
Adaptation and Frontend Features to Improve Naturalness in Found-Data
Synthesis

Erica Cooper, Julia Hirschberg

Columbia University, USA
ecooper@cs.columbia.edu, julia@cs.columbia.edu

Abstract
We compare two approaches for training statistical parametric
voices that make use of acoustic and prosodic features at the
utterance level with the aim of improving naturalness of the
resultant voices – subset adaptation, and adding new acous-
tic and prosodic features at the frontend. We have found that
the approach of labeling high, middle, or low values for a
given feature at the frontend and then choosing which setting to
use at synthesis time can produce voices rated as significantly
more natural than a baseline voice that uses only the standard
contextual frontend features, for both HMM-based and neural
network-based synthesis.
Index Terms: Speech synthesis, parametric synthesis, prosody,
found data, crowdsourcing.

1. Introduction
Recent advances in speech technology have led to a prolifer-
ation of speech-enabled applications. From virtual assistants
such as Apple’s Siri and Amazon’s Echo to Panasonic’s trans-
lating airport megaphone and Samsung’s talking refrigerator,
it may appear that speech technology is everywhere. How-
ever, this is only truly the case for languages which have re-
ceived the corporate or government resources and research at-
tention required to collect and annotate the large amounts of
data and linguistic resources needed to build precise, domain-
appropriate speech models. Text-to-speech (TTS) synthesis is
a key component of interactive, speech-based systems, and typ-
ically, building a high-quality voice requires collecting many
hours of speech from a single professional speaker in an ane-
choic chamber with a high-quality microphone. There are over
6,000 languages in the world, and most do not enjoy the speech
research attention historically paid to such languages as En-
glish, Spanish, Mandarin, and Japanese; speakers of many other
languages therefore do not benefit equally from these techno-
logical advances. They are thus deprived of technologies they
can use to communicate and search for information in their own
language by voice — a major accessibility issue for those who
lack the ability to read. Furthermore, as we move towards be-
coming a more global world, access to language technologies
such as speech translation becomes important not only for trav-
elers but for medical professionals, emergency response staff,
corporations, journalists, the military and law enforcement.

While it takes a great deal of time and resources to collect a
traditional text-to-speech corpus for a given language, we may
instead be able to make use of various sources of “found” data
on the web or collected for purposes other than TTS. In particu-
lar, sources such as radio broadcast news, audiobooks, podcasts,
and data collected to train automatic speech recognition (ASR)
engines are available in many languages. While this type of
data is quite different from data one would collect for a standard
TTS corpus, it may nevertheless contain a substantial amount of

speech from each speaker, the speakers may be professionals or
at least demonstrate consistency in their speech, and the record-
ing conditions may be fairly high-quality. The major differ-
ence in data collected specifically for TTS corpora is that TTS
speakers are typically instructed to speak as consistently as pos-
sible, without varying their voice quality, pitch range, speaking
style, volume, or tempo significantly [1], whereas even broad-
cast news anchors will deliberately introduce some variation
in their speaking style to produce more engaging speech, even
when they are otherwise speaking in a predominantly neutral
style. The innovation in TTS research of statistical parametric
synthesis [2] has enabled the use of such variable sources of
data for building intelligible and natural-sounding TTS voices.

Others have used found data for creating TTS voices, ex-
ploring various approaches to select or otherwise manipulate
the data to be more similar to what one might find in a tradi-
tional TTS corpus. Political speeches [3], radio broadcast news
[4], and audiobooks [5, 6, 7] have all been popular sources. We
are specifically interested in radio broadcast news not only be-
cause it contains large amounts of speech from each anchor and
is often professionally recorded, but because it is available in
many languages. In our previous work [8, 9], we explored data
selection and outlier removal at the utterance level to produce
voices that are rated as more natural, even though they were
trained on a smaller amount of data than a baseline trained on
all of the data. We selected our subsets based on a number of
different acoustic and prosodic features, finding that removing
outliers for hyper-articulation and combining filters for hypo-
articulation and low mean f0 produced voices rated as signif-
icantly more natural. Since the data we used in this research,
the Boston University Radio News Corpus (BURNC) [10], is
high-quality, we have also examined whether we could benefit
from using all of the data while also benefiting from these in-
formative features by using a subset-adaptive training approach.
In this approach, we treated all of the utterances in a feature-
selected subset as one regression class and all other utterances
as another, adaptively training the voice, and then adapting the
average voice model towards the subset class. While this ap-
proach produced slight improvements for naturalness over the
baseline for some features, none were statistically significant.

In the current work reported here, we expand upon our sub-
set adaptation approach, as well as another approach that makes
use of all the data from a corpus: rather than treating ranges of
these feature values as regression classes and adaptively train-
ing, we add in the ranges for these feature values at the frontend.
Each utterance is labeled as “high,” “middle,” or “low” for each
feature, such that the data is divided into thirds. Then, we syn-
thesize our test utterances using each of those three settings.
There is a precedent for this approach in [11], where the au-
thors used an approach called “style mixed modeling” to train
a voice that could speak in different styles. This entailed us-
ing data from one speaker speaking in different styles, labeling



the styles at the frontend along with the standard set of linguis-
tic features, and then choosing which style to synthesize with
at output, by including the style along with the other standard
contextual features. In our work, rather than having predefined
speaking styles, we are using measurable acoustic and prosodic
features and treating ranges of each of these as their own “man-
ner of speaking,” aiming for speech that is close to more typical
TTS data in order to produce the most natural synthesis.

One limitation of our prior work [9] was the unequal and
split nature of the regression classes. When adapting to a “mid-
dle range” subset, the “not-in-subset” class is comprised of two
disparate parts of the data — low- and high-valued utterances
for that feature. Combining these may have harmed the model’s
consistency. Thus, in this work, we explore the use of three
classes, “high,” “middle,” and “low,” each consisting of a third
of the data, rather than using fixed hour-long subsets. We hy-
pothesize that this approach will produce more consistent mod-
els with better ability to adapt towards the desired speaking
characteristic, in addition to enabling a more direct compari-
son to the “style mixed modeling” frontend-labeling approach
using identical partitions of the data.

2. Tools and Corpus
We initially trained our TTS voices using the Hidden Markov
Model Based Speech Synthesis System (HTS) [12], version 2.3,
using the hts engine vocoder. However, with recent advances in
neural network based speech synthesis, we also wished to learn
which results generalize across acoustic model types, so we re-
peated our adaptation and frontend-labeling experiments using
the Merlin [13] toolkit for neural network based voice training,
with the WORLD [14] vocoder. For text processing, we used
the default U.S. English frontend for Festival [15]. Although
we ultimately aim to build TTS voices for LRLs, we initially
use US English data for our pilot work to facilitate evaluation
and experimental iteration.

Our training data is again the Boston University Radio
News Corpus (BURNC) [10] which consists of professionally
read radio news from four male and three female FM radio news
announcers associated with the public radio station WBUR. The
main corpus includes news recorded in the station’s studio dur-
ing broadcasts over a two-year period. In addition, the same
announcers were recorded in a laboratory in both non-radio and
radio speaking styles. We used the broadcast portion of the cor-
pus with the orthographic transcriptions for our experiments.
We trained voices using only the 4 hours and 22 minutes of
female data in order to produce more consistent models. We
segmented the data into utterances, defined as sentences.

We evaluated all of our voices for naturalness using Ama-
zon Mechanical Turk (MTurk), a popular crowdsourcing plat-
form. To restrict our task to native speakers of English, we re-
quired workers to complete a qualification test first, in which
they had to identify the languages they have spoken since birth
from a list of options. We only allowed workers who selected
English and no more than two other languages to participate,
in order to exclude those who might select, e.g., all of the lan-
guages in an attempt to game the system. We also restricted our
tasks’ visibility to workers within the United States. The task
consisted of a pairwise comparison between the baseline voice
and a test voice. Each task thus contained only two audio files,
the same sentence spoken by the baseline voice and by one of
our test voices. Workers could rate as many or as few pairs of
utterances as they wished. Half of the sentences were presented
in A/B order and the other half in B/A order, to avoid possible

order effects. We ensured that raters played both audio files en-
tirely. Raters were given a forced choice, i.e. there was no “no
preference” option. We chose 12 lexically neutral sentences of
varying length from the fable “Jack and the Beanstalk” and syn-
thesized each of them with our voices. Each task was completed
by 5 workers, for a total of 60 comparison ratings for each voice.

3. Acoustic and Prosodic Features
We explored features related to manner of speaking, namely
mean and standard deviation of f0 and energy, identified au-
tomatically using Praat [16]; speaking rate in syllables per sec-
ond; level of articulation, defined as mean energy divided by
speaking rate; and duration of the utterance. For each of these
features, we sorted our training utterances by feature value and
then divided the data into thirds, labeling each utterance as hav-
ing a high, medium, or low value for that feature as appropri-
ate. For the adaptation approach, we treated each third of the
data in turn as an adaptation set and used it to adapt an aver-
age voice model (AVM). For the frontend labeling approach,
we introduced a new contextual feature, added on to the stan-
dard set of contextual features for English. This new frontend
feature took on the value of high, middle, or low as appropriate
for each utterance. We also added our new contextual features
to the test output labels, creating high, medium, and low-setting
label files, in order to compare synthesis output at each setting.
Our baseline was a voice speaker-independently trained on all
of the female data with only the standard contextual features.

4. HMM-based Synthesis Experiments
4.1. Adapted Voices

The BURNC corpus contains relatively high-quality speech, so
we explore approaches that use all of the data, while also mak-
ing use of our informative acoustic and prosodic features. One
way to do this is to treat each subset of high, middle, and low-
valued utterances for each feature as a separate regression class.
We adaptively trained one voice per feature, and then synthe-
sized test utterances adapted to each of the three classes. To
accomplish this, we used the HTS speaker-adaptive training
recipe, but instead of labeling different speakers, we labeled
high, middle, or low values for the given feature. Results are
shown in Table 1, with best settings for each feature in bold.

Table 1: Percent preference for HTS voices trained adaptively
using high, middle, and low partitions for each feature.

Feature hi med lo
Mean f0 40.0 53.3 56.7
Std. dev f0 33.3 38.3 43.3
Mean energy 41.7 60.0 58.3
Std. dev energy 43.3 41.7 40.0
Speaking rate 46.7 46.7 35.0
Articulation 38.3 30.0 40.0
Duration 40.0 31.7 36.7

While low mean f0 and middle mean energy adapted voices
were rated as better than the baseline, neither of these prefer-
ences turned out to be statistically significant.

4.2. Contextual Feature Labeled Voices

Another way to make use of all of the data while also mak-
ing use of informative acoustic and prosodic features is to label



each utterance as having a high, middle, or low value for a given
feature at the frontend, as part of the set of contextual features.
One major benefit of this approach is that, in the construction
of the decision trees for Hidden Markov Model based synthe-
sis, if there are any contextual features that are not actually in-
formative in splitting the data, they simply will not be used.
Therefore, we are able to add arbitrarily many new contextual
features, which, if they do not contribute to better modeling of
the data, simply will not appear in the decision trees.

The standard set of contextual features is obtained using
Festival, and includes phoneme-level information such as the
previous two, current, and next two phonemes; the position of
the current phoneme in the syllable; position of the current syl-
lable in the word; whether the syllable is stressed or not; posi-
tion of the current word in the phrase; and similar features pro-
viding a linguistic representation. Using the same partitions of
the data into thirds, we added one new contextual feature to our
fullcontext labels, indicating whether the utterance has a high,
middle, or low value for one particular feature; we also added
relevant questions to the HTS questions file. The questions file
for HTS voice training contains a variety of yes/no questions
that are used in the construction of the acoustic model decision
tree, each followed by patterns for which a match in the full-
context label would indicate a “yes”. We added three new ques-
tions that ask whether the new feature value is high, medium,
or low. We then trained one voice for each feature on all of the
data labeled as described, and then synthesized test utterances
with each of the three settings. Results are shown in Table 2,
with the best setting out of high, medium, or low in bold, and
statistically-significant preferences underlined.

Table 2: Percent preference for HTS voices trained with labels
for high, medium, or low values for acoustic and prosodic fea-
tures and then synthesized at each of the three settings.

Feature hi med lo
Mean f0 55.0 60.0 51.7
Std. dev f0 60.0 55.0 63.3
Mean energy 48.3 56.7 45.0
Std. dev energy 51.7 50.0 51.7
Speaking rate 50.0 46.7 45.0
Articulation 56.7 56.7 56.7
Duration 63.3 50.0 56.7

Synthesizing with the low setting for standard deviation of
f0 and with the high setting for duration both produced speech
that was significantly preferred over the baseline. The success
of the low standard deviation of f0 setting makes sense because
professional speakers for a TTS corpus are typically instructed
to speak with as little variation as possible [1]. For the “high
duration” synthesis, we are not necessarily synthesizing long
utterances, but rather choosing to synthesize in the style of the
longer utterances in the training data. This may have resulted
in better naturalness ratings because longer training utterances
provide more speech in a natural context.

Next, we wanted to see whether combining features could
produce even more improvement. Rather than trying all combi-
nations and all settings of the features, we accumulated features
one by one in the order that they gave improvement, and only
synthesized using the best setting for each feature.

For some features it was not clear which setting was “best”
– in particular articulation and standard deviation of energy. So
we posted tiebreaker HITs on MTurk. The tie was not resolved
for articulation, so we picked the low setting, corresponding

with our prior findings [8, 9] that training on hypo-articulated
utterances tends to produce better voices. For standard devia-
tion of energy, the low setting was slightly preferred.

Synthesizing with only the best setting for each feature, our
features gave improvements over the baseline in the following
order, from most to least: duration (hi), standard deviation of
f0 (lo), mean f0 (med), articulation (lo), mean energy (med),
standard deviation of energy(lo), and speaking rate (hi). We
thus trained six new voices: the first, with both duration and
standard deviation of f0 labeled in the contextual features and
with the “hi” and “lo” settings for those features, respectively,
chosen at synthesis; the next voice, with those same features
plus mean f0, set to the “med” setting at synthesis; and so on.
Preferences over the baseline are shown in Table 3; note that
each line of the table represents features from the preceding line
plus the new feature added on the current line.

Table 3: Percent preference for HTS voices trained with labels
for multiple features

Features Preference
Duration (hi) + Std. dev. f0 (lo) 46.7
+ Mean f0 (med) 53.3
+ Articulation (lo) 56.7
+ Mean energy (med) 58.3
+ Std. dev. energy (lo) 65.0
+ Speaking rate (hi) 60.0

Surprisingly, the best two features, which on their own re-
sulted in better voices (Table 2), produced a worse voice in com-
bination. We see improvements as we add each feature, with the
exception of adding speaking rate, which results in a slight drop
in naturalness ratings. These features appear to be interacting
in unexpected ways, which we must examine further.

5. Neural Network Synthesis Experiments
Neural network based synthesis has recently produced very
high-quality voices, and addresses some of the naturalness is-
sues common to HMM-based voices. [17] found that the across-
class averaging resulting from decision tree based context clus-
tering is a major detractor of naturalness in HMM voice qual-
ity, and [18] found that replacing the decision trees with DNNs
and the production of frame-level rather than state-level predic-
tions substantially improved naturalness as well. Furthermore,
[19] found that an HMM system trained on 100 hours of data
was comparable in f0 correlation (an objective measure of nat-
uralness) to a DNN system using only 10 hours. While these
results were for voices trained on single-speaker data collected
specifically for TTS, we would also like to explore modeling ap-
proaches that can produce higher-quality voices with less data.
Thus, we have begun neural network-based voice training in
addition to HTS in order to determine experimentally whether
these advances generalize to the type of data we are using.

We repeated our experiments using the Merlin toolkit for
neural network based synthesis [13]. For the baseline and
frontend-feature experiments, we used the basic “build your
own voice” recipe from Merlin, using WORLD for feature ex-
traction and vocoding. These models consist of 6 TANH layers
each of size 1024, with a linear activation function at the output
layer, and a batch size of 64 for the duration model and 256 for
the acoustic model. Learning rate was fixed at 0.002, momen-
tum was 0.3, and number of training epochs was 25.

First, we trained a baseline voice using this recipe with all



of the female BURNC data using the standard fullcontext la-
bels extracted by Festival. When we compared this to the HTS
baseline using the same audio and labels, the preference for
the Merlin voice was 90.0%. It is therefore apparent that not
only does neural network based synthesis produce more natural
voices when trained on standard TTS data, but on mixed, found
data from radio broadcast news as well.

5.1. Adapted Voices

For the adaptation experiments, we trained an AVM on all of
the female data and then adapted to each subset using the Mer-
lin speaker adaptation recipe, which implements two different
types of adaptation (described in [20]): back-propagating the
adaptation data through the model to re-tune all the weights
(‘fine-tune’); and “Learn Hidden Unit Contributions” (LHUC),
which recombines hidden units based on the adaptation data
[21]. We tried both methods, and we found that the best voices
were produced using the ‘fine-tune’ adaptation method; full re-
sults for fine-tune adapted voices are shown in Table 4.

Table 4: Percent preference for Merlin AVM adapted to subsets
of the data selected based on high, middle, or low values for
various acoustic and prosodic features.

Feature hi med lo
Mean f0 43.3 45.0 36.7
Std. dev f0 48.3 60.0 50.0
Mean energy 53.3 45.0 36.7
Std. dev energy 36.7 43.3 36.7
Speaking rate 45.0 45.0 41.7
Articulation 50.0 45.0 45.0
Duration 41.7 45.0 60.0

Adapting to short duration utterances and adapting to mid-
dle standard deviation of f0 were both preferred over the base-
line by 60%, which was not statistically significant.

5.2. Contextual Feature Labeled Voices

We repeated our experiments from Section 4.3, adding one new
feature at the frontend that takes on a value of high, medium, or
low depending on the utterance’s value for the given acoustic or
prosodic feature we are measuring, and then synthesizing out-
put utterances with high, medium, and low settings for that fea-
ture. Neural network based synthesis differs from HMM-based
synthesis in that NN synthesis does not make use of decision
trees. Instead, the frontend features are converted into a binary
sequence by way of the questions file, corresponding to “yes”
and “no” answers for each question. Pairwise preference results
for Merlin subset voices versus the baseline are presented in Ta-
ble 5, with the best setting for each feature in bold, and results
significantly better than the baseline underlined.

We see that a number of voices are rated as more natural
than the baseline, with one significant preference: the voice
with mean f0 level labeled at the frontend, and test utterances
synthesized with the “lo” setting. Although our best Merlin
voice is not produced using the same features as our best HTS
voice, and although the best setting for each feature is not the
same across training methods, we do observe that this frontend-
labeling approach can produce significantly more natural voices
regardless of the acoustic model.

Next, we wished to see whether the combination of features
with their best settings could lead to greater improvement, as

Table 5: Percent preference for Merlin voices trained on data
labeled as having high, medium, or low values for features and
then synthesized with each of the three settings.

Feature hi med lo
Mean f0 41.7 53.3 65.0
Std. dev f0 51.7 55.0 50.0
Mean energy 46.7 48.3 55.0
Std. dev energy 61.7 50.0 60.0
Speaking rate 50.0 41.7 48.3
Articulation 41.7 41.7 53.3
Duration 48.3 55.0 50.0

we tried with HTS. We added features one at a time and trained
voices using them, and synthesized using the best setting for
those features as indicated in Table 5. Since we had a three-way
tie between medium standard deviation of f0, low mean energy,
and medium duration, we posted tiebreaker HITs on MTurk to
decide the order in which to add those features. Results for
voices with accumulated features are in Table 6.

Table 6: Percent preference for Merlin voices trained with la-
bels for multiple features combined

Features Preference
Mean f0 (lo) + Std. dev. energy (hi) 53.3
+ Duration (med) 48.3
+ Mean energy (lo) 46.7
+ Std. dev. f0 (med) 56.7
+ Articulation (lo) 35.0
+ Speaking rate (hi) 46.7

We see again that combining the best two features does ac-
tually not do as well as using each feature separately, and in fact
this time, we generally see a decrease in naturalness ratings as
we add more features. It is possible that this is a result of over-
fitting from adding too many new features, or possibly that the
different features are interacting in ways that hurt naturalness.

6. Conclusions and Future Work
We have found that for both HMM-based synthesis and neu-
ral network based synthesis, that adding individual acoustic and
prosodic features as new frontend labels can significantly im-
prove voice naturalness, but that combination generally does not
help. This raises the question of why this is the case, which will
require more investigation into the interaction between these
different features. We would also like to try the contextual-
feature approach with the actual numerical values rather than
discretized high, medium, and low settings, since neural net-
works allow for this type of input. We would also like to ex-
plore whether combining the additional frontend features with
the adaptation approach could give further improvements. Fi-
nally, as the aim of our work is to build voices using broad-
cast news data in low-resource languages, we would like to see
which of our results generalize to other languages, with the aim
of building high-quality, natural-sounding voices for a variety
of languages making the best use of found data.
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