
IBM TJ Watson Research Center – Human Language Technologies

© 2011 IBM Corporation

Introduction to Speech Synthesis

Raul Fernandez
fernanra@us.ibm.com

IBM Research, Yorktown Heights

Human Language Technologies

© 2011 IBM Corporation 2

Outline

Ø  Introduction and Motivation

•  General Speech Synthesis Architectures

•  Front End: Text Analysis

•  Back End Architecture (I): Concatenative Unit-Selection Synthesis

•  Back End Architectures (II): Parametric Synthesis

Human Language Technologies

© 2011 IBM Corporation 3

Motivation

•  First impressions are hard to overcome:

•  Quality is text-dependent and speaker-dependent

•  When is a good idea to use TTS?
Ø  Content is dynamic (changes all the time – impossible to pre-record).

ü  E.g., Account information; dialog systems; Watson.

Ø  Content is fixed but very large (unfeasible to pre-record).
ü  E.g., Navigation assistance (large database of US street names)

Human Language Technologies

© 2011 IBM Corporation 4

Outline

ü  Introduction and Motivation

Ø  General Speech Synthesis Architectures

•  Front End: Text Analysis

•  Back End Architecture (I): Concatenative Unit-Selection Synthesis

•  Back End Architectures (II): Parametric Synthesis

Human Language Technologies

© 2011 IBM Corporation 5

High-Level TTS Architecture

Transforms a text-input string into a
set of symbolic representation from
which to build acoustic and prosodic

models.

Transforms a text-input string into the
symbolic representation used to build

acoustic and prosodic models.

Model Building
(Back-End Technology Dependent)

B
A
C
K

E
N
D

F
R
O
N
T

E
N
D

Parameter generation/Unit search
(dependent on technology); waveform

generation

TRAINING RUN-TIME

Human Language Technologies

© 2011 IBM Corporation 6

Modern Approaches to TTS Back-Ends: Concatenative

§  Record actor reading large script
§  Divide resulting recorded speech database into very small units

§  At runtime, choose best sequence of units and splice them together to create
new words

+  High naturalness and intelligibility since units are actual speech
–  Large footprint
–  Can suffer from audible discontinuities when two units don’t join well.
–  Inflexible: Hard to extend without increasing since of unit-selection
database.

Human Language Technologies

© 2011 IBM Corporation 7

Modern Approaches to TTS Back-Ends: Parametric

§  Record actor reading a script
§  Select a (high-quality) parametric analysis/synthesis model
§  Train a generative model (e.g., HMM) to learn the distributions of the parameters (acoustic,

prosodic).
§  At runtime, generate a sequence of parameters using the model, and reproduce the speech

from these parameters.

+  Small footprint
+  Flexible: One can use adaptation techniques to change the “quality” of the training corpus

(to alter its expression, give it an accent, etc.)
+  Oversmoothing: Statistical averaging tends to oversmooth the spectral and prosodic

characteristics of speech à Jarring discontinuities are rare.
–  Oversmoothing: Statistical averaging tends to oversmooth the spectral and prosodic

characteristics of speech à Sounds flat, monotone.
–  Doesn’t quite sound like actual natural speech (vocoded quality of the parametrization)

Human Language Technologies

© 2011 IBM Corporation 8

Outline

ü  Introduction and Motivation

ü  General Speech Synthesis Architectures

Ø  Front End: Text Analysis

•  Back End Architecture (I): Concatenative Unit-Selection Synthesis

•  Back End Architectures (II): Parametric Synthesis

Human Language Technologies

© 2011 IBM Corporation 9

•  Goal is to take as input a string of text and transform it into a symbolic description (i.e.,
contextual features) that can be exploited at model-building time and run-time."

•  Language dependent (though some sophisticated front-ends accommodate multi-lingual
processing for handling mixed-language inputs)."

•  Typically independent of back-en technology used."
"

 "

Front-End

Human Language Technologies

© 2011 IBM Corporation 10

"
•  Text cleaning: Get rid of items (HTML mark-up, etc.) that are not to be synthesized. It’s

often language-independent."

•  Text normalization: transforms items such as dates, time, numbers, currency, phone
numbers, addresses, and abbreviations into normal orthographic form."

•  Grapheme-to-Phoneme Conversion (Phonetization): Transforms a (normalized)
orthographic string into the “phones” of the language:"

"
 ! ! !The brown fox à DH AX B R AW N F AO K S"

 "

Front-End Functionality (I)

Dr. King Dr. becomes Doctor King Drive!
1 oz. becomes one ounce!

2 oz. becomes two ounces!

Examples"

Human Language Technologies

© 2011 IBM Corporation 11

"
•  Syllabification and lexical stress prediction: Divides a word’s phonetic representation

into syllables, and marks lexical stress:"
"

 Speech Synthesis à S P IY (1) CH || S IH (1) N | TH AX (0) | S IX (0) S "
"
•  Part-of-Speech Tagging:"
"

!She came to record the record. à She (PRN) came (VB) to record (VB) the (DET) record (NOUN).
 !

•  Syntactical Analysis"
"

"[NP The brown fox] [VP jumped] [PP over] [NP the lazy dog.] "

•  Semantic Analysis such as named-entity recognition (is it a person? a place? an
organization? a quantity? etc.)"

Jim bought 300 shares of Acme Corp. in 2006. à <ENAMEX TYPE="PERSON">Jim</ENAMEX> bought
<NUMEX TYPE="QUANTITY">300</NUMEX> shares of <ENAMEX TYPE="ORGANIZATION">Acme
Corp.</ENAMEX> in <TIMEX TYPE="DATE">2006</TIMEX>. !

Front-End Functionality (II)

Human Language Technologies

© 2011 IBM Corporation 12

"
•  Usually modular architectures. Implementation depends on the nature of the module

(phonetizer, parser, etc.) and language"
•  Rules-based: "

o  Hand-crafted rules"
o  Amenable to encoding exceptions that aren’t captured by patterns (e.g.,

English letter-to-sound rules)."
o  Hard to maintain"
o  Brittle (rules may interact in unpredictable ways)"

•  Statistical / Data-driven:"
•  Flexible (easy to retrain given newly available training data)"
•  Requires no expert linguistic knowledge"
•  Capture statistical tendencies and therefore tend to perform poorly when

handling exceptions. "
•  Look-Up:"

•  Most front ends provide a mechanism for bypassing the processing (rules-
based or statistical) and resort to direct look-up. "

•  E.g., Exception dictionaries to reflect hard-to-predict pronunciations of
names in an ever-growing customer’s database."

Front-End Implementations

Human Language Technologies

© 2011 IBM Corporation 13

Outline

ü  Introduction and Motivation

ü  General Speech Synthesis Architectures

ü  Front End: Text Analysis

Ø  Back End Architecture (I): Concatenative Unit-Selection Synthesis

•  Back End Architectures (II): Parametric Synthesis

Human Language Technologies

© 2011 IBM Corporation 14

Typical Concatenative Back-End Architecture

Ø  Define a unit size (e.g., ~1/3 phones). Automatically align and pre-segment
a recorded voice database into the basic building units."

Ø  Acoustic Candidate Generation: Build a model that predicts which acoustic
waveform units are needed/relevant to synthesize a given context."

Ø  Prosody Target Generation: Build a model that predicts which prosody
(pitch, duration, energy) the units should carry in a given context."

Ø  Search: Given candidate units, and prosody targets, extract the optimal
sequence of units according to some criterion."

Ø  Waveform generation/modification: Join the selected units (via, e.g.,
PSOLA), taking care to reduce perceptual acoustic artifacts."

Ø  Optionally: Ensure that the resulting output waveform reflects the
pitch, duration and energy values of the prosody targets."

Human Language Technologies

© 2011 IBM Corporation 15

R_nasal?

L_plosive? R_front_vowel?

ü  Associate every acoustic unit in the
database with its symbolic context (based on
the output of the front end)."

ü Build a tree by asking questions (i.e.,
making splits) based on the context of the
current and neighboring units (e.g., central
phone plus 2 on either side)."
"
ü  Acoustic observations gathered at the
resulting leaves (i.e., context-dependent units)
are the basic synthesis units for an input
context."
"
ü  At run-time, the symbolic context is
extracted for the input text, the tree is
traversed, and once a leaf is reached, we
extract its members as candidates. "

Acoustic Model: Decision Tree for Mapping Context to Units.

Human Language Technologies

© 2011 IBM Corporation 16

Brief Digression: A Word About Context

•  Besides providing a mechanism for retrieving a set of relevant units for a given context, a
tree inherently provides a way to handle DATA SPARSITY!!

•  We never get to observe instances for every given context. That’s a PROBLEM if we
want to synthesize at run-time a context we didn’t observe in the training data (which
happens all the time, actually!).

•  Consider this simple context feature vector:
Feature Type Cardinality Total # of Combinations
(1) phone identity 44 44
(2) POS 25 44x25=1100
(3) # of phones from start 50 44x25x50=55,000
(4) Question/Statement/Excl 3 44x25x50x3=165,000

•  This simple 4-dimensional feature vector requires we observe 165K combinations. In
practice we work with hundreds of symbolic features, generating hundreds of thousands
of context combinations.

•  Trees effectively exhaustively partition the input space into N context combinations (the N
leaves of the tree). At run-time, you will reach one leaf. Even if the full run-time context
vector was not observed in the training set, there will at least be a partial match.

Human Language Technologies

© 2011 IBM Corporation 17

•  Similar idea: Build a model that generates prosody targets for a particular context
combination.

•  It may make sense to model different prosodic dimensions at different levels:

•  sonorant-region F0 prediction
•  phone-level log-duration prediction

•  phone-level energy prediction

•  Build the tree as before. Use it at run time to generate a target. Propagate this target
down to the basic unit of the back-end architecture (e.g., sub-phone).

Prosody Target Generation

Human Language Technologies

© 2011 IBM Corporation 18

§ Syllable-based statistical decision tree predictor
– Observations: Three pitch values are predicted over the syllable’s sonorant region

(nucleus plus adjacent liquids and glides).
– Predictor feature set: Syllabic context of 5 syllables (2 preceding and 2 following),

including
§ Position of syllable in phrase
§ Syllable lexical stress
§ Word stress (prominence)
§ Position of word in phrase
§ Phrase type (question, statement, exclamation)
§ Word part-of-sentence
§ Number of syllables in word
§ Phone identity of 5 phones (current plus previous and following 2)

Mean of observations gathered at a leaf becomes predicted F0 target for a sonorant

region. A F0 target at the unit level is obtained by interpolating across these

Prosody Target Generation Example: F0

Context
Features

Human Language Technologies

© 2011 IBM Corporation 19

Unit Selection: Viterbi Search

Acoustic Tree
Leave IDs"

D_2
(1345)

Y_1
(2131)

Y_2
(2145)

Y_3
(2312)

P_1
(1541)

P_2
(1711)

D_1
(1165)

Text"
Phones"

would you please

D Y UW P

Selected
Segments"

Acoustic
Candidates"

Cost Function

[…Cons…] […SemiV…] […Cons…] Symbolic Features"

Human Language Technologies

© 2011 IBM Corporation 20

More formally:

Search: Typical Cost Function

)...(maxarg... :formally More 1
1

**
1

Mk
M

k
M uuCuu =

() () ()∑∑
=

−
=

−+=
M

m

k
m

k
mconcat

M

m
m

k
mett

k
M

k mmmM uuCPsdyTguCuuC
2

1
1

arg1 ,,... where 11

Cost Function = Target Cost + Concatenation Cost!

 β x Prosody Cost!

γ x Pitch Cost + ζ x Duration Cost + φ x Energy Cost!

δ x Spectral Transition + η x F0 Transition!

gprogrammin dynamic through found becan ... **
1 Muu

Human Language Technologies

© 2011 IBM Corporation 21

§  Pitch-Synchronous Overlap-Add (PSOLA) is used to modify the pitch
and duration of the units selected in the search to desired values. For
instance:"

"- The pitch/duration targets requested by the prosody trees"

"- A smoothed version of the units’ natural pitch contour"
"- Etc."

§  When selected synthesis units appear contiguously in the database,
signal processing through these units is disabled everywhere except at
the boundaries (contiguous bypass) to further reduce artifacts
introduced by the modification and preserve the natural prosody. "

Waveform Generation

Human Language Technologies

© 2011 IBM Corporation 22

Outline

ü  Introduction and Motivation

ü  General Speech Synthesis Architectures

ü  Front End: Text Analysis

ü  Back End Architecture (I): Concatenative Unit-Selection Synthesis

Ø  Back End Architectures (II): Parametric Synthesis

Human Language Technologies

© 2011 IBM Corporation 23

Typical Parametric (HMM) Back-End Architecture

Ø  Main Idea Recap: Instead of using waveform pieces, adopt a parametric
representation of speech, learn the distribution of the parameters, generate
parameters at run-time, and then reconstruct speech from them. That is, we
need an “invertible” transformation (i.e., an analysis-resynthesis method)."

Ø  Use a left-to-right N-state (3 or 5 per phone, typically) topology. Each
HMM state models a context-dependent distribution of the spectral
parameters and F0 jointly, augmented by their delta and delta-delta features
(we’ll see why shortly!)."
Ø  Given a string of text at run time, extract the context, form a sentence-level
context-dependent HMM, and use the Parameter Generation Algorithm to
synthesize the parameters."

Ø  Generate speech from synthesized parameters."

Human Language Technologies

© 2011 IBM Corporation 24

Which Underlying Parametric Representation?

Ø  There are many! Linear Prediction Coefficients (LPCs), Line Spectral Pairs
(LSPs), Mel-Cepstral (MCEPS), etc. "

Ø  We won’t go into details (that’s material for a few more lectures!). The idea is
to represent a short-time window of speech with a vector of spectral parameters
of relatively low dimensionality (~ 24th order), plus the excitation parameters (F0
values)."

Ø  Let’s assume we have access to 2 recipes:"
Ø  Algorithm 1 (Analysis Algorithm) lets us go from speech to coefficients"

Ø  Algorithm 2 (Synthesis Algorithm) lets us go from coefficients to speech"

(*)

(*) Tokuda & Zen (2009)

Human Language Technologies

© 2011 IBM Corporation 25

HMM Topology: 3-State Left-to-Right

•  Why left-to-right? Answer coming up in a few more slides!

(*)

(*) Tokuda & Zen (2009)

Human Language Technologies

© 2011 IBM Corporation 26

Multi-Stream HMM and Output Observations

•  Represent different streams of information using different distributions.
•  Global output distribution for an observation is a weighted product of each stream distribution.
•  Collapse spectral parameters and their deltas into a single stream (a vector of real-valued numbers).
•  Use separate stream for F0 and each of their deltas.

(*)

(*) Tokuda & Zen (2009)

Human Language Technologies

© 2011 IBM Corporation 27

HMM Training

•  Distribution of spectral and F0 parameters depend not just on the phone, but on its context.
à Intuition: Phone /AW/ looks spectrally different at the end of a word than, say, when
followed by a liquid. To collapse all observations together is a rather poor modeling decision.

•  Each state, therefore, should represent not a (third of a) monophone but a context-dependent
variant thereof.

à No problem: Build a different HMM version of each phone for every possible context
possible.

•  Not so fast: Same problem as before: not enough observations in your training data to cover all
possible contexts.

à We know how to handle this: Cluster contexts using decision trees!
à We may wish to build separate trees for the spectral and F0 streams since they’re probably
influenced differently by context. (Think, for instance, of how the pitch can rise at the end of a
question. F0 may be more contextually sensitive to a distance-from-end-of-sentence feature
than the spectrum is.)

•  Use Baum-Welch (forward/backward) techniques to learn the HMM parameters.

/ AW L / / K AW /

≠

Human Language Technologies

© 2011 IBM Corporation 28

Parameter Generation Approach

 Write down the maximization problem à

 Introduce a Viterbi approximation à

 Decompose into TWO maximization sub-problems:

1.  Find the best state sequence

2.  Find the best parameter sequence given
the best state sequence

(*) Tokuda & Zen (2009)

Human Language Technologies

© 2011 IBM Corporation 29

Problem #1: Estimating State-Sequence (I)

•  If HMM is left-to-right, there’s a unique way to traverse it.
•  We just don’t know how long we’ve spent in each state (how many frames a state should emit)
•  If we can estimate each state’s duration, then the state sequence is uniquely defined.

(*) Tokuda & Zen (2009)

Human Language Technologies

© 2011 IBM Corporation 30

Problem #1: Estimating State-Sequence (II)
Example: The probability of arbitrary state sequence 1 1 2 2 2 3 3 is:

 the probability of staying in state 1 for 2 frames AND in state 2 for 3 frames AND in state 3 for 2 frames

 More formally:

So, maximize the LHS of the above equation by maximizing the RHS. Let’s inspect the duration densities.

(*) Tokuda & Zen (2009)

Human Language Technologies

© 2011 IBM Corporation 31

Problem #2: Sequence Generation (I)

•  If we model the observations directly without any constraints (such as dynamics), then, given a
state sequence, the maximum-likelihood estimate of the observations is that state’s mean
throughout the entire state duration.
à  The ML estimates of the trajectories would be flat. Natural speech does not behave that

way (or would sound good if we tried to synthesize with these parameters!).

à  Solution: Add a dynamic constraint à The delta features we added to our observation
vector earlier

(*) Tokuda & Zen (2009)

Human Language Technologies

© 2011 IBM Corporation 32

Problem #2: Sequence Generation (II)

•  The augmented feature vector o (with dynamics) can be written as a linear transformation of the
static feature vector c with a matrix W, as follows:

•  We don’t want to generate o, but rather generate c subject to the linear constraint above.
•  We’ll skip the mathematical derivation, but the solution is given by the following system of linear

equations:

Tokuda & Zen (2009)

Human Language Technologies

© 2011 IBM Corporation 33

Problem #2: Sequence Generation (III)

•  Things look much better now:

•  We now have the generated parameters, which we can put through our resynthesis algorithm to

convert back to speech!!

(*) Tokuda & Zen (2009)

Human Language Technologies

© 2011 IBM Corporation 34

To find out more:

ü  The IBM Expressive Text-to-Speech Synthesis System for American English -- Pitrelli et al., 2006.
(Overview of a concatenative architecture and approach to synthesizing expressive speech.)

ü  Fundamentals and Recent Advances in HMM-Based Speech Synthesis -- Tokuda & Zen, 2009.
(Interspeech 2009 Tutorial on HMM synthesis, from which several plots in this presentation are
taken).

