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ABSTRACT
This paper addresses selecting between candidate pronun-
ciations for out-of-vocabulary words in speech processing
tasks. We introduce a simple, unsupervised method that
outperforms the conventional supervised method of forced
alignment with a reference. The success of this method is
independently demonstrated using three metrics from large-
scale speech tasks: word error rates for large vocabulary
continuous speech recognition, decision error tradeoff curves
for spoken term detection, and phone error rates compared to
a handcrafted pronunciation lexicon. The experiments were
conducted using state-of-the-art recognition, indexing, and
retrieval systems. The results were compared across many
terms, hundreds of hours of speech, and well known data sets.

Index Terms— Speech processing, Speech recognition,
Speech synthesis

1. INTRODUCTION

Several speech processing applications including large vocab-
ulary continuous speech recognition (LVCSR), spoken term
detection (STD), and speech synthesis rely on a fixed vocab-
ulary and a pronunciation for each word therein. This pro-
nunciation lexicon typically contains mappings from an or-
thographic form of a word (e.g. QUEDA) into a phonetic
form (e.g. /k aa d ax/) that can be used for decoding, index-
ing, retrieval, or synthesis. Although the pronunciation lexi-
con remains fixed, realistic use requires a constantly chang-
ing vocabulary resulting in words that are out-of-vocabulary
(OOV). OOVs can be new words, rare words, foreign words,
or words unknown to be important at the time the lexicon was
formed. Adjusting to change in vocabulary demands the gen-
eration of pronunciations and a need to automatically select
between candidates. Therefore, this work addresses the ques-
tion: given a word in any language, and a set of candidate
pronunciations, how can you determine the best pronuncia-
tion of that word?

Challenges within OOV modeling and pronunciation vali-
dation are not new, but issues with OOV words have tradition-
ally been given less attention due their low impact on word
error rate (WER). Recent work [1, 2] and the development
of the STD task [3] have highlighted their importance as rare
words, which are therefore information rich.

An initial approach to create pronunciations for OOV em-
ploys a trained linguist, but they are expensive, often produce
inconsistent representations, generate few pronunciations per
hour, and have limited areas of expertise [4]. Therefore ef-
fort has been made toward data-driven pronunciation model-
ing. Previous work [4, 5] addressing pronunciation validation
comes from pronunciation modeling attempting to simulta-
neously generate/validate pronunciations using existing lex-
ica [4], linguistic rules [6], speech samples [7, 8], or all of
the above (see literature pronunciation modeling, grapheme-
to-phoneme, letter-to-sound). Such work generally includes
criteria for creating a pronunciation for an OOV that involves
the modality of data used to create it (e.g. generating pro-
nunciations from lexica tests against comparisons to held out
entries in the lexica, generating pronunciations from speech
forced-alignment uses accuracy or WER of speech samples).
The previous work on data-driven pronunciation modeling
addresses pronunciation variation [4, 8] or common words
[5, 9]. In [7] they concentrate on names and places, direc-
tory services, noting that proper names can be hard where it
is difficult to reuse letter-to-sound rules from common words.

For example, in [7] they learn pronunciations from au-
dio samples along with rules from an existing lexicon and de-
velop an iterative algorithm for pronunciation refinement; ac-
curacy of recognition on directory assistance samples is mea-
sured. For many cases using speech samples including [6],
the standard score comes from aligning the speech sample of
a word against the putative pronunciation, sometimes with a
filler model for likelihood ratio threshold. In [6] they augment
acoustic likelihood with linguistic features and use a decision
tree classifier rather than a threshold; they attempt to verify
pronunciations for literacy assessment and treat the problem
as estimating a confidence score over a short utterance (the
word of interest).

This work departs from the standard framework of simul-
taneously generating and testing pronunciations. We are ag-
nostic about where candidates come from, isolating the task
to choose between them. Furthermore, we concentrate on a
large number of difficult words, of which many are foreign
proper names and places. Our evaluation involves large-scale
speech tasks with large data sets in an effort to present results
that generalize. We use two methods to select between can-



didate pronunciations: a conventional supervised method via
forced-alignment, and unsupervised method via recognition.

We compare these two methods via three metrics: phone
error rate (PER) against a reference pronunciation to analyze
the difference with a handcrafted lexicon, WER for LVCSR
to see impact on their recognition as well as their impact on
recognizing other words in the vocabulary, and decision error
tradeoff (DET) curves for STD for searching OOVs. The
end goal was to identify a methodology for picking correct
pronunciations. This work was conducted as part of the Johns
Hopkins University summer workshop (JHUWS08) team
’Multilingual Spoken Term Detection’ where pronunciations
were generated via letter-to-sound models, those augmented
from web data, or from transliteration models .

2. BASELINE SUPERVISED METHOD

Our baseline mechanism for choosing between two candidate
pronunciations was to pick the pronunciation with higher av-
erage acoustic likelihood from a forced-alignment with a ref-
erence, with the average taken over several speech samples.

Performance is measured from approximately 500 words
via three metrics: edit distance to a reference lexicon, WER
on decoding 100 hrs of speech, and STD DET curves on the
LVCSR lattices for the same 100 hours.

2.1. Data set, OOV terms, systems

Our goal was to address pronunciation validation using
speech for OOVs in a variety of applications (recognition,
retrieval, synthesis) for a variety of types of OOVs (names,
places, rare/foreign words). To this end we selected speech
from English broadcast news (BN) and approximately 500
OOVs. The OOVs were selected with a minimum of 5 of
acoustic instances per word, and common English words
were filtered out to obtain meaningful OOVs (e.g. NATALIE,
PUTIN, QAEDA, HOLLOWAY). Once selected, these were
removed from the recognizer’s vocabulary and all speech ut-
terances containing these words were removed from training.
For each OOV, two candidate pronunciations are consid-
ered, each from a variant of a letter-to-sound system. These
OOVs were taken from a larger set used to compare web-data
augmented letter-to-sound systems, a subset on which two
particular letter-to-sounds systems differed. For details the
reader is referred to [8].

The LVCSR system was built using the IBM Speech
Recognition Toolkit [10] with acoustic models trained on 300
hours of HUB4 data with utterances containing OOV words
excluded. The excluded utterances (around 100 hours) were
used as the test set for WER and STD experiements. The
language model for the LVCSR system was trained on 400M
words from various text sources. The LVCSR system’s WER
on a standard BN test set RT04 was 19.4%. This system was
also used for lattice generation for indexing for OOV queries

in the STD task along with the OpenFST based Spoken Term
Detection system from Bogazici University [11].

2.2. Supervised validation

Let X denote a sequence of acoustic observation vectors; the
objective of the recognizer is to find the most likely word se-
quence W ∗ given the acoustic vectors:

W ∗ = arg max
W

p(W |X) (1)

= arg max
W

p(X|W )p(W ) (2)

where Equation 2 comes from rewriting Equation 1 using
Bayes’ rule and considering that p(X) does not play a role
in the maximization; p(X|W ) denotes the acoustic likelihood
of the acoustic observations given a word sequence hypothe-
sis W ; p(W ) is the prior probability of that word sequence
W as defined by a language model.

The conventional method for selecting between pronun-
ciation candidates involves using a transcript and perform-
ing a forced alignment against it: during alignment there is
a constraint in decoding path W to the reference transcript
(with each word replaced by its pronunciation in the lexicon),
augmented with candidate pronunciations. Speech data that
contain the OOV are aligned with the acoustic models corre-
sponding to each candidate pronunciation via Viterbi search,
and the maximum likelihood acoustic score determines the
’winner’ candidate [5, 4, 7, 6].

Some of the work referenced above attempts to improve
the decision function or include additional information while
simultaneously generating and validating pronunciations.
Our work assumes that pronunciations have been provided
and seeks to decide between them. Also, this work concen-
trates on simple and fast methods for large scale heteroge-
neous applications.

3. UNSUPERVISED METHOD

Using standard automatic methods (e.g. Section 2.2) for ver-
ifying pronunciations requires transcribed audio, which can
cost as much as 100$/hr (common) - 400$/hr (new language)
to transcribe. Transcription is time-consuming, laborious, and
difficult to recruit/keep labelers for transcribing. However, in
many applications meta-data can alleviate the need by point-
ing to speech likely to contain a word of interest, which can
be used to select between candidate pronunciations for that
word. For example, items in the news, television shows, etc.
are a rich source of untranscribed speech for unsupervised
validation.

Moreover, often we do not have access to a transcript cor-
responding to audio examples of an OOV, but we may have
some knowledge it has occurred in an audio archive. For ex-
ample, we may know from meta-data that a broadcast news
episode recently aired about a conflict in Iraq, and at present it
would give us high confidence to find examples of words like



word hyp prons ref prons phn err%
QAEDA k aa d ax k ay d ax
QAEDA k aa ey d ax

. 40
SCHIAVO sh ax v ow s k h aa v ow
SCHIAVO s k y ax v ow sh iy aa v ow

Table 1. Example pronunciations and PER

QUEDA. We may not know how many times it was spoken,
or where in the audio, but we can still use the entire broad-
cast to help us choose between hypothesized pronunciations
for QUEDA.

In the absence of labeled examples we use unsupervised
recognition to select between candidate pronunciations. We
decode data likely to contain the OOV with each candidate,
calculate the average acoustic likelihood over the entire data,
and choose the candidate with the highest average likelihood
as the ’winner’. This corresponds to using Equation 1 to de-
code speech ’as is’ (without the extra constraint on the decod-
ing path to the reference as in the supervised case).

4. RESULTS

For each of the metrics below, a pronunciation lexicon was
created for the set of OOVs (approximately 500). For every
OOV there were two candidate pronunciations from differ-
ent letter-to-sound systems, and we compare the two meth-
ods described above for choosing between the two candidates
for this set (along with an ’upper-bound’ and ’lower-bound’).
These 500 words were removed from a handcrafted lexicon,
therefore we have a set of ’true’ pronunciations. The ’upper-’
and ’lower-bound’ take advantage of this knowledge, denoted
plex − best and plex − worst. plex − best selects the can-
didate that is the closest (in edit distance) to a reference pro-
nunciation that word, and plex− worst selects the farthest.

For example, in Table 1 two OOVs are listed, each with
two hypothesized pronunciations. Here, plex − best would
have as members ’/k aa d ax/’ and ’/sh ax v ow/’.

The two methods compared are those described above,
where sup−force denotes the lexicon created from selecting
pronunciations based on supervised forced-alignment with a
reference, and unsup − reco denotes the lexicon created
from selection based on unsupervised decoding. For the un-
supervised case approximately the time for one broadcast
news show was decoded using each candidate pronunciation,
making sure to include all the speech examples used for the
forced-alignment somewhere in the data.

4.1. Large vocabulary continuous speech recognition

In addition to comparing methods using the performance in
speech tasks, we can see which method produces pronunci-
ations that are closest to a reference. For example in Table

1, if speech had selected the bold pronunciations, there are 4
errors out of 10 phones w.r.t. the closest reference pronuncia-
tion (e.g. QAEDA: /ay/ to /aa/, insert /ey/; SCHIAVO: insert
/iy/, /ax/ to /aa/) resulting in a 40% PER.

Since the plex−best was artificially selected for this met-
ric, it becomes the upper-bound (although this isn’t the case
for speech tasks shown below). In Figure 1 the PER is plot-
ted for each of the methods at 3 system configurations. The 3
configurations were created with different levels of language
model pruning, and demonstrate differences based on sys-
tem performance (in WER). The systems’ WER on the RT04
data set at the various configurations were 29.3%, 24.5% and
19.4% corresponding to 360, 390, and 450 respectively. Note
the x-axis is #words, which corresponds to the number of the
OOV types that were decoded via the unsupervised method,
and hints at a limitation that will be discussed below. With
regard to PER, the unsup − reco has lower error rate at all
system configurations compared to sup − force, which ac-
cords with the results below.

Fig. 1. Phone Error Rate w.r.t. reference lexicon

The methods for selecting between candidate pronunci-
ations described above were used to decode 100 hours of
speech that contained all of the OOVs. Standard WER was
used to compare these methods in Table 2. Note that unsup−
reco outperforms all others. Also, note that the candidate pro-
nunciations give about a half percent WER range (between
the best and worst), and that selecting based on the phone edit
distance to the reference does not directly translate to better
ASR WER.

4.2. Spoken term detection

Lattices generated by the LVCSR system for the 100 hours
test set were indexed and used for spoken term detection ex-
periments in the OpenFST based architecture described in
[11]. Our goal was to see whether our WER results corre-
lated with another speech task like spoken term detection. To



Method ASR WER% #errors
plex-worst 17.8 193,145
sup-force 17.3 187,772

unsup-reco 17.3 187,424
plex-best 17.4 188,517

Table 2. LVCSR WER

this end, the same sets of pronunciations were used as queries
to the STD system. Results from the OpenFST based index-
ing system are presented in a DET curve using NIST formu-
las and scoring functions/tools from the NIST 2006 evalua-
tion. The DET curves in Figure 2 show that plex − best and
unsup − reco work the best for detection at nearly all oper-
ating points.

Fig. 2. STD DET Curves

5. DISCUSSION

We have presented an unsupervised method for pronuncia-
tion validation via recognition that works better than conven-
tional validation via forced-alignment. This success has been
demonstrated using 3 metrics for large-scale speech tasks:
Phone Error Rate on a large set w.r.t. a reference lexicon,
LVCSR Word Error Rate on decoding a 100 hours of speech,
and STD DET Curves on the same.

The usual argument for unsupervised speech methods:
they save considerable time and money over speech tran-
scription or using a linguist, which is enticing as long as the
performance degradation isn’t too harmful. However, for
selecting a candidate pronunciation our unsupervised method
does not suffer any degradation, and actually performs better
as it naturally filters out unhelpful speech samples by em-
ploying the power of comparison (search) and a language
model. In all of the experiments our notion of phone errors
were based on a word-to-phone pronunciation lexicon; there
were no manual phonetic transcriptions used.

There are several limitations to this method. Unsuper-
vised recognition can’t always verify a word (if neither pro-

nunciation is ever decoded), although this provides a natu-
ral check against comparing many bad candidates (alignment
will always give a score). It requires having seen it or words
like it in text (LM), which is not unreasonable given that a
word comes into fashion somehow. It’s possible that false
alarms might hurt (if an OOV sounds like common word), but
the 3 configuration experiments indicate that isn’t a problem
for these words of interest. Finally, the performance could
depend on amount or type of data decoded, which is the basis
of our future work.
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