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Abstract

We present a method for simulating highly detailed cutting and frac-
turing of thin shells using low-resolution simulation meshes. In-
stead of refining or remeshing the underlying simulation domain
to resolve complex cut paths, we adapt the extended finite ele-
ment method (XFEM) and enrich our approximation by custom-
designed basis functions, while keeping the simulation mesh un-
changed. The enrichment functions are stored in enrichment tex-
tures, which allows for fracture and cutting discontinuities at a res-
olution much finer than the underlying mesh, similar to image tex-
tures for increased visual resolution. Furthermore, we propose har-
monic enrichment functions to handle multiple, intersecting, arbi-
trarily shaped, progressive cuts per element in a simple and unified
framework. Our underlying shell simulation is based on discontin-
uous Galerkin (DG) FEM, which relaxes the restrictive requirement
of C1 continuous basis functions and thus allows for simpler, C0

continuous XFEM enrichment functions.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling; I.6.8
[Simulation and Modeling]: Types of Simulation—Animation

1 Introduction

One of the most striking aspects of thin-walled structures is their
dramatic failure via buckling, tearing, and fracturing modes. The
introduced discontinuities can drastically alter the stability, defor-
mation, and trajectory of the structure. Simulating such phenomena
requires identifying the location of discontinuities and predicting
the response of neighboring material. Yet even representing dis-
continuities is in itself considered awkward. Works in the graphics
and mechanics communities have considered adaptive refinement
methods, which are well-suited for gradual variations in the scale
of relevant features, but require too many levels of refinement to
sharply resolve creases or fractures. Other works take a remeshing
approach, which avoids introducing many new unknowns at the cost
of some additional implementation and a projection step to transfer
data between the old and new representations.

In an alternative point of departure, the extended finite element
method (XFEM) enriches the representation with the specific ba-
sis functions required to capture the desired discontinuity. In doing
so, XFEM introduces (unlike refinement) only a negligible number
of new unknowns, and (unlike remeshing) keeps intact the origi-
nal mesh connectivity. No method is best for all applications, but
the XFEM approach, as yet unexplored in the context of anima-
tion tools for flexible surfaces, offers an enticing way to represent

Figure 1: Starting from a single 8-node quad shell element, our
method is able to capture complex deformations and topological
changes by simply enriching the element’s basis functions through
texture maps (left). Fracturing a bunny triangle mesh (right).

highly-complex, sharp features, while keeping computation and im-
plementation relatively simple.

The mechanics community has studied extensively the application
of XFEM to thin shell fracture. However, mechanics research fo-
cuses on accurate prediction of crack growth and consequent ma-
terial displacements, necessitating a fine spatial discretization and
in particular a sparse number of discontinuous features relative to
mesh elements. In the rare case where an element is cut a second or
third time, current methods impose a hierarchical structure to keep
track of the cuts. Furthermore, because the diameter of elements is
small compared to the diameter of discontinuous features, existing
methods can safely assume a simple (linear, low-order, or trigono-
metric) shape to the piecewise discontinuity per element.

By contrast, a coarse mesh is both economical and sufficient for
computing plausible animations. That a graphics application de-
mands less precision and predictive power does not imply that a
coarser, less-detailed output is acceptable; in fact, the converse is
true—if we compare the desired level of feature resolution to com-
putational investment, graphics applications are far more demand-
ing. An XFEM method for graphical simulation of shells operates
in a different regime characterized by more dense and more com-
plex discontinuities. In our setting, assuming a simple shape (a line
or quadratic curve) for the discontinuity is unnecessarily limiting,
and adopting a hierarchical structure to keep track of multiple cuts
is needlessly cumbersome.

In this paper, we extend the current body of work on XFEM toward
the goals of graphical simulation. We introduce recent develop-
ments in XFEM treatments of thin shells, and we describe several
developments novel to both the graphics and engineering literature.
Our main contributions are

• a unified XFEM framework based on harmonic enrich-
ment functions, which allows for multiple, intersecting, and
arbitrarily-shaped cuts per element, while being easy to de-
fine, compute, and use;

• a discrete representation of the enrichment functions using en-
richment textures, which simplifies specification and compu-
tation of cuts and paves the way for the future incorporation
of now-standard GPU-based techniques;



• a complementary representation of spatially-varying material
properties (e.g., thickness, stiffness, mass density) in material
textures, which expand the expressive power of the simulator
while keeping the same number of unknowns and the same
simple grid-based numerical quadrature;

• a simulation of the material’s dynamic response to time-
varying discontinuities, built on our co-rotational extension
of Noels’s linear DG FEM thin shells.

While our method does not require a-priori knowledge on the re-
sulting discontinuity, we do not implement a full fracture model
and restrict our examples to pre-scored fracture lines and cuts. Fur-
thermore, we do not address collision handling, which remains an
interesting direction for future work.

2 Related Work

The simulation of cutting and fracture of deformable objects dates
back to the pioneering work of Terzopoulos et al. [1987; 1988], and
was brought to the forefront by O’Brien and Hodgins [1999] in their
work on brittle (and ductile [2002]) fracture of volumetric elastica.
While some have considered purely procedural approaches [Des-
benoit et al. 2005], we restrict our discussion to physically simu-
lated material response in the presence of cuts and fracture.

When combined with FEM, the topological changes induced by
cutting pose two distinct challenges: first, to adapt basis functions,
boundary conditions, and to update the stiffness matrix; second,
to restructure the underlying mesh connectivity so as to represent
the newly-created surfaces at a high resolution. Most research has
focused on solid objects, where the problem of updating mesh con-
nectivity is particularly challenging. We can roughly distinguish
between mesh-based methods, and, more recently, meshless cut-
ting. The most simple mesh-based algorithms either remove the
primitives of the underlying tetrahedral mesh touched by the cut-
ting plane [Forest et al. 2002] or fracture the mesh along tetrahe-
dral boundaries and predefined positions [Terzopoulos and Fleis-
cher 1988]. Others, including Bielser et al. [1999], subdivide prim-
itives to better represent the cut boundary. Molino et al. [2004]
present a virtual node algorithm that keeps invariant both the shape
of (reference) elements and the nodal masses, and accounts for
partially-void elements, thus enabling stable simulation of sliver-
producing fracture; building on this, Sifakis et al. [2007] embed
a high-resolution two-dimensional material boundary mesh into a
coarser tetrahedral mesh, allowing for fast, coarse simulation of
elasticity while retaining fine boundary features. These two works
served as the foundation for the efficient fracture of rigid materials
proposed by Bao et al. [2007]. Another mesh-based approach al-
lows for FEM bases over more general meshes, for example over
arbitrary polyhedra [Wicke et al. 2007; Martin et al. 2008]. To
avoid the computational complexity of mesh restructuring, Pauly et
al. [2005] proposed a point based method to track fracture surfaces
in solids. Steinemann et al. [2006] suggest a hybrid approach with
meshless deformation and mesh-based surface representations.

The graphical simulation of shell cutting and fracture has recently
received specific attention. Mesh-based methods such as those of
Boux de Casson and Laugier [2000], who tear discrete models of
cloth [Baraff and Witkin 1998; Choi and Ko 2002], and Gingold et
al. [2004], who fracture discrete shells [Grinspun et al. 2003], split
meshes along existing edges. Müller [2008] describes a fast method
for simulating tearing cloth using position based dynamics. Guo et
al. [2006] and Wicke et al. [2005] propose meshless methods so as
not to be limited by mesh connectivity. Our approach differs in that
we do target the widely-used, mesh-based setting, but seek to do so
without restricting cuts to mesh resolution. For this we turn to basis
enrichment in an FEM context.

The CHARMS framework enriches the FEM basis [Grinspun et al.
2002] and supports topological changes, but cutting and fracture
are not considered. The XFEM method, introduced by Belytschko
and Black [1999], explicitly targets fracture. Since XFEM has
been explored over the past decade, a more comprehensive sum-
mary requires a thorough survey, such as the one by Abdelaziz and
Hamouine [2008]; here we discuss representative works. Moës et
al. [1999] explicitly consider multiple straight-line crack tips within
one element. Moës et al. [2002] further studied curved crack tips
in three dimensions. Huang et al. [2003] simulate multiple cracks,
but the example problem (mudcracks) assumes that cracks do not
intersect. Stazi et al. [2003] consider higher-order elements and
quadratic cracks. In general, this body of work employs (in order
to accurately resolve strain) elemental radii orders of magnitude
smaller than the characteristic radii of crack shapes; furthermore,
for improved quadrature, they partition a split element into subdo-
mains (sometimes with a hierarchical construction). This makes it
challenging to consider complex cut shapes. We consider the dia-
metric opposite, finely-detailed cuts inside one or a few elements.

Beyond enriching the basis, we must also consider material re-
sponse. Graphical models of thin shell behavior include Discrete
Shells [Grinspun et al. 2003], cloth with non-flat rest state [Bridson
et al. 2003], subdivision (Kirchhoff-Love) shells [Cirak et al. 2000],
and most recently inextensible cloth and shells [Goldenthal et al.
2007; English and Bridson 2008]. The DG FEM method [Arnold
et al. 2001; Cockburn 2003], which is widely applied to discretize
elastica, was recently applied in graphics to simulate arbitrary poly-
hedral elements [Kaufmann et al. 2008], and was recently applied
in mechanics to simulate linear [Noels and Radovitzky 2008] and
non-linear [Noels 2009] shells. A combination of DG FEM and
XFEM was studied in [Gracie et al. 2008].

3 DG FEM Thin Shells

This section gives a brief overview of the shell formulation and
discretization used in our simulations. Since our main contribu-
tion is the XFEM enrichment framework, we will only give the key
equations and refer the reader to the literature and the technical re-
port [Kaufmann et al. 2009] for further details and implementation
notes.

We employ Kirchhoff-Love thin shells, where shearing deforma-
tions are neglected, such that a vector normal to the shell surface
always stays normal to the shell during deformation [Wempner and
Talaslidis 2003]. As a consequence, the configuration of a shell can
be fully described by the mid-surface of the shell.

The undeformed mid-surface is parameterized as a bivariate func-
tion ϕ0(ξ1, ξ2) : Ω → IR3 embedded in IR3. The current (de-
formed) state ϕ can be described by the undeformed configuration
and a displacement field u as

ϕ(ξ1, ξ2) = ϕ0(ξ1, ξ2) + u(ξ1, ξ2). (1)

From computing stresses and strains in shell coordinates and lin-
earizing in the displacement u, the bilinear form for thin shell elas-
ticity is found to be

a(u,v) =

∫
Ω

ε(v) :Hn :ε(u) dA+

∫
Ω

ρ(v) :Hm :ρ(u) dA , (2)

with ε and ρ the stretching and bending strain tensors and “:” de-
noting the tensor dot product (double contraction). Hn andHm are
the stretching and bending constitutive tensors, respectively, that
describe the relation between stresses and strains. For a detailed
derivation of the weak form, we refer to [Cirak et al. 2000].



In order to solve (2) using the finite element method (FEM), the
domain Ω is discretized into a mesh of finite elements (typically tri-
angles or quads). Each of the nmesh nodes ξa is associated a nodal
basis function Na. An approximate solution u is then specified by
nodal displacements ua:

u(ξ) =

n∑
a=1

Na(ξ)ua. (3)

Representing the solution u and the test function v in terms of the
basis functions Na results in a linear system

K ·U = F, with

{
Kij = a(I3N

i, I3N
j)

Fi =
∫

Ω
f N i

, (4)

which is solved for the degrees of freedom U = (u1, . . . ,un)T ,
given external forces f . For more details on FEM we refer the
reader to [Hughes 2000].

Since thin shells are governed by a fourth order elliptic PDE, ap-
propriate basis functions Na must lie in the Sobolev space H2(Ω),
i.e., have square-integrable first and second order derivatives. Un-
fortunately, constructing suitable shell basis functions on irregular
meshes is a rather complex task.

This motivates the use of so-called discontinuous Galerkin (DG)
FEM [Arnold et al. 2001; Cockburn 2003], which relaxes the com-
patibility condition between incident elements in favor of a penalty
term that weakly enforces the required level of continuity. While
DG FEM is broadly explored in mechanics, its use in thin shell
simulations is relatively recent [Noels and Radovitzky 2008].

DG FEM allows us to use C0 continuous basis functions in (2), im-
plemented as 8-node bi-quadratic elements (as proposed in [Noels
and Radovitzky 2008]) and 6-node quadratic triangle elements. C1

continuity across element edges is weakly enforced by penalizing
the difference between the change of normal vectors on neighbor-
ing elements. In addition to the per-element bending and mem-
brane contributions of (2), this results in a per-edge penalty term.
An exact definition of the DG weak form as well as a detailed de-
scription of the assembly of the stiffness matrix K can be found
in the technical report [Kaufmann et al. 2009]. Since the linear
strain measure used in [Noels and Radovitzky 2008] is not suitable
for the large deformations required in graphics applications, we ex-
tend their method by a corotational strain measure, as described
in [Kaufmann et al. 2009].

Given the stiffness matrix K, a dynamic simulation of time-varying
forces and displacements is governed by the equations

MÜ + DU̇ + KU = F , (5)

which are solved by semi-implicit Euler integration. Note that in-
stead of lumping element masses to nodes, the full mass matrix
Mij =

∫
Ω
N iN j is used, such that nodal basis functions and

XFEM enrichment functions can later be handled in a uniform way.
Moreover, if an element will be split into multiple parts, these will
not only have the correct mass, but also the correct center of mass
and moment of inertia.

The DG FEM discretization of Kirchhoff-Love shells described so
far allows for simpleC0 basis functions and shows a plausible, geo-
metrically nonlinear deformation behavior (see Fig. 2). However, to
enable the simulation of highly detailed cuts or creases, as shown in
Fig. 1, without excessively refining the underlying simulation mesh,
we propose an XFEM approach that is described in the following
sections.

Figure 2: Co-rotational DG FEM shells feature realistic deforma-
tions, including geometrically-nonlinear buckling effects.

4 XFEM Basics

Introduced in [Belytschko and Black 1999], the extended finite el-
ement method (XFEM) builds up on the partition of unity concept
[Babuska and Melenk 1996]. The basic idea of XFEM consists
in enriching an element by splitting its basis functions along a de-
sired discontinuity. This effectively doubles the element’s degrees
of freedom and decouples the solutions on either side of the discon-
tinuity. In an elasticity simulation, this allows a single element to
be cut or fractured into two independent parts.

Splitting the original basis functions along the discontinuity results
in the canonical basis, as shown for a 1D example in Fig. 3. We
can define the enriched basis functions as the product of an original
basis function Na(ξ) and a so-called enrichment function ψa(ξ).
Arguably the simplest choice for the enrichment functions ψa(ξ)
is the Heaviside function Hs(ξ), which assumes the value of 0 on
one side of the cut and 1 on the other side.

(1− ψ1(ξ))N1(ξ)

(1− ψ2(ξ))N2(ξ)ψ2(ξ)N2(ξ)

ψ1(ξ)N1(ξ)N1(ξ)

N2(ξ)

ξ1 ξ2

ξ1 ξ2

ξ1 ξ2

ξ1 ξ2

ξ1 ξ2

ξ1 ξ2

Figure 3: The canonical basis: Basis functions Na are split along
the discontinuity to handle both parts separately.

Note that the function space spanned by ψaNa and (1 − ψa)Na

is the same as the one spanned by Na and ψaNa, and it does not
depend on which side of the discontinuity we choose the Heaviside
function to vanish. The splitting of the basis functions can there-
fore be realized by adding to the original basis functions Na the
enrichment basis functions ψaNa with their corresponding degrees
of freedom aa. This yields the enriched displacement field

u(ξ) =

n∑
a=1

Na(ξ)ua +

n∑
a=1

ψa(ξ)Na(ξ)aa. (6)

XFEM therefore modifies the functional representation on a sub-
element level instead of changing the topology of the element mesh.
While traditional methods would have to divide existing elements
into smaller elements in order to resolve the geometry of the cut,
XFEM achieves the same goal without complex remeshing.

Instead of the simple Heaviside function Hs(ξ), Zi and Be-
lytschko [2003] proposed to use shifted enrichment functions

ψa(ξ) = Hg(ξ)−Hg(ξa), (7)



ψ2(ξ)N2(ξ)

ψ1(ξ)N1(ξ)N1(ξ)

N2(ξ)
ψ2(ξ)

ψ1(ξ)

=×
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ξ1 ξ2

ξ1 ξ2

ξ1

ξ1 ξ2

ξ1 ξ2

ξ1 ξ2

ξ2

Figure 4: Enrichment basis functions are obtained by multiplying
the original basis functions by shifted Heaviside functions.

where Hg(ξ) = 2Hs(ξ)− 1 is the generalized Heaviside function
(signum function), and ξa ∈ Ω is the position of node a in param-
eter space. See Fig. 4 for a 1D illustration. The shifted enrichment
basis functions together with the original basis functions span the
same space as in the case of the unshifted enrichment functions.
They are thus equivalent to the canonical basis.

Defining the enrichment functions this way has two desirable prop-
erties. First, it keeps the enrichment local, in the sense that the
enrichment basis functions are only supported within the cut ele-
ment. Compare this to Fig. 3, where the enrichment basis functions
extend to all elements incident to the enriched node. This locality
simplifies implementation and, according to [Jerabkova and Kuhlen
2009], also improves the stability of the simulation.

Second, shifting the enrichment functions recovers the Kronecker-
delta property. The shifted enrichment function ψa vanishes at its
associated node a, and as the nodal basis function Na vanishes at
all nodes other than a, the enrichment basis functions ψaNa van-
ish at all nodal positions ξa. As a consequence, the displacement
at each node a is fully defined by ua alone. This simplifies the im-
plementation of Dirichlet boundary conditions, as the displacement
of a node can be fixed to a specific value by constraining a single
degree of freedom.

5 Enrichment Textures

Many researchers have considered various ways to generalize the
Heaviside function Hg and the shifted enrichment functions ψa

from 1D to 2D or 3D. In most approaches, discontinuities are rep-
resented by simple analytical functions, such as cutting planes for
3D elements and linear or quadratic cutting paths for 2D elements.
This representation, however, is too restrictive for graphics simula-
tions, as it prevents us from having highly detailed, complex cuts
through rather coarse elements of the simulation mesh.

To overcome this limitation, we represent the cut path as well as
the generalized Heaviside function as piecewise linear functions on
a regular 2D grid, which will be referred to as enrichment texture in
the following. Discontinuities will be represented as an edge path
between texture pixels (texels). The texture values are interpreted as
(samples of) the generalized Heaviside functionH(ξ), and replaces
Hg(ξ) in (7).

Defining the enrichment function via a texture map has two impor-
tant advantages. First, compared to analytic descriptions, it is better
suited for modeling complex cutting paths, since the complexity of
cuts is only limited by the texture resolution. Second, when dealing
with progressive cuts, partial cuts, or multiple, intersecting cuts—
required for cutting and fracturing simulations—it allows to handle
the generation of the associated enrichment functions in a straight-
forward and uniform manner.

In this section we will focus on complete cuts, i.e., cuts that com-
pletely split an element into two pieces, or into several pieces in

Figure 5: A complete cut through a single element. The enrichment
texture (128× 128) is a generalized Heaviside (left), taking on val-
ues of −1 (red) or +1 (blue) on each side of the cut. A simulation
of this enriched element is shown on the right.

case of multiple cuts. The more complex problem of partial and
progressive cuts will be discussed in Section 6.

Single Cut. In the simplest case, for a single, complete cut
through an element, the enrichment texture stores a value of −1 or
+1 for each texel, indicating which side of the cut the texel lies on
(see Fig. 5, left). This defines the Heaviside H(ξ), which we use to
construct the enrichment functions ψa(ξ) as in (7). Multiplication
with the original basis functions yields the enriched basis functions
ψa(ξ)Na(ξ). Their partial derivatives can easily be computed by
finite differences on the regular texture grid. The functions and their
gradients are then integrated over the element to construct K and
F, as shown in (4). To this end, the numerical integrator can simply
sample the texture values at the quadrature points. These must be
chosen densely enough so that all features of the enrichment texture
are captured. In the limit, this corresponds to one quadrature point
per texel.

Rendering. During a dynamic simulation, (5) is integrated in
time, which in each time step yields the displacement u(ξ) at the
spatial resolution of the enrichment textures. For rendering the de-
formed and cut shell surface, we tessellate each element of the sim-
ulation mesh into a fine triangulation, in order to more accurately
approximate the quadratic displacement function u(ξ) as well as
the high-resolution cuts. Note, however, that each element uses the
same static triangulation, thereby minimizing storage and overhead.

One option would be to generate a vertex for each texel, and
have the triangulation implicitly defined by the regular texture grid,
which would be conceptually similar to geometry images [Gu et al.
2002]. However, in order to reduce the number of triangles, while
still being able to resolve features at the texel level, we employ a
geometry shader. This shader duplicates triangles that have been
cut: Triangle vertices that lie on the opposite side of the cut are
linearly extrapolated, and the triangle is then rendered with a frag-
ment shader that masks out texels on the opposite side of the cut
(see Fig. 6). An edge of a triangle is considered to be cut if two
criteria are met. First, the magnitude of the difference between the
enrichment function values at the edge’s vertices must exceed a cer-
tain threshold, and second, the sign of the enrichment function must
be different at these two vertices. Fig. 5 shows an example of a
complete cut through a single element, using an enrichment texture
of resolution 128 × 128. Note that this approach limits the resolu-

Figure 6: A cut triangle (left) is duplicated and rendered once for
each side of the cut (right)



Figure 7: Two complete, intersecting cuts through a single element,
resulting in three separate connected components.

tion of the cut to the texture resolution. Using texture filtering, the
resulting aliasing artifacts can be mitigated to some degree.

Multiple Cuts. When considering multiple cuts within a single
element, a cut is called complete if it starts and ends either at the
element’s boundary or at a junction with another cut. Multiple com-
plete cuts therefore decompose the element into several connected
components Ci.

The straightforward generalization of the canonical basis (see
Fig. 3) is defined in terms of canonical Heaviside functions Hi

c(ξ),
which are 1 within their corresponding component Ci and 0 ev-
erywhere else. From these functions one can construct the shifted
enrichment functions and from there on proceed like in the case of
a single cut. Fig. 7 shows an example of two intersecting complete
cuts, resulting in three physically independent surface components.

Note that thanks to our discrete texture representation the identifi-
cation of connected components can be done by a trivial flood fill
algorithm. In contrast, when representing cuts analytically, this task
is more complex, such that often a hierarchical representation and
classification of cuts has to be used.

6 Progressive Cutting

After showing the simplicity and flexibility of enrichment textures
for complete cuts, we now discuss the more interesting case of par-
tial, progressive cuts. In this case, a cut does not (yet) fully separate
the element into two independent components.

For such configurations, works in the mechanics literature typically
require to classify a discontinuity into either a tip (partial cut), a
complete cut, or a junction (intersecting cuts), and generate special
enrichment functions depending on the type of discontinuity. When
furthermore allowing for multiple cuts within a single element, with
cuts being either partial or complete, the combinatorics of handling
these different cases in a hierarchical representation inevitably leads
to rather complex implementations.

In this section we propose our harmonic enrichment approach,
which is conceptually simpler, in that it uses only one kind of uni-
fied enrichment function that does not depend on the type of cut,
and that generalizes to multiple, partial, progressive, and complete
cuts in a natural and canonical manner. We again start with a sin-
gle cut, then discuss multiple cuts within one element, and describe
how to handle cuts that intersect multiple elements.

6.1 Single Cut

Since a partial cut does not fully split the element into two compo-
nents, separation of material is only allowed along the curve cov-
ered by the cut so far. However, as soon as a progressive cut has
traversed the whole element and hence became a complete cut, we
want the parts on either side of the cut to be independent of each
other, as shown in the previous section. This translates into two
conditions for the generalized Heaviside function:

n

H = +1

H = −1

∆H = 0

∇H · n = 0

Figure 8: A partial cut in a single element: The corresponding
Laplace problem (left), the resulting harmonic enrichment texture
(center), and the element behavior in a simulation (right).

• For a partial cut, the enrichment (and the Heaviside) should be
discontinuous along the cut but continuous everywhere else,
allowing material to separate at the cut only.

• If the progressive cut becomes a complete cut, the value of
the enrichment function must be constant on either side of the
cut, replicating the behavior of the Heaviside functions of the
previous section.

In mechanics, one of the classical crack tip functions is√
r sin(θ/2) [Belytschko and Black 1999], where (θ, r) are polar

coordinates centered at the crack tip. This function takes on values
of±
√
r on either side of the crack. However, this function does not

easily generalize to complex cut shapes and multiple cuts within a
single element. We therefore generalize the classical enrichment
function by observing that it is a harmonic function and defining
harmonic enrichments as the solution to the Laplace equation

∆H(ξ) = 0, (8)

subject to suitable boundary conditions along the crack tip and the
element boundary. On the element boundary, we prescribe vanish-
ing Neumann constraints∇H(ξ) · n(ξ) = 0 (see Fig. 8).

Along the crack, prescribing the Dirichlet conditionsH(ξ) = ±
√
r

recovers the classical harmonic enrichment function
√
r sin(θ/2)

in the vicinity of the crack tip. In particular, since a harmonic recon-
struction reproduces given boundary conditions (tautologically), it
follows that the influence of any other finitely-distant boundary can
be ignored in a sufficiently small neighborhood of the tip. As a
simplification, we assume that the

√
r-decay is concentrated within

the crack tip texel; thus, we prescribe the Dirichlet conditions
H(ξ) = ±1 on the texels incident to the cut. The simplified condi-
tion works well in our experiments; however, if adaptive refinement
of the enrichment texture is used, the

√
r-decay should be explic-

itly considered, since the Dirichlet conditions ±1 are ill-posed in
the smooth limit.

Thanks to our texture representation, (8) can be discretized by a
simple finite difference scheme. As the cut corresponds to a series
of connected edges between texels, the Dirichlet conditions set the
texels incident to a cut edge to −1 or 1, respectively. The result-
ing sparse linear system has to be solved for the function values of
H(ξ) at each texel, which we do using either a multigrid solver or
a sparse Cholesky factorization [Toledo et al. 2003].

As the solution of a Laplace equation, H(ξ) will be harmonic, i.e.,
continuous and smooth, everywhere except at the Dirichlet con-
straints, where it shows the desired discontinuity. Hence, the first
requirement is fulfilled. In the case of a complete cut, the vanishing
Neumann boundary conditions cause H(ξ) to replicate a Heavi-
side with constant ±1 on either side of the cut. Furthermore, as
the cut approaches the element boundary, the enrichment function
converges to this Heaviside in a temporally smooth manner. As a
consequence, the second criterion is satisfied. The enrichment tex-
ture of the partial cut in Fig. 8 would eventually converge to the one
of the complete cut shown in Fig. 5.



Figure 9: Multiple progressive cuts within an element: The har-
monic enrichment textures Hi(ξ) for each of the cuts (left, center),
and the resulting simulation behavior (right).

6.2 Multiple Cuts

With just a slight modification of the boundary constraints, the har-
monic enrichment approach can be generalized from single cuts to
multiple cuts within an element. Consider n (partial or complete)
cuts ci(ξ), 1 ≤ i ≤ n, in an element. We have to construct an
enrichment function for each cut, i.e., we have to find a generalized
Heaviside Hi(ξ) for each cut ci(ξ). The two requirements formu-
lated for single cuts can be extended to multiple cuts as follows:

• The enrichment function Hi(ξ) should be discontinuous
across its cut ci(ξ), and continuous for unconstrained texels.
Hi(ξ) might be discontinuous across cj(ξ) for j 6= i.

• If all cuts are complete cuts, they partition the element into
n+ 1 separate components C1, . . . , Cn+1. The original basis
functions and their n enriched versions should reproduce the
behavior of the canonical basis (see Fig. 7), i.e., they should
span the same function space.

We extend the definition of harmonic enrichment functions for mul-
tiple cuts as follows: Each enrichment function Hi(ξ) is again de-
fined as the solution of

∆Hi(ξ) = 0. (9)

As in the single cut case, the discontinuity across its corresponding
cut ci(ξ) is enforced through Dirichlet conditions of±1. However,
now we enforce vanishing Neumann conditions not only on the el-
ement boundary, but also on all other cuts cj(ξ), j 6= i, i.e.

∇Hi(ξ) · n(ξ) = 0, (10)

where n is the normal of either the domain boundary or another cut
cj(ξ) respectively. Note that there might be components with Neu-
mann conditions only. These components are independent of the cut
ci under consideration, and we therefore explicitly set the function
values in these regions to zero. The resulting Heaviside functions
Hi(ξ) again trivially satisfy the first condition by construction. A
simple proof showing that the second condition is also fulfilled is
given in Appendix A. See Fig. 9 for an example of two partial cuts,
which would eventually converge to the situation depicted in Fig. 7.

Harmonic enrichment textures therefore allow us to handle both
single and multiple cuts, as well as partial, progressive, and com-
plete cuts in a simple, unified, and canonical manner. In contrast to
existing work, we do not require cuts to be classified into crack tips,
joints, or complete cuts. Neither do we need a complex hierarchi-
cal representation to keep track of multiple cuts and the resulting
connected components.

6.3 Multiple Elements

So far, we described how to handle single or multiple, partial or
complete cuts within a single element. For realistic simulations,
however, a simulation mesh of more than one element is of course

Ω

Ω3

Ω2

Ω1

c1

c2
c3

Figure 10: Three cuts define nodes to be enriched (dots) and asso-
ciated domains Ωi on which the Hi are defined. Nodes in overlap-
ping domains are enriched multiple times.

required. In this section we extend our enrichment approach to mul-
tiple elements partitioning the simulation domain Ω. A 2D illustra-
tion of a multi-element mesh with two complete cuts c1, c2 and one
partial cut c3 is shown in Fig. 10.

In order to model the discontinuities caused by a cut, all elements
intersected by this cut are enriched. This is achieved by enriching
the nodal basis functionsNa(ξ) of each of the element’s vertices a,
resulting in ψa(ξ)Na(ξ). This expression requires the enrichment
function ψa, and therefore the Heaviside H (see (7)), to be defined
on the whole support of Na, which in our case is just the set of
elements incident to vertex a. The (overlapping) colored regions
Ωi in Fig. 10 highlight the elements that are enriched due to the
respective cuts ci, the dots represent the vertices to be enriched.

The main difference to the single element case is that the enrich-
ment functions of neighboring elements have to be C0 continuous
across their shared edge, in order to guarantee the enrichment basis
functions ψaNa, and thus the enriched displacement u (see (6)), to
be C0, as required by our DG FEM formulation.

For complete cuts, such as c1 and c2 in Fig. 10, we can use the sim-
ple enrichment functions shown in Figs. 5 and 7 for the intersected
elements, and constant enrichments of +1 or−1 for their neighbor-
ing elements. The resulting enrichment functions will be C0 across
mesh edges by construction.

The handling of partial cuts, such as c3 in Fig. 10, is slightly more
involved. For the element containing the cut tip a harmonic enrich-
ment is computed by solving (8) or (9), as discussed in Section 6.2.
The vanishing Neumann boundary conditions for this system can,
however, not guarantee C0 continuity to its neighboring elements
(as Dirichlet boundary constraints could do).

In order to ensure continuity, we additionally have to take the inci-
dent elements into account and solve the Laplace equation on this
extended one-ring neighborhood (3 × 3 region around the tip of
c3 in Fig. 10). On the boundary edges of this region we prescribe
the values of neighboring enrichment functions, if they exist, as C0

Dirichlet constraints, or vanishing Neumann conditions otherwise.
As the neighboring enrichment function values were computed in
previous simulation steps, this construction is free of cycles.

In Fig. 10 we would therefore compute the enrichment function(s)
H3 for the nine elements around the cut tip by a single Laplace sys-
tem, prescribing ±1 Dirichlet constraints along c3, vanishing Neu-
mann constraints along c1, C0 Dirichlet constraints on the bound-
ary to the blue elements, and vanishing Neumann constraints on
the other boundaries. In this 3 × 3 region the enrichment function
H1 for cut c1 also has to be computed through this system, by ex-
changing the roles of c1 and c3. With this slight modification of the
domain and the constraints of the Laplace systems (8), (9), we are
able to generalize the harmonic enrichment textures from single el-



ements to arbitrary simulation meshes, including quad and triangle
meshes through the definition of appropriate texel neighborhoods
at the element boundaries.

Note that our DG FEM formulation considerably simplifies this
generalization as it only requires C0 continuity on element edges.
On the other hand, conforming thin shell discretizations using C1

basis functions [Cirak et al. 2000; Thomaszewski et al. 2006] would
requireC1 continuous enrichment functions, which cannot be com-
puted through simple Laplace systems.

7 Results

We demonstrate our enrichment method on a variety of examples,
including single elements, more complex element meshes, single
progressive cuts, cuts consisting of multiple enrichments, and mul-
tiple cuts per element. The simulation meshes used consist of either
8-node bi-quadratic quadrilateral elements or 6-node quadratic tri-
angular elements. All discontinuities were prescribed as polylines
and then rasterized to texel edges. Dynamic simulations of the de-
picted examples can be found in the accompanying video.

Complex Cut Lines. Our method allows us to represent discon-
tinuities on a fine sub-element level without the need to remesh.
Fracture lines are a special instance of such discontinuity lines and
are usually computed using local strain or stress measurements to
predict their evolution. We do not directly simulate a complex frac-
turing model but generate the highly-detailed cut boundaries proce-
durally. Our approach is able to resolve the shells’ reaction to the
fracture discontinuity at the sub-element level, as shown in Fig. 11
and the accompanying video. Note that the simulation runs on a
single quad element using bi-quadratic basis functions.

Figure 1, right, shows the same model applied to a non-trivial
mesh with triangular quadratic elements. Note that the elements
are shaded independently of each other in order to show the coarse
resolution of the simulation mesh. To avoid these shading disconti-
nuities, normals can be averaged at nodes and interpolated over the
elements.

Small Features. The presented approach allows us to simulate
small scale details down to the resolution of the texture. In Fig. 13,
left, a circular cut is applied to a planar shell mesh consisting of four
quads. The method can robustly handle the situation where the con-
nection between the “hanging chad” and the rest of the element is
only a few texels wide. Without requiring any special handling, the
basis functions resulting from the harmonic enrichments introduce
a specific additional mode of deformation, leading to the expected
result. Figure 13, right, shows an example of a highly-detailed cut
line demonstrating the capability to resolve small features.

Multiple Cuts. As described in Section 6.2, our method is also
applicable to the case of multiple cuts per element. Figure 1, left,
shows a single quad element that has been enriched 18 times, repli-
cating a “paper accordion”. In this example, the boundary condi-
tions on the cuts are not purely ±1 on either side of the cuts, but
instead are blended to zero towards both ends of each cut to get an
enrichment that better captures the desired deformation.

For long progressive cuts with complex trajectories, a single enrich-
ment will not provide sufficient additional degrees of freedom to
allow for the desired deformation. Such cases can be handled con-
sistently by tracking the length or integral angle of the cut and by
initiating a new cut once a predefined threshold is exceeded. While
this criterion is mathematically not rigorous, it works very well in
practice, and we employed it for our experiments.

Figure 11: A single textured quad element being fractured (left),
and the underlying discontinuous enrichment function (right).

Figure 12: A quad element is cut by a helical line, using a single
enrichment (left) and six cut segments (right). The insets show the
enrichment functions used.

Figure 13: Simulation of a chad failing to completely separate from
a punchcard (left). Highly detailed cut on a tissue (right).

Figure 14: A cylinder represented by four quad elements is cut into
a slinky, deforms under gravity and uncoils (left). Simulation of
intersecting cuts in a single element (right).

Figure 15: The thickness of a shell element (left) is modulated by
a thickness texture and deforms accordingly (right). The shell is
rendered as a volumetric object in order to visualize its thickness.



Figure 16: A C0 continuous enrichment texture with discontinuous
first derivatives (left) allows adding a crease to an element (right).

This results in a series of connected cuts that together make up the
desired discontinuity and add the required local degrees of free-
dom. Figure 12 shows an example of a spiral cut enriched by a
single enrichment texture (left), lacking the desired deformation,
and the same curve divided into 6 cuts (right), resulting in a more
plausible simulation. Applying the same principle to a less trivial
mesh, a slinky is cut out of a cylinder in Fig. 14, left. Fig. 14, right,
additionally shows an example of intersecting cuts. Note that once
a cut crosses another cut, it becomes a complete cut that ends at the
point of intersection and a new cut is started.

Material Textures. As an alternative application of textures be-
sides cutting, we can define material properties at the texel level. In
the case of Kirchhoff-Love shells, properties that can be modulated
by such a material texture include the material’s Young’s modulus,
Poisson’s ratio, as well as the local thickness of the shell. During
the integration of an element’s stiffness matrix, the material texture
is evaluated at the quadrature points. Figure 15 shows an example
of a single shell element with locally reduced thickness, causing it
to weaken and exhibit a stronger deformation under gravity. In this
example, 122 quadrature points were used to integrate the element’s
stiffness matrix.

Creases. So far, we have only considered enrichment textures
with discontinuities, allowing for cutting and separating shells into
multiple independent components. However, we note that the con-
cept of enrichment textures is more general. In particular, it can
also be used to model sharp creases, at which the shell is free to
bend. Creases can be modeled by keeping the enrichment textures
C0 continuous, but introducing discontinuities in the first deriva-
tives. Fig. 16, left, shows an example of an enrichment texture
for a curved crease line. The enrichment function is computed
as the geodesic distance from the crease using a fast marching
method [Sethian 1999]. Applying this enrichment texture to a shell
element allows the element to bend around the crease, resulting in
interesting states of minimal energy when external forces are ap-
plied (see Fig. 16, right, and the accompanying video).

Timings. Table 1 shows the computation times per simulation
step for a representative selection of examples. The times for com-
puting the enrichments are peak values, while the assembly and
solve times were averaged over the whole simulation. For solv-
ing the Laplace problem during the computation of the enrichment
functions, we employ a sparse Cholesky solver [Toledo et al. 2003].

Comparison to Discrete Shells. For typical meshes the cost of
cutting and enrichment is only a small percentage of the total sim-
ulation time, e.g., 7% for the Bunny example. This percentage van-
ishes as mesh resolution increases, since the cost of dynamics in-
creases while the texture area intersected by the cut decreases.

Model #Els. #Nodes #Enr. Tex. tenr tasm tsol

Chad 4 21 1 256 1433 16 3
Spiral 1 1 8 1 256 274 1.8 0.1
Spiral 6 1 8 6 256 1701 38 0.7
Accordion 1 8 18 256 4785 313 8
Bunny 552 1106 1 32 283 452 917
Slinky 4 20 12 128 5207 513 22

Table 1: Comparison of timings for the computation of the en-
richment functions (tenr), assembly of the global stiffness matrix
(tasm), and solving the resulting linear system (tsol). Timings are
in milliseconds and were taken on an Intel Core2 Duo 2.4 GHz.

Mesh (Method) #Els. #Nodes #DOFs #NNZ
Bunny (our method) 552 1106 3318 243954
Bunny (Discrete Shells) 4200 2102 6306 245934
Spiral (our method) 1 8 168 28224
Spiral (Discrete Shells) 385 274 822 32058
Chad (our method) 1 8 48 2304
Chad (Discrete Shells) 72 62 186 7254

Table 2: Comparison of our method to Discrete Shells with a com-
parable computational budget (non-zero stiffness matrix entries).

Focusing on the bulk of computational cost—simulating dynam-
ics after cutting—Table 2 compares our method to Discrete Shells
[Grinspun et al. 2003] in terms of computational effort. We use
the number of non-zero entries in the stiffness matrix (NNZ) as a
measure of complexity for solving the linear system during time in-
tegration. For Discrete Shells, the mesh resolutions were chosen to
match the NNZs of our enriched simulations.

For the Discrete Shells simulations, the mesh resolution might be
sufficient to simulate the elastic behavior, but it is not enough to
resolve the cuts in sufficient detail, especially for highly detailed
cuts. By contrast, our enrichment uses the same number of ad-
ditional DOFs, whether the cut is highly jagged or straight. The
comparison shows that our method excels in settings characterized
by a higher ratio of cut to deformation complexity.

Discussion. The previous examples show that our method is able
to represent complex cut lines and small features in single elements
and element meshes, and that multiple cuts per element can be han-
dled consistently.

However, we note that our current implementation of the method
lacks a proper projection step. When the basis functions change
due to enrichment, we simply apply the previous solution to the new
basis. In most situations the introduced error is unnoticeable, since
the enrichments change gradually over time. However, in some sce-
narios it leads to obvious “popping” artifacts, e.g., in the multiply
enriched spiral cut in the accompanying video. These artifacts may
be eliminated by projecting the displacements and velocities onto
the new basis, as proposed, e.g., in [Réthoré et al. 2005].

8 Conclusion and Future Work

We presented a novel method for handling highly detailed discon-
tinuity features such as cutting or fracture lines using a versatile,
texture-based basis enrichment approach. The method spends new
degrees of freedom in an economical manner and supports a uni-
form and general treatment of multiple progressive or complete
discontinuities. While the proposed method focuses on introducing
material discontinuities, we hope that the presented way of combin-
ing texture concepts with physical simulations opens exciting new
areas for future work.



A promising direction for future work is to generalize the model-
ing of creases, building on the preliminary results presented in this
work. We would also like to explore the synergies of textures repre-
senting both geometric and physical material properties. For exam-
ple, a displacement texture map could represent both the physical
rest state of a shell as well as allow for high surface detail while still
only requiring a coarse simulation mesh.

We further note that most of the steps in the simulation pipeline
are very amenable to parallelization, making them ideal candidates
for computation on the GPU. In particular, the computation of the
enrichment functions can be performed efficiently using a multi-
grid solver, whose pre- and post-smoothing steps can be interpreted
as simple texture filtering operations [Bolz et al. 2003]. The co-
rotated stiffness matrix integration could be computed on the GPU,
since it parallelizes trivially, leading to a highly accurate integration
at the texel level. At the rendering stage, the deformed geometry
could easily be constructed on the GPU as well, by computing the
displacement field from the enrichment textures and the solution to
the dynamic simulation. We also note that at this stage, the rendered
mesh could be enhanced trivially by adding fine-scale geometry.
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A Proof of 2nd Condition in Section 6.2

In this section we show for n complete cuts ci, the harmonic en-
richment functions Hi, obtained by solving ∆Hi = 0 for each cut
ci as described in Section 6.2, span the same function space as the
canonical basis for the resulting n+ 1 components.

The canonical Heaviside functionsHi
c are the enrichment functions

that produce the canonical basis. Hi
c is 1 in component Ci and 0

otherwise. The canonical enrichment basis of n+ 1 components is

Cn+1 = {H1
c , . . . , H

n+1
c } .

For an un-cut element, which is described by its original basis func-
tions Na only, the canonical enrichment function is H1

c ≡ 1. In
order to proof that our enrichment basis functions span the same
space as the canonical basis, it suffices to show that the space

Hn+1 = {1, H1, . . . , Hn} ,

spanned by our harmonic enrichment functionsHi and the constant
1 function corresponding to the original basis, is equivalent to the
space spanned by the canonical enrichment functions Cn+1.

This can be shown by induction as follows: For the case with n = 1
components, the constant 1 function is the only enrichment function
and all enrichments are trivially equivalent to the canonical basis.

In the inductive step we assume that for n components the set of
enrichment functions Hn spans the same space as the canonical
enrichments Cn. Hence,Hn spans an n-dimensional space and the
Hi are linearly independent.

Then a new cut cn splits a component, say Cn, into two parts Cn

and Cn+1, thus leading to n + 1 components. The space Hn+1

is computed by solving (9) for each H1, . . . , Hn. Note that the
i-th functions of Hn and Hn+1 (1 ≤ i ≤ n − 1) are not equal,
since the new cut imposes additional Neumann conditions at cn

for (9). However, the additional Neumann conditions cannot turn
the new functions H1, . . . , Hn linearly dependent. Consequently,
Hn+1 \Hn spans an n-dimensional subspace. The additional new
function Hn is linearly independent of Hn+1 \Hn, since it is the
only Heaviside that can control both sides of the new cut cn (i.e.,
Cn and Cn+1) independently. This means that Hn+1 must be a
complete basis for an (n+ 1)-dimensional space and thus is equiv-
alent to the canonical basis Cn+1.
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