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Motivation 

•  First impressions are hard to overcome: 
 
 
•  Quality is text-dependent and speaker-dependent 

•  When is a good idea to use TTS? 
Ø  Content is dynamic (changes all the time – impossible to pre-record). 

ü  E.g., Account information; dialog systems; Watson. 
 

Ø  Content is fixed but very large (unfeasible to pre-record). 
ü  E.g., Navigation assistance (large database of US street names) 
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High-Level TTS Architecture 

Transforms a text-input string into a 
set of symbolic representation from 
which to build acoustic and prosodic 

models. 

Transforms a text-input string into the 
symbolic representation used to build 

acoustic and prosodic models. 

Model Building  
(Back-End Technology Dependent) 
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Modern Approaches to TTS Back-Ends: Concatenative 

§  Record actor reading large script 
§  Divide resulting recorded speech database into very small units 

§  At runtime, choose best sequence of units and splice them together to create 
new words 

 
+  High naturalness and intelligibility since units are actual speech 
–  Large footprint 
–  Can suffer from audible discontinuities when two units don’t join well.   
–  Inflexible: Hard to extend without increasing since of unit-selection 
database. 
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Modern Approaches to TTS Back-Ends: Parametric 

§  Record actor reading a script 
§  Select a (high-quality) parametric analysis/synthesis model 
§  Train a generative model (e.g., HMM) to learn the distributions of the parameters (acoustic, 

prosodic). 
§  At runtime, generate a sequence of parameters using the model, and reproduce the speech 

from these parameters. 
 

+  Small footprint 
+  Flexible: One can use adaptation techniques to change the “quality” of the training corpus 

(to alter its expression, give it an accent, etc.) 
+  Oversmoothing: Statistical averaging tends to oversmooth the spectral and prosodic 

characteristics of speech à Jarring discontinuities are rare. 
–  Oversmoothing: Statistical averaging tends to oversmooth the spectral and prosodic 

characteristics of speech à Sounds flat, monotone. 
–  Doesn’t quite sound like actual natural speech (vocoded quality of the parametrization) 
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•  Goal is to take as input a string of text and transform it into a symbolic description (i.e., 
contextual features) that can be exploited at model-building time and run-time."

•  Language dependent (though some sophisticated front-ends accommodate multi-lingual 
processing for handling mixed-language inputs)."

•  Typically independent of back-en technology used."
"

  "

Front-End 
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"
•  Text cleaning: Get rid of items (HTML mark-up, etc.) that are not to be synthesized. It’s 

often language-independent."

•  Text normalization: transforms items such as dates, time, numbers, currency, phone 
numbers, addresses, and abbreviations into normal orthographic form."

•  Grapheme-to-Phoneme Conversion (Phonetization): Transforms a (normalized) 
orthographic string into the “phones” of the language:"

"
 ! ! !The brown fox  à  DH   AX   B   R   AW   N   F   AO   K   S"

  "

Front-End Functionality (I) 

Dr. King Dr. becomes Doctor King Drive!
1 oz. becomes one ounce!

2 oz. becomes two ounces!

Examples"
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"
•  Syllabification and lexical stress prediction: Divides a word’s phonetic representation 

into syllables, and marks lexical stress:"
"

  Speech Synthesis  à  S   P  IY (1)  CH   ||  S  IH (1)  N  |  TH  AX (0)  |  S  IX (0)   S "
"
•  Part-of-Speech Tagging:"
"

!She came to record the record. à She (PRN) came (VB) to record (VB) the (DET) record (NOUN). 
 !

•  Syntactical Analysis"
"

"[NP  The brown fox]   [VP  jumped]   [PP  over]    [NP  the lazy dog.] "

•  Semantic Analysis such as named-entity recognition (is it a person? a place? an 
organization? a quantity? etc.)"

Jim bought 300 shares of Acme Corp. in 2006. à  <ENAMEX TYPE="PERSON">Jim</ENAMEX> bought 
<NUMEX TYPE="QUANTITY">300</NUMEX> shares of <ENAMEX TYPE="ORGANIZATION">Acme 
Corp.</ENAMEX> in <TIMEX TYPE="DATE">2006</TIMEX>. !

Front-End Functionality (II) 
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"
•  Usually modular architectures. Implementation depends on the nature of the module 

(phonetizer, parser, etc.) and language"
•  Rules-based: "

o  Hand-crafted rules"
o  Amenable to encoding exceptions that aren’t captured by patterns (e.g., 

English letter-to-sound rules)."
o  Hard to maintain"
o  Brittle (rules may interact in unpredictable ways)"

•  Statistical / Data-driven:"
•  Flexible (easy to retrain given newly available training data)"
•  Requires no expert linguistic knowledge"
•  Capture statistical tendencies and therefore tend to perform poorly when 

handling exceptions. "
•  Look-Up:"

•  Most front ends provide a mechanism for bypassing the processing (rules-
based or statistical) and resort to direct look-up. "

•  E.g., Exception dictionaries to reflect hard-to-predict pronunciations of 
names in an ever-growing customer’s database."

   

Front-End Implementations 
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Typical Concatenative Back-End Architecture 

Ø  Define a unit size (e.g., ~1/3 phones). Automatically align and pre-segment 
a recorded voice database into the basic building units."

Ø  Acoustic Candidate Generation: Build a model that predicts which acoustic 
waveform units are needed/relevant to synthesize a given context."

Ø  Prosody Target Generation: Build a model that predicts which prosody 
(pitch, duration, energy) the units should carry in a given context."

Ø  Search: Given candidate units, and prosody targets, extract the optimal 
sequence of units according to some criterion."

Ø  Waveform generation/modification: Join the selected units (via, e.g., 
PSOLA), taking care to reduce perceptual acoustic artifacts."

Ø  Optionally: Ensure that the resulting output waveform reflects the 
pitch, duration and energy values of the prosody targets."
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R_nasal? 

L_plosive? R_front_vowel? 

ü  Associate every acoustic unit in the 
database with its symbolic context (based on 
the output of the front end)."

ü Build a tree by asking questions (i.e., 
making splits) based on the context of the 
current and neighboring units (e.g., central 
phone plus 2 on either side)."
"
ü  Acoustic observations gathered at the 
resulting leaves (i.e., context-dependent units) 
are the basic synthesis units for an input 
context."
"
ü  At run-time, the symbolic context is 
extracted for the input text, the tree is 
traversed, and once a leaf is reached, we 
extract its members as candidates. "

Acoustic Model: Decision Tree for Mapping Context to Units. 
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Brief Digression: A Word About Context 

•  Besides providing a mechanism for retrieving a set of relevant units for a given context, a 
tree inherently provides a way to handle DATA SPARSITY!! 

•  We never get to observe instances for every given context. That’s a PROBLEM if we 
want to synthesize at run-time a context we didn’t observe in the training data (which 
happens all the time, actually!). 

•  Consider this simple context feature vector: 
Feature Type   Cardinality   Total # of Combinations 
(1) phone identity   44   44 
(2) POS   25   44x25=1100 
(3) # of phones from start  50   44x25x50=55,000 
(4) Question/Statement/Excl  3   44x25x50x3=165,000  

•  This simple 4-dimensional feature vector requires we observe 165K combinations. In 
practice we work with hundreds of symbolic features, generating hundreds of thousands 
of context combinations. 

•  Trees effectively exhaustively partition the input space into N context combinations (the N 
leaves of the tree). At run-time, you will reach one leaf. Even if the full run-time context 
vector was not observed in the training set, there will at least be a partial match.   
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•  Similar idea: Build a model that generates prosody targets for a particular context 
combination. 

•  It may make sense to model different prosodic dimensions at different levels: 

•  sonorant-region F0 prediction 
•  phone-level log-duration prediction 

•  phone-level energy prediction 

•  Build the tree as before. Use it at run time to generate a target. Propagate this target 
down to the basic unit of the back-end architecture (e.g., sub-phone). 

Prosody Target Generation 
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§ Syllable-based statistical decision tree predictor 
– Observations: Three pitch values are predicted over the syllable’s sonorant region 

(nucleus plus adjacent liquids and glides). 
– Predictor feature set: Syllabic context of 5 syllables (2 preceding and 2 following), 

including 
§ Position of syllable in phrase 
§ Syllable lexical stress 
§ Word stress (prominence) 
§ Position of word in phrase 
§ Phrase type (question, statement, exclamation) 
§ Word part-of-sentence 
§ Number of syllables in word 
§ Phone identity of 5 phones (current plus previous and following 2) 

 
 
Mean of observations gathered at a leaf becomes predicted F0 target for a sonorant 

region. A F0 target at the unit level is obtained by interpolating across these 

Prosody Target Generation Example: F0 

Context 
Features 
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Unit Selection: Viterbi Search 

Acoustic Tree 
Leave IDs"

D_2 
(1345) 

Y_1 
(2131) 

Y_2 
(2145) 

Y_3 
(2312) 

P_1 
(1541) 

P_2 
(1711) 

D_1 
(1165) 

Text"
Phones"

would you    please 

D Y UW P 

Selected 
Segments"

 
   

Acoustic 
Candidates"

 

 

 

 

 

 

 

 

 

 

Cost Function 

 

 

[…Cons…] […SemiV…] […Cons…] Symbolic Features"
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More formally: 

Search: Typical Cost Function 
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   β  x Prosody Cost!
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§  Pitch-Synchronous Overlap-Add (PSOLA) is used to modify the pitch 
and duration of the units selected in the search to desired values. For 
instance:"

"- The pitch/duration targets requested by the prosody trees"

"- A smoothed version of the units’ natural pitch contour"
"- Etc."

§  When selected synthesis units appear contiguously in the database, 
signal processing through these units is disabled everywhere except at 
the boundaries (contiguous bypass) to further reduce artifacts 
introduced by the modification and preserve the natural prosody.  "

Waveform Generation 
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Typical Parametric (HMM) Back-End Architecture 

Ø  Main Idea Recap: Instead of using waveform pieces, adopt a parametric 
representation of speech, learn the distribution of the parameters, generate 
parameters at run-time, and then reconstruct speech from them. That is, we 
need an “invertible” transformation (i.e., an analysis-resynthesis method)."

Ø   Use a left-to-right N-state (3 or 5 per phone, typically) topology. Each 
HMM state models a context-dependent distribution of the spectral 
parameters and F0 jointly, augmented by their delta and delta-delta features 
(we’ll see why shortly!)."
Ø  Given a string of text at run time, extract the context, form a sentence-level 
context-dependent HMM, and use the Parameter Generation Algorithm to 
synthesize the parameters."

Ø  Generate speech from synthesized parameters."
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Which Underlying Parametric Representation? 

Ø  There are many! Linear Prediction Coefficients (LPCs), Line Spectral Pairs 
(LSPs), Mel-Cepstral (MCEPS), etc. "

Ø  We won’t go into details (that’s material for a few more lectures!). The idea is 
to represent a short-time window of speech with a vector of spectral parameters 
of relatively low dimensionality (~ 24th order), plus the excitation parameters (F0 
values)."

Ø  Let’s assume we have access to 2 recipes:"
Ø  Algorithm 1 (Analysis Algorithm) lets us go from speech to coefficients"

Ø  Algorithm 2 (Synthesis Algorithm) lets us go from coefficients to speech"

(*) 

(*) Tokuda & Zen (2009) 
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HMM Topology: 3-State Left-to-Right 

•  Why left-to-right? Answer coming up in a few more slides! 

(*) 

(*) Tokuda & Zen (2009) 
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Multi-Stream HMM and Output Observations 

•  Represent different streams of information using different distributions. 
•  Global output distribution for an observation is a weighted product of each stream distribution. 
•  Collapse spectral parameters and their deltas into a single stream (a vector of real-valued numbers). 
•  Use separate stream for F0 and each of their deltas. 

(*) 

(*) Tokuda & Zen (2009) 
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HMM Training 

•  Distribution of spectral and F0 parameters depend not just on the phone, but on its context. 
à Intuition: Phone /AW/ looks spectrally different at the end of a word than, say, when 
followed by a liquid. To collapse all observations together is a rather poor modeling decision. 
 

•  Each state, therefore, should represent not a (third of a) monophone but a context-dependent 
variant thereof. 

à No problem: Build a different HMM version of each phone for every possible context 
possible. 
 

•  Not so fast: Same problem as before: not enough observations in your training data to cover all 
possible contexts. 

à We know how to handle this: Cluster contexts using decision trees! 
à We may wish to build separate trees for the spectral and F0 streams since they’re probably 
influenced differently by context. (Think, for instance, of how the pitch can rise at the end of a 
question. F0 may be more contextually sensitive to a distance-from-end-of-sentence feature 
than the spectrum is.) 

•  Use Baum-Welch (forward/backward) techniques to learn the HMM parameters. 

/ AW   L / / K   AW / 

≠
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Parameter Generation Approach 

 Write down the maximization problem à 
 
 
 
 
 
 Introduce a Viterbi approximation à 
 
 
 
 Decompose into TWO maximization sub-problems: 

1.  Find the best state sequence 

2.  Find the best parameter sequence given 
the best state sequence 

 
(*) Tokuda & Zen (2009) 
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Problem #1: Estimating State-Sequence (I) 

•  If HMM is left-to-right, there’s a unique way to traverse it. 
•  We just don’t know how long we’ve spent in each state (how many frames a state should emit) 
•  If we can estimate each state’s duration, then the state sequence is uniquely defined. 

(*) Tokuda & Zen (2009) 
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Problem #1: Estimating State-Sequence (II) 
Example:  The probability of arbitrary state sequence 1  1 2  2  2  3  3  is: 

 the probability of staying in state 1 for 2 frames AND in state 2 for 3 frames AND in state 3 for 2 frames 
 
 
 More formally: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
So, maximize the LHS of the above equation by maximizing the RHS. Let’s inspect the duration densities. 

(*) Tokuda & Zen (2009) 
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Problem #2: Sequence Generation (I) 

•  If we model the observations directly without any constraints (such as dynamics), then, given a 
state sequence, the maximum-likelihood estimate of the observations is that state’s mean 
throughout the entire state duration. 
à  The ML estimates of the trajectories would be flat. Natural speech does not behave that 

way (or would sound good if we tried to synthesize with these parameters!). 

à  Solution: Add a dynamic constraint à The delta features we added to our observation 
vector earlier 

(*) Tokuda & Zen (2009) 
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Problem #2: Sequence Generation (II) 

•  The augmented feature vector o (with dynamics) can be written as a linear transformation of the 
static feature vector c with a matrix W, as follows: 

•  We don’t want to generate o, but rather generate c subject to the linear constraint above. 
•  We’ll skip the mathematical derivation, but the solution  is given by the following system of linear 

equations: 

Tokuda & Zen (2009) 
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Problem #2: Sequence Generation (III) 

•  Things look much better now: 

 
 
 
 
 
 
 
 
 
•  We now have the generated parameters, which we can put through our resynthesis algorithm to 

convert back to speech!! 

(*) Tokuda & Zen (2009) 
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To find out more: 

ü  The IBM Expressive Text-to-Speech Synthesis System for American English -- Pitrelli et al., 2006. 
(Overview of a concatenative architecture and approach to synthesizing expressive speech.) 

ü  Fundamentals and Recent Advances in HMM-Based Speech Synthesis -- Tokuda & Zen, 2009. 
(Interspeech 2009 Tutorial on HMM synthesis, from which several plots in this presentation are 
taken). 


