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service time variability and job scheduling
fairness

Abstract. Fairness is an inherent and fundamental factor of queue service disci-
plines in a large variety of queueing applications. Service time variability across
jobs is an important factor affecting both system performance and scheduling rules
(for example, computer systems that prioritize short jobs over long jobs). Service
time variability and its effects on mean response times have been studied exten-
sively. However, its effect on queue fairness has not been researched. This work
studies the effect of service time variability on queue fairness. We use the RAQFM
queue fairness measure, whose analysis for the case of the M/M/1 queue was pro-
vided in [25], and study it under a wider variety of service time distributions (rather
than exponential only) with a large range of service time variability. This serves
two objectives: 1) Extend the understanding of queue fairness, and 2) Examine the
capabilities and properties of RAQFM as a fairness measure. For the LCFS-PR
scheduling we use a new approach and provide an analysis of the M/G/1 system;
this is the first analysis of RAQFM for a non-Markovian system. We show that for
this system the fairness depends on the first two moments of the service time and
only on them. We also show that under LCFS-PR the expected discrimination of a
job, conditioned on the service time, equals zero for every service time. For other
service disciplines (FCFS, LCFS-NPR, ROS-NPR, ROS-PR) we approximate ser-
vice time distributions by Coxian distributions and demonstrate a Markovian-type
approach for deriving the RAQFM fairness level of M/Cox/1 systems. The analysis
reveals that queue fairness is sensitive to service time variability and that the fair-
ness ranking of common scheduling policies (e.g. FCFS, LCFS, ROS) depends on
this parameter. The results demonstrate that the fairness values of RAQFM widely
agree with common intuition, and thus provide further confidence in this metric.
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1 Introduction

Queueing systems appear in a wide variety of applications such as computer systems, com-
munication systems, web services and call centers, as well as in airports, public offices and
many others. Queueing Theory has been used for nearly a century to study the performance
of such systems and how to operate them efficiently. Service times and their distributions
play an important role in affecting the performance of queueing systems, and the scheduling
policies used. One can mention the Pollaczek-Khinchin formula (see queueing theory text
books, e.g. [13], [7]) where for the M/G/1 system the average delay is proportional to the
second moment of the service time. Accounting for service times in scheduling policies has
been widely studied, mainly in the context of optimizing mean system delay or mean delay
cost. A well known result in this context is the so-called µc rule, according to which mini-
mization of the M/G/1 waiting cost is achieved by serving the customers with greatest µc
value first (service completion rate times cost per minute); see [8] Chapter 3.3 and [14], [16].

Fairness has been recognized as a highly important performance aspect in queues. This
recognition can be found in past studies such as [15] [26] [20] [17] and [28]. Recent exper-
imental studies of the reaction of humans to various queue situations ([21] and [22]) have
shown that fairness in the queue is very important to humans, perhaps some times even
more than the wait itself. In practice, fairness aspects seem to affect scheduling policies,
in some cases, not less than the wish to minimize mean waiting time (or weighted mean
waiting time). However, fairness considerations have rarely been expressed quantitatively,
simply since queue fairness quantification was not available until quite recently.

The interest in computer job scheduling and in their fairness has recently raised interest
in quantitatively evaluating queue scheduling fairness. Work in this area has been done in
[2], [5], [4], [29], [25], [23] [3] and [27]1. To quantify queue fairness one must first select
a measure (yardstick) of queue fairness. To this end, four different approaches have been
proposed, recently: 1. In [2] measures based on order of service have been devised. 2. The
slowdown (a.k.a. stretch, normalized response time) was proposed as a metric of unfairness:
In [5] the max slowdown serves as indication of unfairness, in [4] the max mean slowdown is
used to evaluate the unfairness of the SRPT scheduling policy and in [29] as a criterion for
evaluating whether a system is fair or unfair. 3. In [25] an analysis of the resources allocated
by the system to the various customers forms the base for a fairness measure named Resource
Allocation Queueing Fairness Measure (RAQFM). 4. In [27] an approach based on counting
the number of order violation and size violation events is proposed.

As discussed in [3] the first approach focuses on the relative arrival times of customers
while the second approach focuses on their relative service times; as such both approaches
have difficulties accounting for the tradeoff between relative seniority (the time spent in the
system since arrival) and service requirement. The reader may recognize this tradeoff and

1The reader may question whether the fairness measures developed in the analysis of Weighted Fair
Queueing, like Absolute Fairness Bound and Relative Fairness Bound (e.g., [10], [12], ch. 9 pp. 209-261, [9],
[30]) should be considered. Those measures seem to fit well streams of packets and less so individual jobs,
on which our focus is in this work.
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its importance from his/her daily life experience where a very short job arrives to the queue
just shortly after a very long job (e.g in a supermarket), raising the common dilemma of
whom it is more fair to serve first. The third approach [25], [23] focuses on the resources of
the system and their allocation in a manner that satisfies ”social justice” perception, and
thus allows to deal with the tradeoff between service requirement and seniority. The results
derived in there, and demonstrated mainly by application to M/M/1 type systems, show
that the measure is indeed sensitive to both factors and reacts properly (intuitively) in a
variety of cases of interest. The fourth approach is very recent and is in a too early stage
to be evaluated. We will therefore adopt RAQFM as our fairness evaluation metrics in this
study.

For a quantitative measure to be widely accepted it must reflect, quantitatively, the
qualitative (or intuitive, or ”educated guess”) assessment, by most people, of the relative
levels of fairness of different queue disciplines, for the widest range of situations. Thus,
one of our primary goals in this paper is to widen the demonstrated range where RAQFM
does exactly this. Since fairness in a queue is mainly obtained by a desirable preference
balance between a customer’s seniority and length of service demanded by him, service
times variance is intuitively a major factor. The larger the variance, the more prevalent are
situations with acute conflict between seniority and service length. At the extreme, where
all service times are the same there is no conflict at all, and FCFS is the fairest of all non-
preemptive disciplines [2]. As the variance of service times increases we expect the unfairness
of all non-preemptive disciplines to increase. On the other hand, LCFS, which is extremely
unfair, may intuitively be more fair than FCFS once we allow preemption, i.e. FCFS may
be less fair than LCFS-PR (Last-Come-First-Served-Preemptive- Resume) if the variance
of service times is large. The intuitive reasoning behind this is that a customer with very
long service time is likely to be preempted by one with shorter service time, thus achieving
a better balance between seniority and service time. As stated above, the prior work on
RAQFM [25], [23] focused on exponential service times (M/M/1 type models) and therefore
could not address, directly, the service times variability factor.

This deficiency is overcome in this work by applying our analyses to the M/G/1 system
in the LCFS-PR case and to the M/Gcox/1 system in the non-preemptive cases, where Gcox

stands for Coxian distribution as approximation to more general distributions. The results
derived in this work do add validity to the RAQFM measure by showing that it reflects well
the intuitive impacts of the service variability factor on the level of fairness of a system.
Thus, this measure may be a good choice for addressing performance questions as well as
operational questions, such as: 1) To what degree (quantitatively) service time variability
affects job scheduling fairness, 2) How fair are common scheduling disciplines, as a function
of the job size variability, and 3) Which scheduling disciplines achieve higher job fairness (as
function of the job variability). Since job fairness is one of the major concerns in choosing
a scheduling disciplines, answers to these questions should be useful to system designers
and operators. Further goals achieved in this work are (i) extension of fairness analyses
conducted in prior studies to systems with various levels of service time variability, and (ii)
further understanding of the properties of RAQFM, as a metric for fairness evaluation. Note
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that none of the prior studies dealt with the effect of service time variability on fairness
level: i) [2], [27] did not address the problem, ii) [29] provided only a criterion and not a
measure, and iii) [25] dealt only with exponential service times (M/M/1). Also, the results
derived in this work further close a seemingly perceptual gap between the results derived
in [2], concluding that FCFS is more fair than LCFS, to those derived in [29], concluding
that LCFS-PR is more fair than FCFS. Our results show that depending on the service time
variability either of the views may show up, and, further, that RAQFM properly reacts to
these parameter changes and takes either of the views in a proper manner.

We start by presenting the model and reviewing the RAQFM measure (Section 2). We
then (Section 3) turn to the analysis of the LCFS-PR and PS disciplines. In (Section 3.1),
we provide a complete analysis of the queue unfairness (expressed as the second moment
of discrimination) in the Last-Come-First-Served Preemptive-Resume (LCFS-PR) M/G/1
system. This is the first study where RAQFM is evaluated for a non-Markovian system. The
method leads to a simple numerical recursion for evaluating the individual discriminations
as well as the system’s unfairness in this system. The results derived show that system
unfairness under LCFS-PR directly depends on the first two moments of the service times
and only on them. That is, service variability is a major factor affecting queue fairness.

A striking and seemingly ’paradoxical’ result is derived for this system, stating that the
expected value of discrimination, conditioned on the service time of a job, equals zero for all
service times. This, misleadingly, seems to hint that LCFS-PR is very fair. However, the
numerical evaluation of the fairness measure for this system (which accounts for temporal
unfair situations, resulting from seniority violation by LCFS-PR) demonstrates that it is
very unfair. The section is concluded in Section 3.2, where we recall that the unfairness of
Processor Sharing (PS) is 0 in all single server systems, including the M/G/1 model (thus
it is the most fair policy), and regardless of service variability.

We next (Section 4) turn to analyze the FCFS, LCFS non- preemptive (LCFS-NPR),
Random-Order-of-Service Non-preemptive (ROS-NPR) and ROS-PR. We realize that the
analysis of RAQFM for the M/G/1 model might be quite challenging. The reason for this
is that the performance measure of fairness (at least as used in RAQFM) is inherently more
involved (mathematically) than the performance measure of waiting times. This is so since
the latter involves the measures of individual jobs while the former involves a comparative
measuring between different jobs. To overcome this difficulty we turn to the commonly used
approach of approximating a general service time distribution by a Coxian distribution, by
matching the moments of the distributions, and analyzing the Markovian model with the
Coxian service time distribution. In Section 4 we first discuss the approximating procedure
and then analyze the corresponding Markovian models. The analysis is carried out via a
set of recursive equations, which can be solved numerically to yield the individual job dis-
crimination as well as system unfairness. To provide some insight into the behavior of the
non-preemptive policies we provide in Section 5 an approximate analysis of discrimination in
these systems, leading to some closed form approximate expressions. That analysis demon-
strates that in non-preemptive systems, in the presence of highly variable service times, the
positive discrimination experienced by the long jobs is the dominant factor in the system
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unfairness.
Lastly (Section 6) we turn to conduct a numerical evaluation of the models, examining

their fairness sensitivity to service time variability. The major findings are: 1. Service
variability significantly affects the fairness of job scheduling policies, including their it relative
(fairness) ranking. 2. At high service time variability: At most loads the non-preemptive
policies are the most unfair. At high load LCFS-PR is the most unfair. ROS-PR seems to
be the most fair almost at all loads. 3. At low service time variability: At most ranges the
policies maintain order of fairness: FCFS > ROS-NPR > ROS-PR > LCFS-NPR > LCFS-
PR. 3. Preemption is quite effective in achieving job fairness for highly variable service
times. Nonetheless, if it is used in conjunction with the LCFS policy (which highly violates
seniority) the system can become very unfair.

To summarize, the major contribution of this paper is in several aspects: 1) It significantly
widens the set of systems for which the RAQFM measure agrees with common intuition, thus
increases the confidence in this measure. 2) It provides, for the first time, an exact analysis
of RAQFM for an M/G/1 system (LCFS-PR). 3) It contributes to the understanding of
fairness in the context of variable service times. 4) It demonstrates that the analysis of
fairness via RAQFM can be effectively extended to many systems with general service time
via a mapping to Coxian distributions (further extension is carried out in [24] where RAQFM
is applied to multi-queue multi-server systems).

2 Model, Notation and Review of RAQFM in a Single

Server System

2.1 Model and Notation

Consider a single server queueing system. The system is subject to a stream of arriving
jobs (customers), C1, C2, . . . , arriving at this order. Let ai and ei denote the arrival and
exit (departure) epochs of Ci respectively. Let Si be a random variable denoting the service
requirement (measured in time units) of Ci, where S1, S2, ... are i.i.d as S. Let s(1) = E[S],
s(2) = E[S2] σ2

S = E[S2] − (E[S])2 and γ
S

= σS/E[S], where γ
S

is called the coefficient of
variation.

At each epoch t the server grants service at rate xi(t) ≥ 0 to Ci. Let N(t) denote
the number of customers in the system at epoch t. The system is work-conserving, i.e.∫ ei

ai
xi(t)dt = si. The server has a service rate of one unit and is non-idling, i.e. ∀t, N(t) >

0 ⇒ ∑
i xi(t) = 1.

2.2 Individual Customer Discrimination

The fundamental principle underlying RAQFM is the belief that at every epoch t, all cus-
tomers present in the system deserve an equal share of the system’s limited resources (equal
piece of the pie). This principle implies that the share of the server’s resources a customer
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deserves at t is simply given by 1/N(t). This quantity is called the momentary warranted

service of Ci at epoch t. Summing this for Ci yields Ri
def
=

∫ ei

ai
dt/N(t), the warranted service

of Ci. The (overall) discrimination of Ci, denoted Di is the difference between the warranted
service and the granted service. Since the granted service is Si =

∫ ei

ai
xi(t)dt, then

Di = Si −Ri = Si −
∫ ei

ai

dt/N(t). (1)

A positive (negative) value of Di means that a customer receives better (worse) treatment
than it fairly deserves, and therefore it is positively (negatively) discriminated.

Since Di consists of the difference between Si and Ri, we may view Si as the ”positive
discrimination” and denote it by D+

i = Si, and Ri as the ”negative discrimination” and
denote it D−

i = −Ri. Define D+ and D− to be the steady state limiting values of D+
i and

D−
i respectively.

An alternative way to define Di is to define the momentary discrimination of Ci at epoch

t as δi(t)
def
= xi(t)− 1/N(t), and then the overall discrimination of Ci is Di =

∫ ei

ai
δi(t)dt. An

important property of this measure is that it obeys, for every non-idling work-conserving
system, and for every t:

∑
i δi(t) = 0, that is, every positive discrimination is balanced

by negative discrimination. This results from the fact that when the system is non-empty∑
i xi(t) = 1 (due to non-idling) and the overall momentarily warranted service at such

epoch is 1 as well. An important outcome of this property is that if D is a random variable
denoting the discrimination of an arbitrary customer when the system is in steady state,
then E[D] = 0, namely the expected discrimination is zero. The proof was derived in [23].

2.3 System Measure of Unfairness

To measure the unfairness of a system, using a particular policy, across all customers, that
is, to measure the system unfairness, one would choose some summary statistics measure
over the values Di, or using the distribution of D, where D is a random variable denoting the
discrimination of an arbitrary customer when the system is in steady state. Since E[D] = 0,
a natural choice is E[D2] (which equals the variance in this case) and which we denote
FD2 = E[D2]. Other optional measures are the mean of absolute deviations E[|D|] and the
mean negative discrimination, −E[D|D < 0]. Throughout this paper, “unfairness” refers to
FD2 .

3 Analysis of M/G/1: The Fairness of LCFS-PR and

PS

3.1 Analysis of Fairness in the LCFS-PR System

In this section we analyze the fairness and discriminations experienced in the LCFS Pre-
emptive (Resume) system. This is the first time in which an analysis of RAQFM is provided
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for non-Markovian service times. Consider a tagged customer C arriving at the LCFS-PR
system. Let k ≥ 0 be the number of customers it finds upon arrival. C enters service im-
mediately, and these k customers will remain in the system until C leaves. Recall that S
denotes a random variable representing the service time of C, with moments s(1) and s(2).

While C is served, customers arrive at the system at rate λ. Once the first such customer
arrives, it preempts C, starting a sub-busy-period, at the end of which (after all customers
arriving depart, including itself) the service of C resumes. Let N be a random variable
denoting the number of arrivals during S; this is exactly the number of times C will be
preempted and a sub-busy-period will start. Since the arrival process is Poisson, we have:

E[N ] = λE[S]; E[N2] = λ2E[S2] + λE[S]. (2)

Let D|k be a random variable denoting the discrimination experienced by C conditioned on
the number of customers (k) it finds in the system upon arrival. Let D+|k and D−|k be the
conditional positive discrimination (granted service) and negative discrimination (warranted
service). Let DSE|k and DQ|k be the conditional discriminations experienced by C while in
service and while in the queue, respectively. Assuming that the value of S is s, we have:

DSE|k = (1− 1/(k + 1))s; DQ|k = D̃1|k + D̃2|k + ... + D̃N |k, (3)

where D̃i|k is a random variable denoting the total discrimination experienced by C at the
ith sub-busy period. Note that while N depends on S, the variables D̃i|k are i.i.d as D̃|k
(which denotes the discrimination experienced by C during an arbitrary sub-busy period).
The following claim establishes a key relation between the variables D|k and D̃|k:

Proposition 3.1. For k = 0, 1, ... the random variable D̃|k is identical to the variable
D−|k + 1.

Proof. D̃|k is the discrimination C experiences from the moment a new customer, say C ′,
arrives (while C is in service) and until the sub-busy period of C ′ ends. Since during this sub-
busy period both C and C ′ are in the system their negative discrimination during this period
is identical. Further, since C ′ sees exactly k + 1 customers upon arrival, its discrimination
is distributed as D|k + 1 and its negative discrimination is distributed as D−|k + 1.

Thus, the first and the second moments of D|k are given by:

E[D|k, S = s] = E

[
s(1− 1

k + 1
) + Y (s, k)

]
; E[D2|k, S = s] = E

[
s(1− 1

k + 1
) + Y (s, k)

]2

,

(4)

where Y (s, k) =
∑N(s)

i=1 D̃i|k and N(s) is the number of Poisson arrivals in time duartion s.
Hence

E[Y (s, k)] = λsE[D̃|k]; E[(Y (s, k))2] = λsσD̃|k + (λ2s2 + λs)E[D̃|k]2,
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where σD̃|k is the variance of D̃|k. Taking the expectations in Eqs. 4, unconditioning on
S = s and using Proposition 3.1 we get

E[D|k] = s(1)

[
(1− 1

k + 1
) + λE[D−|k + 1

]
(5)

E[D2|k] = s(2)

(
1− 1

k + 1
+ λE[D−|k + 1]

)2

+ λs(1)E[(D−)2|k + 1]. (6)

Now, to derive the first two moments of D−|k one can repeat the analysis above only for the
negative part of the discrimination, leading to equations similar to Eqs. 5 and 6:

E[D−|k] = s(1)

[ −1

k + 1
+ λE[D−|k + 1

]
, (7)

E[(D−)2|k] = s(2)

( −1

k + 1
+ λE[D−|k + 1]

)2

+ λs(1)E[(D−)2|k + 1]. (8)

Eq. 7 can be solved by successive substitution to yield:

E[D−|0] = −s(1)

∞∑
i=1

ρi−1

i
=

s(1)

ρ
ln(1− ρ); E[D−|k] = − s(1)

ρk+1

∞∑
i=0

ρk+i+1

k + i + 1
(9)

Finally, let gk be the probability that C sees k customers upon arrival (equalling, due to
PASTA, to the corresponding steady state probability). The LCFS-PR system is a symmetric
queue as defined by [11, Section 3.3]. Therefore2 gk = (1 − ρ)ρk, k = 0, 1, 2, ... where
ρ = λE[S]. Thus we have E[D2] =

∑∞
k=0(1− ρ)ρkE[D2|k] which together with Eq. 6 yields:

E[D2] = s(2)

∞∑

k=0

(1−ρ)ρk

(
1− 1

k + 1
+ λE[D−|k + 1]

)2

+ρ

∞∑

k=0

(1−ρ)ρkE[(D−)2|k+1]. (10)

Eq. 10 demonstrates a direct dependency of the second moment of discrimination on
the first two moments of service time. Further, we may conclude the following important
corollary:

Corollary 3.1. The unfairness of the M/G/1 system with the LCFS-PR service regime,
measured by the RAQFM measure (via the second moment of discrimination) depends on
the first two moments of the service time S, and does not depend on higher moments of S.

The following theorem establishes an important property of LCFS-PR by which all job
sizes are treated equally:

2Note that this form results also directly from the following simple argument: In the LCFS-PR a customer
leaves behind him k customers iff he encounters k customers upon arrival. A customer leaves behind k + 1
customers iff he preempts a customer who encountered k upon arrival. Since E[N ] = λE[S] = ρ we have
gk+1 = ρgk implying gk = (1− ρ)ρk, where gk is the probability of encountering k upon arrival.
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Theorem 3.1. Under LCFS-PR the following properties hold: (1) The expected discrimina-
tion of a job, conditioned on its service time, E[D|S = s], equals cs for some constant c. (2)
The expected discrimination of a job, conditioned on its service time, E[D|S = s], is equal
to zero.

Proof. Taking expectation on Eq. 4 over k (after substitution of Y (s, k)) leads to the proof
of (1). Property (1), together with the fact that the expected discrimination (unconditioned)
obeys E[D] = 0 for any policy (see Section 2.2), lead to Property (2).

Remark 3.1. Claim 1 in Theorem 3.1 resembles the well known property of LCFS-PR (see
text books, e.g. [14]) whereby the expected value of the conditional sojourn time (conditioned
on the service time s) is proportional to s. This property was used in [29] (see Section 1) to
conclude that LCFS-PR is always fair (via the slow-down fairness metrics).

Remark 3.2 (Fairness of LCFS-PR). One may incorrectly interpret Theorem 3.1 as sug-
gesting that LCFS-PR is very fair. In fact, LCFS-PR is extremely unfair, as demonstrated
in Section 6, due to its violation of seniority (and which is captured by the E[D2] metric).

The analysis can be generalized to yield the Laplace Stieltjes Transform (LST) and thus
higher moments (and distribution) of customer discrimination. Let B∗(ω) = E[e−ωS]. Let
D∗(ω) = E[e−ωD] and D−∗(ω) = E[e−ωD− ] and let D∗(ω|k) and D−∗(ω|k) be these transforms
conditioned on the number of customers seen on arrival (k). Then we have:

D∗(ω) =
∞∑

k=0

(1− ρ)ρkD∗(ω|k); D∗(ω|k) = B∗((1− 1/k)ω + λ− λD−∗(ω|k + 1)), (11)

D−∗(ω|k) = B∗(−ω/k + λ− λD−∗(ω|k + 1)). (12)

3.2 The Fairness of the PS System

The Processor Sharing discipline is utmost fair under assumption of general arrival and
service times. This follows directly from the equitable resource allocation principle. Formal
discussion is provided in [25].

4 M/G/1: Analysis of Various Scheduling Disciplines

via Coxian Approximation

In this section we analyze the FCFS, LCFS-NPR, ROS-PR and ROS-NPR policies. The
analysis approach used is to take the distribution of the service time, and approximate it
by a Coxian distribution. This leads to a Markovian model for which the discrimination
and fairness are then derived. For lack of space we provide only the analysis of FCFS and
ROS-PR. The analysis of the other models can be found in the appendix.
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4.1 Approximating General Service Time distributions by Coxian
Distributions

For the purpose of approximating a general service time distribution we use a second order 3

moment matching technique [1, Chapter 2.5]. In particular, we fit a phase-type distribution,
either Coxian or Erlangian, to the mean, s(1), and the coefficient of variation, γ

S
, of the given

service time random variable S. We distinguish between two cases: (a) When 0 < γ
S

< 1
we seek an integer k such that 1

k
≈ γ

S
2, and fit a k-stage Erlang distribution, Ek, (see

Section 4.2) with mean s(1). To match an arbitrary 0 < γ
S

< 1 it is possible to use a more
sophisticated distribution such as the mixed Erlang distribution which selects between Ek

and Ek−1 with some fixed probability. However, using the basic Erlang distribution leads
to simpler recurrence equations and therefore we use it for the analysis. (b) When γ

S
> 1

we use a Coxian-2 distribution [1, Chapter 2.4] which is composed of two exponential stages
with mean lengths µi, i = 1, 2 where the move from the first stage to the second one is
with probability p1, and with probability 1 − p1 the service ends after the first stage. For
the approximation we use the following parameters, suggested by [18]: µ1 = 2s(1), α =
0.5/γ

S
, µ2 = µ1α.

4.2 Conditional Discrimination in M/Er/1

Consider the M/Er/1 where the service time distribution is Erlang with r exponential stages.
For this distribution the service is assumed to consists of a sequence of r i.i.d phases (stages)
1, . . . , r, each exponentially distributed with parameter rµ.

In a work conserving non-idling M/Er/1 system the time between the arrival of a customer
and its departure can be viewed as ’slotted’ by arrivals and stage completions (where a
’slot’ corresponds to the duration at which the system remains in a particular state). Let
Ti, i = 1, 2, . . . be the duration of the i-th slot, then Ti, i = 1, 2, . . . are i.i.d. random
variables exponentially distributed with parameter λ+ rµ and first two moments t(1) = 1

λ+rµ

and t(2) = 2
(λ+rµ)2

= 2(t(1))2. The probabilities that a slot ends with an arrival or a stage

completion are denoted by λ̃ and µ̃ respectively (where ρ = λ/µ < 1):

λ̃ = λ/(λ + rµ) = ρ/(r + ρ); µ̃ = rµ/(λ + rµ). (13)

The system unfairness, given by E[D2], can be expressed as:

E[D2] = P0E[D2|0, 1] +
∞∑

k=1

r∑
j=1

Pk,jE[D2|k, j], (14)

where Pk,j, k ≥ 1 is the probability of finding k customers upon arrival and the served
customer in stage j, P0 = 1−ρ is the probability of finding an empty system, and E[D2|k, j]
is the second moment of D for a customer who arrives to find k customers in the system and
the served one in stage j. Note that Pk,j can be derived or computed via standard techniques
for solving steady state balance equations (see, for example, [13]).

3A third order matching technique was proposed in [19] and can alternatively be taken.
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4.2.1 FCFS

For a tagged customer C residing in the system let a denote the number of customers ahead
of C, let b denote the number of customers behind C, and let j = 1, . . . , r denote the stage
of service in which the served customer is currently found. C is said to be in state Sa,b,j.
Due to the memoryless properties of the system, the state Sa,b,j captures all that is needed
for predicting the future of C. The momentary discrimination at state Sa,b,j is independent
of the current service stage. We denote it by c(a, b), where j is omitted (and where ∆() is
the indicator function):

c(a, b) = ∆(a = 0)− 1

a + b + ∆(a > 0)
. (15)

Let D(a, b, j) denote the accumulated discrimination of C during a walk starting at state

Sa,b,j and ending at the departure of C, and let d(a, b, j)
def
= d(1)(a, b, j) and d(2)(a, b, j) be

the first and second moments of D(a, b, j). Then

E[D|k, j] = E[d(k, 0, j)]; E[D2|k, j] = E[d(2)(k, 0, j)]. (16)

Assume C is in state Sa,b,j. C will encounter one of the two following evens: (1) A new
customer arrives into the system. The probability of this event is λ̃. Afterwards, C will
move to state Sa,b+1,j. (2) A customer completes its current stage. The probability of this
event is µ̃. If C is not being served (a 6= 0) it will move to Sa,b,j+1 if j 6= r or to Sa−1,b,j if
j = r. If C is being served (a = 0) it will move to S0,b,j+1 if j 6= r or will leave the system if
j = r. Thus, we have:

D(a, b, j) =





Tc(a, b) + D(a, b + 1, j) w.p λ̃

T c(a, b) + D(a, b, j + 1) w.p µ̃, j 6= r

Tc(a, b) + ∆(a > 0)D(a− 1, b, j) w.p µ̃, j = r,

(17)

where T is the duration of the current slot.Taking expectation leads to the recursive expres-
sion:

d(a, b, j) =

{
t(1)c(a, b) + λ̃d(a, b + 1, j) + µ̃d(a, b, j + 1) j 6= r

t(1)c(a, b) + λ̃d(a, b + 1, j) + ∆(a > 0)µ̃d(a− 1, b, 1) j = r.
(18)

Squaring Eq. 17, expanding the resulting quadratic terms and taking expextation on
them yields:

d(2)(a, b, j) = t(2)(c(a, b))2 + λ̃d(2)(a, b + 1, j) + 2t(1)c(a, b)λ̃d(a, b + 1, j)+{
µ̃d(2)(a, b, j + 1) + 2t(1)c(a, b)µ̃d(a, b, j + 1)) j 6= r

∆(a > 0)(µ̃d(2)(a− 1, b, j) + 2t(1)c(a, b)µ̃d(a− 1, b, j)) j = r.
(19)

These recursive relations (equations (19), (18)) combined with equations (16), (15), (14),
(13) can be used, via numerical computation, to derive the system unfairness measure,
FD2 = E[D2].
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4.2.2 Preemptive ROS

Consider a preemptive ROS policy in which preemption occurs at all arrival instants, and
any selection for service (either at preemption or at service completion) is done at random
among all customers in the system (including the preempted one). Let a =< a1, . . . , ar > be
a vector of length r, where ai is the number of customers other than C that need to complete
r− i+1 stages of service. Let a =

∑
i ai denote the total number of customers in the system

other than C. Let c = 1, . . . , r be an integer variable such that r − c + 1 is the number of
stages that C needs to complete. Let s be a boolean variable equalling 1 if C is in service
and 0 if it is waiting. The state of C is denoted by Sa, c, s, j. In this state ai,i = 1, . . . , r
customers need to complete r−i+1 stages, the tagged customer C needs to complete r−c+1
stages, the one in service is in its j-th stage, and it is C if s = 1 and not C if s = 0. To
simplify the presentation of the recursive equations we define 1j =< 0, . . . , 0, 1, 0, . . . , 0 > to
be a vector that its j-th element is 1 and the rest are zero.

When C is in state Sa,c,s,j it will encounter one of the following possible events:

1. If s = 0 the possible events are:

(a) A customer arrives into the system and C is chosen to receive service next. The

probability of this event is λ̃
a+2

and C will move to Sa+11,c,1,c.

(b) A customer arrives into the system and a waiting customer (other than C) which
is left with r − k + 1 stages is chosen to receive service next. The probability of
this event is λ̃ ãk

a+2
where ãk = ak for k = 2, . . . , r and ãk = a1 + 1 for k = 1. Then

C will move to Sa+11,c,0,k.

(c) A customer completes its current stage j, where j 6= r. The probability of this
event is µ̃ and C moves to Sa+1j+1−1j−1,c,0,j+1.

(d) A customer completes service, leaves the system and C is chosen to receive service
next. The probability of this event is µ̃/a and C will move to Sa−1r,c,1,c.

(e) A customer completes service, leaves the system and a waiting customer left with
r− k + 1 stages is chosen to receive service next. The probability of this event is
µ̃ak

a
and C will move to Sa−1r,c,0,k.

2. If s = 1 the possible events are:

(a) Same as (1a).

(b) Same as (1b) but C moves to Sa+11,j,0,k.

(c) Same as (1c) but C moves to Sa,c+1,1,j+1.

(d) The customer in service completes its service. The probability of this event is µ̃
and C leaves the system.
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For s = 0, d(a, c, s, j) can be expressed as

d(a, c, 0, j) = t(1)c(a, s) +
λ̃

a + 2
d(a + 11, c, 1, c) +

∑
i:ai>0

λ̃
ãi

a + 2
d(a + 11, c, 0, i)+

{
µ̃d(a + 1j+1 − 1j−1, c, 0, j + 1) j 6= r
µ̃
a
d(a− 1r, c, 1, c) +

∑
i:ai>0 µ̃ak

a
d(a− 1r, c, 0, i) j = r

(20)

For s = 1 it is given by

d(a, c, 1, j) = t(1)c(a, s) +
λ̃

a + 2
d(a + 11, c, 1, c) +

∑
i:ai>0

λ̃
ãi

a + 2
d(a + 11, j, 0, i)+

{
µ̃d(a, c + 1, 1, j + 1) j 6= r

0 j = r
(21)

The recursive equations for d(2)(a, c, s, j) can be derived in a similar manner. They are
given in the appendix (Section 8.1.3) .

A customer arrives to the system either at state S0,1,1,1 when it is empty, where 0 is a
zero vector of length r, or at state Sa,1,0,j when it is serving a customer at stage j and the
number of service stages remaining to the queued up customers is represented by a. Then,
for preemptive ROS

E[D2] = P0d
(2)(0, 1, 1, 1) +

∑
a

r∑
j=1

Pa,jd
(2)(a, 1, 0, j], (22)

where Pa,j, is the probability of finding a customers upon arrival such that the number of
customers left with r − i + 1 stages of service is ai, and the served customer is in stage j.

4.2.3 Non-Preemptive LCFS

Here we give a short description of the state variable, Sa,b,j, used to construct the recursive
discrimination equations for this model. The full analysis is presented in the appendix
(Section 8.1.1). Our approach is to preserve the notations of the FCFS model. At every
slot let a denote the number of customers arrived earlier than C and thus to be served after
C, and let b denote the number of customers arrived later than C and thus to be served
before C. The state Sa,b,j (where j is the stage of the customer in service) captures all that
is needed for predicting the future of C.

4.2.4 Non Preemptive ROS

Similarly to the previous section we provide only a brief description of the state variable.
Further details can be found in the appendix (Section 8.1.2). For a tagged customer C,
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denote by a the number of customers in the system other than C, and by s a boolean
variable equaling 1 if C is in service and 0 if it is waiting. Then, in state Sa, s, j there are
a customers in addition to C, the one in service is in its j-th stage, and it is C if s = 1 and
not C if s = 0.

4.3 Conditional Discrimination in M/Cox2/1

For the analysis of M/Cox2/1 model we preserve the notations of the the M/Er/1 model
and use the same state variables; this leads to simpler recursive equations than the M/Er/1
equations (since there are only two stages). The full description of the M/Cox2/1 model and
its analysis is given in the appendix (Section 8.2).

4.4 Computation Complexity Perspectives

Observe that the complexity of the discrimination computation (i.e., the recursive equations
complexity) is dependent upon the number of stages used to approximate the service time
distribution. This implies that the solution of M/Cox2/1 equations is of relatively lower
concern since the distribution is represented by only 2 stages. Higher concern might be
attributed to the M/Er/1 model (r states), with high values of r. Nonetheless, as demon-
strated in the numerical results section (Section 6) below, the discrimination and fairness
values for this model converge as a function of r and thus, models involving large values of
r are not needed.

Thus, in practice, for both models the computational complexity is based only on a
small number of stages, and thus reasonable number of states and variables in the numerical
computation.

5 Properties of Discrimination under Long Service Times

In this section we are interested in understanding the behavior of the discrimination function
in the presence of high variability service times. We do this by focusing on non-preemptive
systems and studying the discrimination during the service of customers with long service
times. To this end, it will be convenient to break the discrimination of Ci into several
components. Let DSE

i and DQ
i be the discriminations experienced by Ci while in service

and while (waiting) in queue, respectively. We may further break DSE
i into the positive

discrimination observed in service, denoted and obeying DSE+
i = Si, and the corresponding

negative discrimination DSE−
i , obeying DSE−

i + DQ
i = −Ri (which is the overall warranted

service). Recall also the notations D+
i = Si and D−

i = −Ri (see Section 2.2). For the
corresponding steady state variables we use the same notation where the index i is omitted.

5.1 Expected Positive and Negative Discriminations

¿From E[D] = 0, it follows that:



RRR 12-2005 Page 15

Observation 5.1. Under RAQFM, for any single server system and any work conserving
policy, the expected values of the positive discrimination and of the negative discrimination
are equal to each other: E[D+] = −E[D−].

5.2 Non Preemptive systems: The effect of a Long Service cus-
tomer on the Discrimination of Other Customers

Consider a tagged customer, C, who resides in the system, and who encounters, during her
waiting time, the service of a very long job (denote the customer with the long job by CL).

To achieve some insight, we use a simplistic model and assume that customers are of two
types whose service time are exponentially distributed with means 1/µ1 and 1/µ2 where the
second type corresponds to the very large jobs and thus µ2 << µ1 and the mean service time
of CL is 1/µ2. The arrival rate (Poisson) into the system is assumed to be λ.

Note that λ/µ2 is not necessarily smaller than 1 (for stability). In fact, we are interested
in cases where λ/µ2 >> 1. We also assume that service is non-preemptive, thus, once the
service of the long job started it will be carried out to completion.

Let K be the number of customers present at the system when the service of CL starts,
or when C arrives, whichever is later; obviously K ≥ 2 since both CL and C reside in the
system. Let t̄ be the expected duration until the next event (service completion of CL or
arrival of a new customer), then t̄ = 1/(λ + µ2). Let D−

(k) be the negative discrimination

experienced by C during the service of CL given that K = k and let d
(1)−
(k) = E[D−

(k)] and

d
(2)−
(k) = E[(D−

(k))
2].

Proposition 5.1. d
(1)−
(k) , k = 2, , 3, ... is monotonically decreasing, i.e. d

(1)−
(k+1) < d

(1)−
(k) .

Proof. The proof is carried out by examining two systems, one that starts with k customers
and one that starts with k + 1 customers. If the systems are subject to exactly the same
arrival and departure processes (until the departure of C), then at every epoch of arrival
or departure the first system will have one less customer. Since the temporal negative
discrimination at t is given by 1/N(t) it follows that the discrimination in the first system
is larger than that in the second system for every sample path. This directly implies the
monotonicity of the expected values as stated in the proposition.

To bound the value of d
(1)−
(k) , it is now sufficient to bound the value of d

(1)−
(2) , which we do

next. We look at the events occurring while CL is served; these can be either an arrival or the
service completion of CL. Since both occur at exponential rates the expected duration until
the next event is given by t̄ = 1/(λ + µ2), the probability that the next event is an arrival
is given by p = λ/(λ + µ2) and the probability that the next event is a service completion
is given by 1 − p. Also, the negative momentary discrimination at the first interval (time
until first event) is -1/2, at the second interval is given by -1/3 and so on. Thus, the over
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all expected negative discrimination accumulated by C during the service of CL is given by:

d
(1)−
(2) = −t̄

∞∑
i=0

1

2 + i
pi. (23)

yielding:

d
(1)−
(2) = − t̄

p2
[−p− ln(1− p)]. (24)

For relatively large values of 1/µ2 where p is close to 1, we have:

d
(1)−
(2) ≈ − 1

λ + µ2

ln(
1

1− p
) ≈ −1

λ
ln(

1

1− p
) ≈ −1

λ
ln(

λ

µ2

). (25)

5.3 Non Preemptive systems: Effect of a Long Service on the
served Customer Discrimination

We now repeat the analysis performed in the previous section, but now we focus on the
discrimination experienced by CL while being served. Let K be the number of customers
present at the system when the service of CL starts. Assume that K ≥ 2 (that is CL is not
alone). Let D(k) be the negative discrimination experienced by CL during its service given

that K = k and let d
(1)
(k) = E[D(k)]. Similarly to the previous section one can show that d

(1)
(k)

is monotonically non-decreasing in k. Also, similarly to Eq. 23 we get:

d
(1)
(2) = t̄

∞∑
i=0

(
1− 1

2 + i

)
pi = t̄

(
1

1− p
−

∞∑
i=0

1

2 + i
pi

)
. (26)

Following the analysis of the previous section we get, when p approaches 1:

d
(1)
(2) ≈

1

λ + µ2

(
1

1− p
− ln(

1

1− p
)

)
≈ 1

λ

(
λ

µ2

− ln(
λ

µ2

)

)
. (27)

Observation 5.2. Eqs. 27 and 25 reveal that while the discrimination of the served customer
(CL) is proportional to 1

µ2
(mean service time), the negative discrimination of a waiting cus-

tomer (C) is proportional only to its logarithm. Thus, the former is a much more significant
factor in the overall system unfairness. This will explain some of the results reported in
Section 6.

6 Numerical results and Observations

6.1 Numerical Results

In this section we numerically evaluate the systems studied, aiming at examining their un-
fairness as a function of the system load, service time variability and scheduling policy. We
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conduct an evaluation for all the scheduling policies studied under a wide range of service
time variabilities. For low service time variability we use the M/Er/1 model and for the high
variability the M/COX2/1 model.

In all cases examined we set the mean service time to E[S] = 1 and use the arrival
rate λ to control the system load. We also vary the service time coefficient of variation γ

S
.

The examination is carried out for loads ranging between 0.1 and 0.9 and γ
S

varies through
the values 1/(

√
20), 1/(

√
15), 1/(

√
10), 1/(

√
5), 1, 5, 10, 15, 20. For compactness we do not

present here all the results.

Figure 1 depicts the unfairness in the system under high service time variability γ
S

= 10.
The behavior for γ

S
= 5, 15, 20 is quite similar and thus is not presented. Figure 2 depicts the

unfairness in the system under medium service time variability, γ
S

= 1 (the M/M/1 case).
Figure 3 depicts the unfairness in the system under low service time variability, γ

S
= 1/(100.5)

(the M/E10/1 system). Lastly, in Figure 4 we consider the non-preemptive policies (FCFS,
ROS and LCFS) and depict their unfairness as a function of the service time variability, for
several values of ρ.

6.2 Observations and Properties

1. Effect of variability: Service time variability significantly affects the fairness experi-
enced in the various disciplines. In fact, service time variability affects also the relative
(fairness) ranking of the scheduling policies. For example, at ρ = 0.6, the relative
fairness ranking for γ

S
= 10 (Figure 1) is ROS-PR > LCFS-PR > FCFS ≈ ROS-NPR

≈ LCFS-NPR (where > should read as ”more fair” and ≈ as ”approximately identi-
cally fair”). In contrast, for γ

S
= 1 (Figure 2) it is FCFS ≈ ROS-PR > ROS-NPR >

LCFS-NPR > LCFS-PR.

2. High variability service times: We observe the following properties (demonstrated
in Figure 1, and observed in all the high variability cases we examined):

(a) The unfairness of all non-preemptive policies is about the same. The reason for
this is that the dominant discrimination, in this case, is the positive discrimina-
tion of the long jobs (see the results derived in Section 5 Observation 5.2), which
becomes dominant since unfairness is taken as the second moment of discrimi-
nation. Thus, the particular order of service has negligible effect on the overall
discrimination, in these policies.

(b) For low to medium loads the non-preemptive policies are the most unfair while
the ROS-Preemptive is the most fair.

(c) For high loads the LCFS-PR becomes the most unfair (while ROS-PR maintains
its highest fairness rank).

3. Low variability service times: we observe:
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(a) The unfairness values for the M/Er/1 model are affected by the values of r but
seem to converge once r reaches the values between 5 and 10.

(b) At most ranges of load the fairness relative ranking obeys FCFS > ROS > LCFS
and NPR > PR. Both relations agree with common intuition and with prior
results indicating that in the case of deterministic service (zero service time vari-
ability) serving jobs in the order they arrive is the most fair order among non-
preemptive policies.

(c) At very high load, LCFS-NPR becomes more unfair than LCFS-PR. This sur-
prising result is explained in detail in [6], and is due to the following: 1) The
highest unfair situations occur when there are 2 customers in the system, and 2)
At high load LCFS-PR reduces the number of these situations since it increases
the number of customers in the system (compared to LCFS-NPR). This suggests
that a hybrid policy, LCFS-2PR-NPR (preemption occurring only when there are
2 customers in the system), is more unfair than either LCFS-NPR or LCFS-PR,
which indeed is verified in the figure.

4. Linearity: The unfairness of the Non-preemptive policies is roughly proportional
(linear) to the square coefficient of variation of the service time (See Figure 4). This
occurs at all loads; further, at medium to heavy loads these values are quite insensitive
to the load. The explanation is similar to that of 2.a above. Such linearity is also
observed (not depicted) for preemptive policies (LCFS-PR, ROS-PR).

6.2.1 Preemption and Ordering

Observe the ROS-PR and the LCFS-PR policies. First, it is striking to see that ROS-PR
is very fair at most cases (the most fair in many cases). In contrast, the LCFS-PR is very
unfair (most unfair) in most cases. This suggests that the preemption factor drives LCFS-
PR towards fairness (discriminating against long jobs) while the LCFS factor (discrimination
against senior jobs) drives it towards unfairness. The latter factor does not exist in ROS-PR,
which is the reason it is very fair. This observation should be put in the context of previous
research, e.g., [29] that found LCFS-PR to meet their criterion for being always fair (using
the slow-down approach).

Thus, we may conclude that preemption serves as an instrumental tool for increasing
fairness when job size variability is large. Such mechanism is however counteracted if it is
accompanied by an order violating scheme (LCFS). To this end, we conjecture that a policy
that will preempt jobs as in ROS-PR while maintaining a Round-Robin order is expected to
be even more fair than ROS-PR. This model is more complicated to analyze and is currently
studied.

These observations seem to fit with intuition and thus provide support to the validity of
RAQFM.
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6.3 Service-time Based policies

Service-time based policies typically provide some form of prioritization to short jobs. Com-
mon such policies are Shortest Job First (SJF) and Shortest Remaining Processing Time
first (SRPT); While these policies have known advantages in reducing mean delay, one may
ask then what is the fairness level of such policies as a function of the service time variance.
While these are not the subject of this work, rather a subject for further work (their analysis
under RAQFM is more complicated), we will only briefly comment on them.

First, some fairness properties of SJF can be observed from [23], where two classes with
priorities are studied. It is shown that prioritization of short jobs (jobs belonging to one
class) over long jobs (second class) increases system fairness in most cases. However – this
is not always the case: When variability is relatively small, full priority given to short jobs
may reduce fairness due to the long jobs being blocked for long time.

Second, consider SRPT for which we ran a simulation in the context of this work. The
unfairness of SRPT is plotted for the high variability and medium variability cases (Figure
1 and Figure 2). One may observe that the unfairness of SRPT is low (relatively to the
job-size independent policies studied here) at low loads. Nonetheless, its unfairness becomes
relatively high at medium to high loads. It is interesting to note that such behavior was
observed also via the slow-down fairness criterion [29] where it was shown that SPRT obeys
that criterion for ρ < 0.5 and does not for high values of ρ. This results from the fact that
SRPT provides strong priority to short jobs, on the account of the seniority of other jobs.

7 Concluding Remarks

This work aimed at understanding how service time variability affects fairness in queueing
time as well as validating RAQFM as a fairness measure. We analyzed basic common service
disciplines via models (an exact M/G/1 system for LCFS-PR and Coxian approximation for
other disciplines) that accounted for the service time variability. The Coxian approach proves
to be quite general and can be extended (to some limited extent) to approximate some cases
of more complex disciplines, such as SRPT ; this is the subject of a current study. We showed
that the system unfairness is significantly affected by the first two moments of the service
time; for the LCFS-PR we showed that higher moments of service time do not affect the
unfairness. For LCFS-PR we also showed that the expected discrimination conditioned on
the job’s service time is identical (zero) to all service times. We demonstrated that fairness
is sensitive to service time variability including affecting the relative (fairness) ranking of
the various scheduling policies. Our results shed more light on the subject of fairness in
queueing systems, demonstrate that RAQFM can be calculated for a wide range of systems,
and provide intuitive support for the RAQFM measure.
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8 Appendix

8.1 Conditional Discrimination in M/Er/1

8.1.1 Non-Preemptive LCFS

Let C denote the tagged customer. For consistency we assume that the queue is ordered
in order of arrival and customers are admitted into service from the tail of the queue. At
every slot let a denote the number of customers arrived earlier than C and thus to be served
after C. Let b denote the number of customers arrived later than C and thus to be served
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before C. The state Sa,b,j (where j is the stage of the customer in service) captures all that is
needed for predicting the future of C. Note that using this description a customer is served
in Sa,0,j, i.e., when b = 0.

An arriving customer starts either in state S0,0,1 when the system is empty, or in state
Sk−1,1,j when the system is serving a customer at stage j. Thus

E[D|k, j] =

{
E[d(k − 1, 1, j)] k > 0

E[d(0, 0, 0)] k = j
(28)

E[D2|k, j] =

{
E[d(2)(k − 1, 1, j)] k > 0

E[d(2)(0, 0, 1)] k = j.
(29)

Using the same notations as in Section 4.2.1 we have:

c(a, b) =

{
− 1

a+b+1
b > 0

1− 1
a+1

b = 0.
(30)

Here too, when C is in state Sa,b,j it will encounter one of two possible events:

1. A customer arrives into the system. The probability of this event is λ̃. If C was in
service (b = 0) it will move to Sa+1,0,j, otherwise to Sa,b+1,j

2. A customer completes its current stage. The probability of this event is µ̃. If C was
in service and j = r it leaves the system. If C wasn’t in service it moves to Sa,b,j+1 if
j 6= r or to Sa,b−1,1 if j = r.

This leads to the following recursive expressions for D(a, b, j). For b > 0

D(a, b, j) =





Tc(a, b) + D(a, b + 1, j) w.p λ̃

T c(a, b) + D(a, b, j + 1) w.p µ̃, j 6= r

Tc(a, b) + D(a, b− 1, 1) w.p µ̃, j = r,

(31)

and for b = 0

D(a, 0, j) =





Tc(a, 0) + D(a + 1, 0, j) w.p λ̃

T c(a, 0) + D(a, 0, j + 1) w.p µ̃, j 6= r

Tc(a, 0) w.p µ̃, j = r.

(32)

From these, as in Section 4.2.1, we derive the recursive equations for expressing d(a, b, j)
and d(2)(a, b, j).

For b > 0

d(a, b, j) =

{
t(1)c(a, b) + λ̃d(a, b + 1, j) + µ̃d(a, b, j + 1) j 6= r

t(1)c(a, b) + λ̃d(a, b + 1, j) + µ̃d(a, b− 1, 1) j = r
(33)
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d(2)(a, b, j) = t(2)(c(a, b))2 + λ̃d(2)(a, b + 1, j) + 2t(1)c(a, b)λ̃d(a, b + 1, j))+{
µ̃d(2)(a, b, j + 1) + 2t(1)c(a, b)µ̃d(a, b, j + 1) j 6= r

µ̃d(2)(a, b− 1, j) + 2t(1)c(a, b)µ̃d(a, b− 1, 1) j = r,
(34)

and for b = 0

d(a, 0, j) =





t(1)c(a, 0) + λ̃d(a + 1, 0, j)+

µ̃d(a, 0, j + 1) j 6= r

t(1)c(a, 0) + λ̃d(a + 1, 0, j) j = r

(35)

d(2)(a, 0, j) = t(2)(c(a, 0))2 + λ̃d(2)(a + 1, 0, j) + 2t(1)c(a, 0)λ̃d(a + 1, 0, j))+



µ̃d(2)(a, 0, j + 1)+

2t(1)c(a, 0)µ̃d(a, 0, j + 1) j 6= r

0 j = r.

(36)

8.1.2 Non-Preemptive ROS

For a tagged customer C, let a denote the number of customers in the system other than C.
Consider a boolean variable s which is 1 if C is in service and 0 if it is waiting. The notation
used in this section remains unchanged, except that b is replaced by s. In state Sa, s, j there
are a customers in addition to C, the one in service is in its j-th stage, and it is C if s = 1
and not C if s = 0.

The momentary discrimination at this state is c(a, s),

c(a, s) =

{
− 1

a+1
s = 0

1− 1
a+1

s = 1.
(37)

A customer arrives to the system either at state S0,1,1 when it is empty, or at state Sk,0,j

when it is serving a customer at stage j. Then

E[D|k, j] =

{
E[d(k, 0, j)] k > 0

E[d(0, 1, 1)] k = 0
(38)

E[D2|k, j] =

{
E[d(2)(k, 0, j)] k > 0

E[d(2)(0, 1, 1)] k = 0.
(39)

When C is in state Sa,s,j it will encounter one of the following possible events:

1. If s = 0 the possible events are:
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(a) A customer arrives into the system. The probability of this event is λ̃ and C will
move to Sa+1,0,j.

(b) A customer completes its current stage j, where j 6= r. The probability of this
event is µ̃ and C moves to S(a, 0, j + 1).

(c) A customer completes service, leaves the system and C is chosen to receive service
next. The probability of this event is µ̃/a. C will move to Sa−1,1,1.

(d) A customer completes service, leaves the system and C is not chosen to receive
service next. The probability of this event is µ̃(a− 1)/a. C will move to Sa−1,0,1.

2. If s = 1 the possible events are:

(a) Same as (1a) but C will move to Sa+1,1,j.

(b) Same as (1b) but C will move to Sa,1,j+1.

(c) The customer in service completes its service. The probability of this event is µ̃
and C leaves the system.

Using the same method as in the previous section this leads to the following recursive
expressions:

d(a, s, j) = t(1)c(a, s) + λ̃d(a + 1, s, j) +





µ̃d(a, s, j + 1) j 6= r
µ̃
a
d(a− 1, 1, 1) + µ̃a−1

a
d(a− 1, 0, 1) j = r, s = 0

0 j = r, s = 1

(40)

d(2)(a, s, j) = t(2)(c(a, s))2 + λ̃d(2)(a + 1, s, j) + 2t(1)c(a, s)λ̃d(a + 1, s, j)+




µ̃d(2)(a, s, j + 1) + 2t(1)c(a, b)µ̃d(a, s, j + 1)) j 6= r
µ̃
a
d(2)(a− 1, 1, 1) + µ̃a−1

a
d(2)(a− 1, 0, 1)+

2t(1)c(a, s)( µ̃
a
d(a− 1, 1, 1) + µ̃a−1

a
d(a− 1, 0, 1)) j = r, s = 0

0 j = r, s = 1.

(41)

8.1.3 Preemptive ROS

Here we give the recursive equation for the second moment of the discrimination, which is
based on the notations and the analysis method described in Section 4.2.2. Following Section
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4.2.2 d(2)(a, c, s, j) can be expressed as follows. For s = 0:

d(2)(a, c, 0, j) = t(2)c(a, s)2 +
λ̃

a + 2
d(2)(a + 11, c, 1, c) + 2t(1)c(a, s)

λ̃

a + 2
d(a + 11, c, 1, c)+

∑
i:ai>0

λ̃
ãi

a + 2
d(2)(a + 11, c, 0, i) + 2t(1)c(a, s)

∑
i:ai>0

λ̃
ãi

a + 2
d(a + 11, c, 0, i)+





µ̃d(2)(a + 1j+1 − 1j−1, c, 0, j + 1) + 2t(1)c(a, s)µ̃d(a + 1j+1 − 1j−1, c, 0, j + 1) j 6= r
µ̃
a
d(2)(a− 1r, c, 1, c) +

∑
i:ai>0 µ̃ak

a
d(2)(a− 1r, c, 0, i) + 2t(1)c(a, s)( µ̃

a
d(a− 1r, c, 1, c)+∑

i:ai>0 µ̃ak

a
d(a− 1r, c, 0, i)) j = r.

(42)

and for s = 1:

d(2)(a, c, 1, j) = t(2)c(a, s)2 +
λ̃

a + 2
d(2)(a + 11, c, 1, c) + 2t(1)c(a, s)

λ̃

a + 2
d(a + 11, c, 1, c)+

∑
i:ai>0

λ̃
ãi

a + 2
d(2)(a + 11, j, 0, i) + 2t(1)c(a, s)

∑
i:ai>0

λ̃
ãi

a + 2
d(a + 11, j, 0, i)+





µ̃d(2)(a, c + 1, 1, j + 1)+

2t(1)c(a, s)µ̃d(a, c + 1, 1, j + 1) j 6= r

0 j = r.

(43)

8.2 Conditional Discrimination in M/Cox2/1

Consider the M/Cox2/1 where the service time distribution is a two-stage Coxian. For this
distribution the service is assumed to be composed of two serially arranged stages, where a
new customer that enters service starts with stage 1 and after its completion enters stage 2
with probability p1. The mean length of stage i is µi, i = 1, 2.

Similarly to M/Er/1 the time between the arrival of a customer and its departure is
slotted by arrivals and stage completions, however, for Coxian service the slot duration is
dependant upon the stage of service in which the served customer is currently found. Let
Ti,j, j = 1, 2, i = 1, 2, . . . be the duration of the i-th slot, where j is the stage of the
served customer. Then, Ti,j is a random variable exponentially distributed with parameter

λ + µj; the first two moments of Ti,j are t
(1)
j = 1

λ+µj
and t

(2)
j = 2

(λ+µj)2
= 2(t

(1)
j )2. The

probabilities that a slot ends with an arrival or with a stage completion are denoted by λ̃j

and µ̃j respectively.

λ̃j =
λ

λ + µj

µ̃j =
µj

λ + µj

. (44)

Similarly to Eq. 14 the system unfairness is expressed as:

E[D2] = P0E[D2|0, 1] +
∞∑

k=1

2∑
j=1

Pk,jE[D2|k, j]. (45)



RRR 12-2005 Page 27

8.2.1 FCFS

We preserve the notations of Section 4.2.1 and denote by Sa,b,j the state of a tagged customer
C, where a is the number of customers ahead of C, b is the number of customers behind C,
and j is the stage of customer in service.

The momentary discrimination at state Sa,b,j is given by

c(a, b) =

{
− 1

a+b+1
b > 0

1− 1
b+1

b = 0.
(46)

Similarly to Eq. (16)

E[D|k, j] = E[d(k, 0, j)] (47)

E[D2|k, j] = E[d(2)(k, 0, j)]. (48)

Using a similar method of analysis as in Section 4.2.1, we have that

d(a, b, j) = t
(1)
j c(a, b)+λ̃jd(a, b+1, j)+

{
p1µ̃jd(a, b, j + 1) + ∆(a > 0)(1− p1)µ̃jd(a− 1, b, 1) j = 1

∆(a > 0)µ̃jd(a− 1, b, 1) j = 2,

(49)
where Tj is the duration of the current slot and the served customer is located at stage j
during this slot. The second moment is given by

d(2)(a, b, j) = t
(2)
j (c(a, b))2 + λ̃d(2)(a, b + 1, j) + 2t

(1)
j c(a, b)λ̃d(a, b + 1, j)+




p1µ̃jd
(2)(a, b, j + 1) + ∆(a > 0)(1− p1)µ̃jd

(2)(a− 1, b, 1)+

2t
(1)
j c(a, b)(p1µ̃jd

(2)(a, b, j + 1) + ∆(a > 0)(1− p1)µ̃jd
(2)(a− 1, b, 1)) j = 1

∆(a > 0)(µ̃jd
(2)(a− 1, b, j) + 2t

(1)
j c(a, b)µ̃jd(a− 1, b, j))) j = 2.

(50)

8.2.2 Non-Preemptive LCFS

We preserve the notations of Section 8.1.1 and denote by Sa,b,j the state of C, where a is the
number of customers arrived earlier than C and thus to be served after C, b is the number
of customers arrived later than C and thus to be served before C, and j is the stage of
the served customer. The conditional discrimination (Eqs. (28), (29)) and the momentary
discrimination (Eq. (30)) remains the same as in Section 8.1.1.

By examining the possible events that C encounter we get that for b > 0

d(a, b, j) = tjc(a, b)+λ̃jd(a, b+1, j)+

{
p1µ̃jd(a, b, j + 1) + (1− p1)µ̃jd(a, b− 1, 1) j = 1

µ̃jd(a, b− 1, 1) j = 2

(51)



Page 28 RRR 12-2005

d(2)(a, b, j) = t
(2)
j (c(a, b))2 + λ̃jd

(2)(a, b + 1, j) + 2t
(1)
j c(a, b)d(a, b + 1, j)+




p1µ̃jd
(2)(a, b, j + 1) + (1− p1)µ̃jd

(2)(a, b− 1, 1) + 2t
(1)
j c(a, b)(p1µ̃jd(a, b, j + 1)+

(1− p1)µ̃jd(a, b− 1, 1)) j = 1

µ̃jd
(2)(a, b− 1, 1) + 2t

(1)
j c(a, b)µ̃jd(a, b− 1, 1) j = 2.

(52)

For b = 0

d(a, 0, j) = tjc(a, 0) + λ̃jd(a + 1, 0, j) +

{
p1µ̃jd(a, 0, j + 1) j = 1

0 j = 2
(53)

d(2)(a, 0, j) = t
(2)
j (c(a, 0))2 + λ̃jd

(2)(a + 1, 0, j) + 2t
(1)
j c(a, 0)d(a + 1, 0, j)+{

p1µ̃jd
(2)(a, 0, j + 1) + 2t

(1)
j c(a, 0)p1µ̃jd(a, 0, j + 1) j = 1

0 j = 2.
(54)

8.2.3 Non Preemptive ROS

We preserve the notations of Section 8.1.2 and denote by Sa, s, j the state of C, where a
is the number of customers in the system other than C, s is 1 if C is in service and 0 if it
is waiting, and j is the state of the served customer. The conditional discrimination (Eqs.
(38), (39)) and the momentary discrimination (Eq. (37)) remains the same as in Section
8.1.2.

By examining the possible events that C encounter we get that

d(a, s, j) = t
(1)
j c(a, s) + λ̃jd(a + 1, s, j)+{

p1µ̃jd(a, s, j + 1) + ∆(a > 0)(1− p1)µ̃j(
1
a
d(a− 1, 1, 1) + a−1

a
d(a− 1, 0, 1)) j = 1

∆(a > 0)µ̃j(
1
a
d(a− 1, 1, 1) + a−1

a
d(a− 1, 0, 1)) j = 2

(55)

d(2)(a, b, j) = t
(2)
j (c(a, s))2 + λ̃jd

(2)(a + 1, s, j) + 2t
(1)
j c(a, s)λ̃jd(a + 1, s, j)+





p1µ̃j(d
(2)(a, s, j + 1) + 2t

(1)
j c(a, s)d(a, s, j + 1)) + ∆(a > 0)(1− p1)µ̃j(

1
a
d(2)(a− 1, 1, 1)+

a−1
a

d(2)(a− 1, 0, 1) + 2t
(1)
j c(a, s)( 1

a
d(a− 1, 1, 1) + a−1

a
d(a− 1, 0, 1)) j = 1

∆(a > 0)µ̃j(
1
a
d(2)(a− 1, 1, 1) + a−1

a
d(2)(a− 1, 0, 1) + 2t

(1)
j c(a, s)( 1

a
d(2)(a− 1, 1, 1)+

a−1
a

d(2)(a− 1, 0, 1)) j = 2.

(56)


