CRZ00], Yoid [F99], Almi [ST02], Omni [BKKBS03], and others.

- Common Properties
 - Build short diameter (height) trees with constrained degrees
 - Short diameter \(\Rightarrow\) Low delay
 - Low degree \(\Rightarrow\) Low stress and bandwidth utilization

- Implies a Dual Cost optimization objective
The Problem

- Arbitrary selection of degrees
 - Requires trial and error
- Neglect serialized message distribution
 - Scalability problem
Our Contributions

- New overlay network model
 - Mathematical generalization of Cidon’s model [CGK95].
 - Map the node load to delay penalty factor
 \[\Rightarrow\] Quantify multicast performance using a single delay measure.

- New approximation and heuristic algorithms
 - Generate trees that intrinsically balance short latency with small degree.

- Performance analysis of structured overlay topologies
The Overlay Network Model

- A complete directed graph $G=(V,E)$
- Communication cost function $c : E \rightarrow R^+$
- Processing cost function $p : V \rightarrow R^+$
- **Sequential communication**, $p(v)$ is the time the sender host is busy minimum time interval between message transmissions of host v
The Minimum Delay Multicast (MDM) Problem

Given:
- Directed complete graph $G=(V,E)$;
 - processing cost $p(v), v \in V$;
 - communication cost $c(e), e \in E$;
- Multicast group $M \subseteq V$;
- Source host $s \in M$;

Find:
- a scheme that \textbf{minimizes the delay} by which all the hosts in M receive a message from s.

Assumption: only the hosts in M are allowed to participate in the distribution.
The Ordered Tree Solution

- Optimal solution is represented by an ordered tree T which spans M, rooted at s.
- The i-th outgoing edge of node u corresponds to the i-th transmission from host u

Notations

Reception delay of v, $t_T(v)$

Tree cost, $\max_{v \in M} \{t_T(v)\}$

By Def. $t_T(s) = 0$
Optimal Multicast

- Given a multicast tree $T=(V,E)$ one can calculate the optimal ordering using a simple recursive computation, working bottom-up.
 - Idea: The i-th delivery goes to the i-th largest cost subtree
 - Time complexity $\Theta(n)$

- Neglect the ordering and focus on finding optimal trees.
- The optimal solution will be a ‘non-lazy’ multicast scheme

- The optimal multicast problem is NP-Complete
 - Reduction from the telephone broadcast problem
Related work
Parallel Computation Models

- **Homogenous models**
 - Cidon *et al.* [CGK95], high-speed network model
 - Optimal tree-based multicast algorithm.
 - The tree delay is logarithmic in the size of multicast group.
 - Postal [BK95], LogP [KPSS93], Active Networks [RS01]

- **The Heterogeneous Postal Model** [BGNSS01]
 - Incorporates communication latency cost function λ and a sending time function s.
 - $\log(k)$ approximation algorithm for optimal multicast
 - k is the size of multicast group.
 - Supports only undirected graphs
MDM Approximation

Postal approximation cannot be used directly to solve MDM due to distribution timing differences.

Our approach: devise an approximation algorithm, **Approx-MDM**, based on a modified version of the postal approx.

Theorem 1
The approximation ratio of Approx-MDM is

\[
(OPT + p_{\text{max}} - p_{\text{min}}) O(\log n)
\]

- Cost of optimal tree
- Maximal processing cost
- Minimal processing cost
- Size of the multicast group
Heuristic Algorithm

Motivation: Develop an algorithm with low computational overhead (Approx-MDM is $\Theta(n^7)$)

Greedy approach: Largest Ready Time First

Algorithm Heuristic-MDM

Init: Add s to an empty tree

1. Compute the minimum reception delay of each non-notified host
2. Select the non-notified host with maximum reception delay
3. Add this host and the minimum latency path to the constructed tree

Repeat 1-3 till all hosts are notified
Heuristic Algorithm - Cont.

- Minimum latency path is computed using All-Pairs Shortest-Path (Floyd-Warshall) with weight matrix $W=(w_{vi,vj})$ defined as:

\[
w_{vi,vj} = \begin{cases}
 p(v_i) + c(v_i,v_j) & \text{if } v_i \neq v_j \\
 0 & \text{otherwise}
\end{cases}
\]

- Time complexity $\Theta(n^3)$
- Supports arbitrary directed graphs
Lemma 2:
The approximation ratio of Heuristic-MDM is $\Omega(n^{0.5})$

Proof: Assume graph with $n+1$ hosts, where $p(v)=1$, $v \in V$,

- Cost of heuristic tree n
- Cost of optimal tree $(1+\delta) O(n^{0.5}) \Rightarrow The \ lemma \ follows.$
Simulation Results

- The multicast delay for a clique topology with random costs uniformly distributed on the interval $[1,10]$

- Lower bound: the weight of the longest path in the SPT
Simulations: Internet-Like costs

- The multicast delay for a clique topology with random communication costs from $[1,10]$ and unit processing costs

- SPT has almost linear growth rate for large sizes
Simulations Summary

- The heuristic algorithm has a **similar or better** performance than the approximation algorithm

- Heuristic trees are scalable for large group sizes
 - Near optimal result
 - Logarithmic like growth rate
Summary

- Solutions for delay-sensitive Applications

- New overlay communication model

- Cost effective heuristic algorithm
 - Scalable solution with near optimal results
 - Simple implementation, applicable for centralized server based and P2P overlay systems.

- New performance bounds for several degree constrained graphs
Future Work

- Examine graphs in which the triangle equality holds, and attempt to devise better bounds.

- Develop a distributed version of our algorithm, and explore its efficiency and applicability in real-world communication networks.