
Serving Niche Video-on-Demand Content in a
P2P Environment

E. Brosh, V. Misra, D. Rubenstein
Department of Computer Science, Columbia University, New York, US

{elibrosh,misra,danr}@cs.columbia.edu

Abstract: Current VoD services focus on providing access to popular content. Yet, the vast
majority of content is heavy-tailed, subject to relatively low-demand, and is poorly supported by
current approaches. In this paper, we study P2P VoD systems that include support for niche
videos by reserving small portions of peers’ storage and upload resources for such content. We
demonstrate through analysis and simulation that simple weighted caching techniques can provide
high streaming quality and low startup delay for niche videos.

Keywords: Video-on-demand, caching, stochastic modeling

1 Introduction

Video-on-demand (VoD) is an online service that allows
users to view videos from a catalog of available choices
at any time. Existing peer-to-peer (P2P) based VoD
services focus on providing access to popular content.
However, they are limited in their ability to support
efficient streamed access to niche content that has rel-
atively small demand. This limitation stems from the
poor performance of P2P mechanisms when the num-
ber of peers sharing content is small [2]. P2P VoD
providers can leverage known techniques to obtain wide-
availability of niche content among peers. E.g., content
can be explicitly pushed to the peers during off-peak
hours [6], or implicitly by combining videos with diverse
popularity into pushed bundles [4]. However, how to
best serve that niche content is not yet well-understood.

Consequently, we study a system that extends the de-
sign of existing P2P VoD systems geared towards pop-
ular content by reserving a small portion of peer’s stor-
age and bandwidth resources for the purpose of serving
niche content. We then address the following question:
what may be the best and most practical strategies for
content replication to enable efficient delivery of niche
content? Our analysis reveals that when delivering a
niche video, earlier parts of the video suffer more greatly
from playback continuity gaps than later parts. A com-
mon approach to reduce such gaps is to allocate ad-
ditional cache space for the videos’ earlier portions, a
technique known as prefix caching [5]. However, due to
its storage overhead, applying prefix caching across the
long-tail of niche content is too costly. Contrastingly,
we demonstrate that the performance in servicing niche
videos can be significantly improved without the need
for additional storage space by optimizing the place-
ment of pieces within the peers’ caches according to a
playback-point weighted caching strategy.

To design such strategy, we develop a stochastic
model which characterizes the delivery of niche videos
in P2P VoD environments (Section 2). Through sim-
ulations we show that a weighted caching strategy can
reduce the startup delay requirement by a factor of 3

compared to a uniform strategy (Section 2.1). More-
over, in [1] we show that reserving a small portion of
peers’ resources to niche videos can significantly im-
prove the system-wide playback performance.

2 Niche Content Delivery Model

We assume that each video is chopped into pieces. The
pieces are distributed to the peers, who are then able
to exchange them on demand. The set of peers ex-
changing video pieces is called a swarm. Our goal is
to determine how to distribute the pieces of a niche
video across peers’ caches so as to optimize its playback
performance. To this end, we develop a model that
captures the piece-level playback performance of a sin-
gle client viewing some target video, the common case
when the video popularly exhibits a long-tail.

We study the system within the context of rounds.
The duration of a round corresponds to the time taken
to play a single piece. Each peer reserves a small por-
tion of its upload bandwidth and storage resources for
niche content delivery. To capture the peer’s upload
bandwidth sharing among popular and niche videos, we
assume that in each round, when a peer is issued an
upload request for niche video, it is available to serve
that request with a probability Pa < 1.

An arriving client may buffer data for d rounds be-
fore commencing playback. In each round, the client
requests the pieces closest to playback deadline (also
called urgent pieces) from all the available peers that
have those pieces in their cache. A peer is able to re-
spond only to one request and selects the most urgent
one. The unsatisfied requests are canceled and reissued
again in the next round. The client departs the system
when video playback is completed.

Consider a swarm for a video with m pieces. The
swarm has a single downloading peer and N seed-
ing peers (seeds) who are also participating in other
swarms. We assume that when a piece is missing, play-
back stops until the piece is available. We use wi to
denote the time taken to complete the playback of piece
i. This time consists of the time playback is stalled plus

one round, the piece’s own playback time. Suppose that
the peer does not have piece i when it is first needed for
playback. Then, playback is stalled until at least one
seed with piece i becomes available. If ri seeds have
piece i in their cache, then the probability that at least
one seed with piece i is available, denoted by F (i), is
1− (1− Pa)

ri , and the time playback is stalled, wi − 1,
follows a geometric distribution with parameter F (i).

As all peers with most urgent piece can be unavail-
able, a peer can download some non-urgent piece j,
j > i, while waiting to obtain piece i. To capture out-
of-order downloads, we use ps(i) to denote the proba-
bility that the downloader has piece i when piece s is
first needed for playback. The average time taken to
complete the playback of piece i, E[wi], can thus be
expressed as:

E[wi] =

2m∑
k=1

kPr{wi = k} = 1 +
1− pi(i)

F (i)
(1)

F (i) = 1− (1− Pa)
ri

Pr{wi = k} =

{
pi(i) if k = 1
(1− pi(i))(1− F (i))k−2F (i) otherwise

The value of pi(i) can be computed recursively:

Proposition 2.1 The probability a downloader has ac-
quired piece i when piece s > 0 is needed for playback,
ps(i), is given by:

ps(i) =

2m∑
k=1

Pr{ws−1 = k}ps−1(i, k) (2)

ps(i, k) = 1− (1− ps(i))

k∏
j=1

(1− F (i)Ss(i, j))

Ss(i, k) =

i−1∏
j=s

1− F (j)

paN
(1− ps(j, k − 1))

where p0(i) = 1−
∏d−1

j=0(1−F (i)S0(i, j)), and F (i) and
Pr{ws−1 = k} are defined in Eq. (1).

Proof Refer to [1].

The time taken to playback the video E[T] is thus:

E[T] = d +

m−1∑
i=0

E[wi] = d + m +

m−1∑
i=0

1− pi(i)

1− (1− Pa)ri

where the last term in the equation above represents
the total amount of time playback is stalled.

2.1 Weighted Caching

Using the model, we show in [1] that early pieces are
highly sensitive to instantaneous fluctuations in seeds’
service capacity availability; With a uniform cache dis-
tribution (i.e., ri = rj , for all i, j), earlier pieces are
more likely to miss their playback deadlines than later
pieces. A crucial issue is then to determine the right
strategy of placing video pieces within the seeds caches.
Our goal is to determine the number of replicas of piece
i, ri, so as to optimize the playback performance while

0 20 40 60 80 100
0

0.02

0.05

Piece index

R
ep

lic
a

di
st

rib
ut

io
n Uniform

Weighted

(a) Uniform vs. weighted cache distributions

0 20 40 60 80 100
1

2

3

4

 Piece index

P
la

y
co

m
pl

et
io

n
tim

e Sim−uniform
Model−uniform
Sim−weighted
Model−weighted

(b) Performance of uniform and weighted distributions

Figure 1: Comparison of uniform and weighted caching.

respecting a storage capacity constraint nm (where n
is the number of replicas of the video across the seeds
caches) and a replication constraint 1 ≤ ri ≤ N .

Minimize E[T] (3)

subject to

m−1∑
i=0

ri = nm, 1 ≤ ri ≤ N.

The optimal solution can be obtained numerically and
typically yields a front-weighted cache distribution. For
example, Figure 1(a) depicts the optimal piece replica
distribution for a 100-piece video, n = 4, N = 20, d =
0, and Pa = 0.1. The optimal distribution replicates
earlier pieces more heavily at the expense of later pieces
to improve playback performance.

Figure 1(b) shows the predicted vs. measured time
taken to complete the playback of each piece relative
to the piece’s duration for the two caching strategies,
derived using simulations (see [1]). As shown, the
weighted caching strategy reduces the time taken to
complete the playback of the first 10 and 50 pieces of
the video (by 30% and 20%, respectively), as well as
the total time playback is stalled (by 75%). Using sim-
ulations, we observe that a weighted cache distribution
can reduce the startup delay requirement by an average
factor of 3.5 compared to a uniform design by making
better use of the storage allocated for the video.

References

[1] Brosh et al. Serving niche video-on-demand content in a
managed p2p environment. Technical Report cucs-031-09,
Columbia University, 2009.

[2] Dn et al. Dynamic swarm management for improved bittor-
rent performance. In IPTPS, Apr 2009.

[3] Huang et al. Challenges, design and analysis of a large-scale
p2p-vod system. In SIGCOMM, Aug 2008.

[4] Menasche et al. Modeling content availability in peer-to-peer
swarming systems. In CoNext, Dec 2009.

[5] Sen et al. Proxy prefix caching for multimedia streams. In
INFOCOM, Mar 1999.

[6] Suh et al. Push-to-peer video-on-demand system: Design
and evaluation. In JSAC, 25(9):1706–1716, 2007.

