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ABSTRACT

We introduce a two-stage cascaded scheme to rescore Confusion
Networks (CNs) for Keyword Search in the context of Low-
Resource Languages. In the first stage we rescore the CN to improve
the error rate of the 1-best hypothesis using a large number of lexical,
phonetic, false alarms and structural features. Using a rank learning
Support Vector Machine classifier, we obtain WER gains between
0.54% and 2.84% on Cantonese, Tagalog, Turkish, Pashto and Viet-
namese. In the second stage we generate keyword hits from the
rescored CN and use logistic regression to detect true hits and false
alarms. We compare these to hits generated from the unrescored CN
and obtain gains between 0.45% and 0.9% on the MTWV metric by
using the mentioned features and including acoustic and prosodic
features on Tagalog, Turkish and Pashto.

Index Terms— error detection, error correction, confusion net-
works, posting lists, rescoring, keyword search

1. INTRODUCTION

Spoken term detection systems typically work from transcripts pro-
duced by Automatic Speech Recognition (ASR) engines to identify
key words and phrases from speech corpora. However, ASR errors
degrade the performance of keyword search when terms sought are
not in the recognizer’s top-ranged hypothesis. Recent work ([1, 2,
3, 4, 5, 6, 7, 8]) has attempted to improve recognition accuracy for
keyword search and other tasks using discriminative post-processing
on recognition output by examining additional features beyond those
ones used in recognition. Our work is performed in the context of
the IARPA Babel research program, which has as its goal the rapid
development of speech and keyword search technologies for Low-
Resource Languages – languages for which few computational re-
sources are currently available. We describe here a novel two-stage
post-processing approach to improve keyword search results. In the
first stage, we classify and rerank ASR output in the form of Confu-
sion Networks (CNs) ([9, 10, 11]). In the second stage, we classify
and rescore posting list entries using acoustic features. In this paper,
we describe the task in Section 2. We discuss related work in Sec-
tion 3. In Section 4 we describe the CNs we use in our work and
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in Sections 5 and 6 we present our two-stage approach to improving
spoken keyword search and our results. We conclude in Section 7
and describe future research.

2. TASK, DATA, AND METRICS

The IARPA Babel program [12] focuses on the rapid creation of
speech technology for a diverse set of languages with only a small
amount of training data. This research addresses the spoken keyword
search task defined in the program, which is to identify all the exact
matches for some set of query terms, provided as text, in a given
corpus of speech.

The data we use consists of both conversational and scripted
telephone speech. We currently focus only on the conversational
speech, which is comprised of conversations of approximately 10
minutes in length between two speakers who were recorded on sep-
arate channels. The data includes a diverse set of speakers in terms
of age and dialect, and has an approximately even gender ratio.
A variety of recording conditions are represented in the data. We
train our classifiers on data from the development set of both the
Full and Limited Language Packs (LPs) supplied for the project for
each language. The Full Language Pack development set consists
of about 40 hours of speech for all languages exept for Vietnamese,
which has 20 hours, and the Limited Language Pack is a 10-hour
subset of the Full LP speech. Orthographic transcriptions and a
pronunciation lexicon are also provided with the data. We evaluate
on the “evalpart1” evaluation partition of each LP (for which tran-
scriptions are available), which contains about 5 hours of speech
in each language. The languages for our current experiments are
Tagalog, Turkish, Pashto, Cantonese, and Vietnamese. LLPs for
these language include IARPA Babel Program language collections
IARPA-babel{101b-v0.4c, 104b-v0.4bY, 105b-v0.4, 106b-v0.2g,
107b-v0.7}.

Results for keyword search are presented in a Posting List (PL),
which consists of a list of all hits found for each keyword in the
query list. Each hit is labeled with the audio file in which it was
found, the start and end time of the segment of audio that contains
the keyword, and a score for that hit. Posting lists are evaluated us-
ing Term-Weighted Value (TWV)[13], a weighted function of misses
and false alarms that penalizes misses more strongly:

TWV (θ) = 1− [Pmiss(θ) + β · PFA(θ)]

TWV is computed as a function of θ, a decision threshold for
determining whether the score of any posting list entry qualifies it as
a hit, and β, the weight for false alarms. Actual term-weighted value
(ATWV) is the TWV at a fixed θ. Maximum term-weighted value
(MTWV) is the maximum TWV over all possible values of θ.
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3. PRIOR WORK

There has been considerable research investigating the rescoring of
ASR output and the use of CNs to improve speech recognition and
downstream Natural Language Processing tasks. Mangu et al. [1]
used transformation-based learning and lexical features to improve
WER from the two best hypothesis in a CN confusion bin. Similarly,
[2] detects errors on broadcast news transcriptions using lexical, syn-
tactic and contextual information. Tur et al. [3] trained conditional
random fields using CNs instead of the 1-best transcription to im-
prove accuracy in slot-filling in semantic frames, improving f-score
by 6%. Stoyanchev et al. [4] used syntactic and prosodic features
to identify mis-recognized words to generate clarification questions
in speech-to-speech translation, obtaining a 40% improvement in f-
measure over ASR posteriors. Pincus et al. [5] also sought to iden-
tify misrecognized words using lexical, positional, prosodic, seman-
tic, and syntactic features, improving f-measure by 3.9% over the
ASR posterior baseline. Nakatani et al. [6] used long contextual in-
formation from CNs in a two-step error correction procedure. The
first step detected errors using a Conditional Random Field classi-
fier trained on n-gram features of the CNs, and the second used La-
tent Semantic Analysis to include longer-range contextual features.
Using long-range context improved WER by 3.64 points. Novot-
ney et al. [7] employed a semi-supervised learning approach to es-
timate language model probabilities for out-of-training terms from
automatically-recognized audio, resulting in 70% of the gain that
would be possible by using manual transcriptions of the same data.

Much research has been devoted to building effective keyword
search systems in the context of the current IARPA Babel program.
Zhang et al. [8] used probability of false alarm (pFA) to normalize
keyword search scores to ensure greater consistency across different
keywords than just the ASR posterior. Especially in a Low-Resource
task, different words will have different amounts of training data,
which will affect the consistency of the acoustic and language model
scores. pFA normalization was proposed as a more consistent way to
compare hits for different keywords. pFA normalization gave large
improvements over a baseline with no normalization – 3.8% in per-
cent of miss and 0.11% for percent of false alarms. Another nor-
malization technique that gives large MTWV gains is sum-to-one
normalization (STO), where the score of each hit is normalized such
that the scores for all hits for a given keyword sum to one [14].

The speech recognizer whose output we used in our experiments
was the IBM Speaker-Adapted DNN (SA DNN) system. This uses
a deep neural network (DNN) acoustic model with the standard
front-end pipeline [15]. The DNN takes 9 frames of 40-dimensional
speaker adapted discriminative features as input, contains 5 hidden
layers with 1,024 logistic units per layer, and has a final softmax out-
put with 1,500 targets. Training occurs in three phases: first, layer-
wise discriminative pre-training using the cross-entropy criterion,
second, stochastic gradient descent training using back-propagation
and the cross-entropy criterion, and third, distributed Hessian-free
training using the state-level minimum Bayes risk criterion [16].
The lexicon is provided with the training data, and the vocabulary
contains only words from this data. The language model (LM) is a
trigram LM with modified Kneser-Ney smoothing, trained only on
the acoustic transcripts. The lattices are produced using a dynamic
decoder [17], and are converted to confusion networks.

In our work we present a strategy to improve both the tran-
scription error rate (TER) of the 1-best word CN and the keyword
search performance by using lexical, phonetic, probabilistic, acous-
tic, prosodic and structural features. In all cases, the set of features
to use are easy to obtain for Low-Resource Languages.

4. CONFUSION NETS

Confusion Networks (CNs) (Mangu et al., [10]) are a compact rep-
resentation of ASR output lattices that are designed to facilitate op-
timizing for word error rate instead of sentence error rate. CNs are
created out of lattices by clustering lattice edges into an ordered se-
ries of “bins” representing equivalence classes that are sets of alter-
nate word hypotheses. This clustering of edges into bins is done
in an heuristic way, since otherwise no efficient solution is known.
First, bins are initialized by putting all lattice edges with the same
word label and the same start and end times into the same bin. Then,
classes containing different words are merged based on time similar-
ity. When a bin has multiple edges with the same word label, these
edges are collapsed into a single edge and their posteriors are com-
bined by adding. The resulting CN has a total ordering on the bins
that is consistent with the original lattice.

CNs better allow for the minimization of word error rate be-
cause one can use dynamic programming to efficiently compute the
alignment and edit distance between the reference string and the con-
fusion network. No efficient algorithm for accomplishing this with
lattices is known to exist. CNs also represent ASR output in a more
compact way than lattices, without sacrificing accuracy. They also
lend themselves well to discriminative rescoring strategies such as
ours. Mangu et al. [10] found that the correct edge is top-ranked in
its bin over 60% of the time, and it is second-ranked over 10% of the
time. The correct edge is extremely rarely ranked outside of the top
10. This suggests that there is room for improvement in word error
rate if we can reorder the top edges in a bin effectively.

5. RESCORING CNS

In this section we describe the first stage of our CN rescoring pro-
cess: rescoring the arcs of the word CNs (WCN). Our objective is
two-fold: 1) to improve the TER for ASR performance and 2) to
obtain better scores to feed into the posting list rescoring stage. We
begin by aligning WCN and transcriptions so as to minimize the Lev-
enshtein distance between both. Each arc is then labeled as correct
(+) or incorrect (-) and a feature vector is computed for each.

5.1. Feature Extraction and Selection

We extract a variety of features at the arc, bin, segment, and conver-
sation level. Feature sets are described below:

Lexical Features: This set of features encodes information at
the arc level without context, eg. the percentile of the word fre-
quency in the transcriptions, whether the arc is labeled as a silence,
an epsilon, or a non-speech tag, the number of syllables of the token,
and the syllable index of its primary and secondary stress.

Phonetic Features: We use the phone set given in the LLP of
each language to incorporate the count of phones of each word in its
lexicon entry as well as and four binary features indicating whether
the word begins/ends in an unvoiced consonant or glottal stop.

Syntactic Proxies Features: To approximate syntactic informa-
tion we use Chen’s [18, 19] model M approach. Model M creates a
class-based n-gram language model in which each word belongs to
a single class and the prediction of each word depends on previous
words and classes. The n-gram language model is then reduced using
class information such that similar words in the same context belong
to the same class. We include the class to which a token belongs in
our feature vector.

Probabilistic Features: At the arc level we compute the proba-
bility of the arc being correct, the probability of the arc being correct
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Cantonese Pashto Turkish Tagalog

CN

CN Posterior CN Posterior CN Posterior CN Posterior
P(token + | dev) P(token + | dev) # ph(?) # ph(6w)
token length chrs pFA P(token recognized | dev) P(token + | dev)

model-M # arcs # apps # ph(D)
# appearances model-M ends glottal stop # ph(3)

P(token + | tokens in bin) ends with glottal stop starts glottal stop P(token + | tokens in bin)
percentile word freq. non-speech tag? model-M # arcs (bin)

# ph(kw) reranked Posterior non-speech tag? model-M
segment duration P(token +| tokens in bin) P(token +| tokens in bin) non-speech tag?

isItEnglish? # apps percentile word freq. percentile word freq.

Table 1. Most prominent features for CN reranking (Limited LP) according to QPFS.

given the other tokens in the confusion bins, and the probability of
the arc being correct given the set of phones in its pronunciation lex-
icon entry. We also compute rank-normalized probabilities of false
alarm (pFA) (kw,ps) for each pair of word kw and posterior score
ps in the corpus, following [8] and global re-ranked posterior scores
rPS(ps) as described in [20]. rPS(kw,ps) is computed by first map-
ping the pair (kw,ps) to its rank r and then mapping back the rank
to the average of the posteriors scores with that rank. Re-ranked
posterior scores are critical in detection tasks with global thresholds
because they expand the posterior score space of a specific keyword
to a global set of scores independent of the keyword.

Structural Features: This set of features are extracted directly
from the CNs. At the arc level, they include the posterior score, the
arc rank and the ratio between the arc rank and the confusion bin
size. At the bin level we include the confusion bin size, the bin num-
ber at the segment and conversation level, the distance in seconds
and bins to the previous and next silence and to the beginning and
end of the segment and conversation. We also include the number of
prior appearances of the token in the segment and conversation.

Scripted Term Features: Each LLP includes a list of spoken
terms that were scripted and recorded for the non-conversational por-
tion of the LLP. These terms are classified into different categories.
Among others, some of the categories contain terms of address, dig-
its and numbers, spelled words, money amounts, times, dates, etc.

Metadata Features: Information about the environment and
speakers is also available in the LLP. We use the type of recording
location (home/office, public space, vehicle, and so on), the gender
and age of the speakers, and the dialect of the language spoken dur-
ing the conversation.

5.2. Feature Selection

We apply feature selection to reduce the size of our training set, to
alleviate computational requirements for the Babel program’s eval-
uation stage, and to improve the performance of our classifiers. In
this work we report feature selection results using Quadratic Pro-
gramming Feature Selection (QPFS) [21]. This technique optimizes
the relevance of the selected features to the class labels and min-
imizes redundancy among the selected feature set while using the
Nystrom method for matrix diagonalization to keep the computa-
tional complexity below the cubic of the feature space size. Table
1 shows the 10 best-ranked features for each language based on its
LLPs the eval-part1 partition (Vietnamese is not included due to lack
of space). We find that the CN posterior scores, the probabilistic fea-
tures, the model-M classes, the percentile of word frequency and the
indicators of non-speech, silence and epsilon arcs are the best fea-
tures over all. For Pashto and Turkish the indicators of glottal stops

Full LP Limited LP
baseline reranked baseline reranked

Cantonese 55.2 54.23 67.29 65.47
Pashto 55.55 54.37 67.52 66.38
Turkish 55.16 52.82 69.3 66.46
Tagalog 50.37 48.82 64.3 63.64
Vietnamese 61.42 60.86 72.38 71.67

Table 2. TER results for every language in the Base Period using
both the Limited and Full language packages.

are also very important. Some other features highly ranked are the
number of appearances of a word before the current arc and the ratio
of the arc rank divided by the number of arcs in the confusion bin.
Metadata features, except for the dialect identifier, are not relevant.

5.3. Experiments and Results

Since our goal in this first stage is to choose the correct arc from a
pool of arcs in the confusion bin, we set up the detection problem
as a ranking task on the pool of arcs of a single confusion bin, and
choose the highest scoring arc as correct. To do this we use Support
Vector Machine’s SVMrank, a highly efficient ranking algorithm con-
tained in the SVMlight library [22, 23]. SVMrank performs pair-wise
classification for each arc in a confusion bin and assigns real-valued
scores. Table 2 shows the TER values for each language and both
Language Packs. Each subtable shows the baseline TER using the
1-best confusion network, the TER using the 1-best rescored CNs
obtained by SVMrank and the TER gain, in that order. We obtain
positive gains in every language ranging from 0.56 to 2.34 for the
Full LP and 0.71 to 2.84 for the LLP. It is notable that each language
seems to behave differently after CN rescoring; Turkish and Viet-
namese always report the best and worst gains respectively. While
Cantonese shows the most improvement on the LLP, Tagalog shows
the opposite behavior. All ten experiments show statistically signifi-
cant differences from the baselines under the paired t-test, the paired
Wilcoxon test, and the signed test for p < 0.05.

6. RESCORING POSTING LISTS

In the second stage of our rescoring procedure we again follow a
machine learning approach. Since our posting lists are CN-based, PL
entries can be matched to the CNs to find the arcs where the keyword
hits occur. Using this strategy however has two important problems:
1) out-of-vocabulary words will not be rescored, since only words in
the ASR lexicon appear in the CNs and we need to find the specific
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PFA PMISS MTWV
b r-CN r-PL b r-CN r-PL b r-CN r-PL

Pashto 1.1e-4 9e-5 1e-4 .655 .675 .648 23.83% 23.69% 24.73%
Turkish 1.2e-4 7e-5 1e-4 .552 .613 .567 32.83% 31.39% 33.28%
Tagalog 1.1e-4 1.1e-4 9e-5 .550 .561 .565 34.07% 33.34% 34.54%

Table 3. PFA, PMISS and MTWV results for IV keywords on Pashto, Turkish and Tagalog in the Limited LP conditions.

arcs in each confusion bin, and 2) there is no mechanism to recover
missed hits.

6.1. Feature Extraction And Selection

For this stage we extract features from the PL entries and their
matched confusion bins. Among other features, we include the
score and duration of the entry, the original and rescored poste-
riors from the matched confusion bins aggregated using different
functions (mean, standard deviation, geometric mean, product, max
and min), and structural CN features from section 5.1 including the
number of bins, the number of arcs, the average number of arcs, the
average number of epsilon arcs, the number of tokens and the ratio
between the number of matched bins and the number of tokens in
the keyword term. Rank-normalized PFA and re-ranked posterior
scores are also included in the feature set, although now they are
only computed for specific set of keywords being examined. Two
new set of features are also introduced at this stage:

Acoustic Features: We extract the pitch contour of the confu-
sion bin segment and compute its median, mean, standard deviation,
maximum and minimum, the number of unvoiced cycles in the seg-
ment and its percentage, the harmonics to noise ratio (dB) and noise
to harmonics ratio, and the autocorrelation of the pitch contour. We
also extract the pulses and include the number of pulses, the num-
ber of periods and their mean and standard deviation, along with the
number of voice breaks and their percentage. Finally we include
jitter values (local, local in seconds, its relative average perturbation
(RAP) and its 5-point period perturbation quotient) and shimmer val-
ues (local, local in dB, and its 3, 5, and 11- amplitude perturbation
quotient) as computed in Praat. All acoustic features are normalized
at the segment level.

Prosodic Features: Intonational phrase boundaries and pitch
accents are detected using the AuToBI tool for prosodic event detec-
tion [24]. Due to the lack of prosodic annotation in the Babel cor-
pus, we use cross-language models trained on Standard American
English, German, Italian, and Mandarin for phrase boundary detec-
tion task [25] and Standard American English, French, German, and
Italian for the accent detection task [26].

We use QPFS once more for feature selection. For this stage, the
top 10 best-ranked features (not shown here due to limited space) for
posting list entry classification as selected by QPFS is homogenous
and shows about the same features in the top positions for every lan-
guage. Mainly the pFA, re-ranked posterior scores and product and
minimum of the rescored arcs are highest valued. Rescored posterior
scores appear consistently higher in the ranking than their original
counterparts, indicating that they are better suited for the classifica-
tion task. Also consistently high-ranked are the ratio of epsilon arcs
divided by the number of total confusion bins, the geometric mean of
the rescored and original posteriors and the ratio between the num-
ber of tokens in the keyword divided by the number of arcs in the
matched confusion bins. From the set of acoustic features, there is a
small subset of them appearing consistently in the top 20. These are:
number of voice breaks, shimmer (local in dB), mean number of pe-

riods, mean pitch autocorrelation, mean pitch, percentage of voice
breaks and local jitter for Pashto; number of voice breaks, mean
pitch, harmonics-to-noise ratio, mean number of periods, number
of periods and mean pitch for Turkish; and mean pitch, percentage
of degree voice breaks, mean pitch autocorrelation, shimmer 3-APQ
and standard deviation of the number of periods for Tagalog.

6.2. Experiments and Results

We use Logistic Regression classifiers from the LIBLINEAR library
[27] for the classification task. Given the considerable skew of the
corpus towards false alarm entries (97% compared to only 3% of
true hits) we train our classifiers by weighting the cost parameters in-
versely to the class distribution, so that the classifier is able to focus
on learning true hit examples. Furthermore, model selection is per-
formed by optimizing the F-measure fβ = (1+β)2(p ·r)/(β2p+r)
of the true hits, for β = 1/2 so as to give recall double weight with
respect to precision.

Results are reported in table 3 for Pashto, Turkish and Taga-
log. Results for Cantonese and Vietnamese are missing for lack of
syllable-to-token indices and PLs, respectively . The three subtables
contain best values for probability of false alarm (PFA), probabil-
ity of miss (PMISS) and Maximum Term-Weighted Value (MTWV)
in that order. Each subtable contains results for the baseline CNs
(b), the rescored CNs (r-CN) and the two-stage cascaded rescoring
(r-PL). In all the experiments reported here, the scores were normal-
ized using sum-to-one, for an MTWV gain of 5–9% with respect to
the raw scores. In all three cases r-PL improves the baseline MTWV
by a margin between 0.45 and 0.9 points. r-CN never improves the
MTWV over the baseline. This is due to SVMrank producing very
low scores to predicted false alarms, thus reducing the number of
real false alarms but increasing the probability of missing keyword
considerably. The r-CN strategy seems to work well for TER, given
the reported results, but not for the KWS task using MTWV.

7. CONCLUSIONS & FUTURE WORK

We have presented a two-stage cascaded approach for rescoring spo-
ken keyword search based on rescored CNs. In the first stage CN
arcs are rescored to improve TER by detecting the correct arc in the
confusion bin. In the second stage, the rescored CNs are used to ex-
tract features to predict true hits and false alarms from the posting
lists. Both stages showed improvements of TER (0.56-2.84%) and
MTWV values (0.45-0.9%) respectively. We used a large number
of features for both tasks. For the first task, lexical and syntactic
language dependent features proved to be more relevant, while in
the second stage probabilistic features like pFA and reranked poste-
rior scores and structural features were more relevant. Furthermore,
all features used in this work are relatively easy to obtain for Low-
Resource Languages. In future work we plan to extend the rescoring
capabilities of our algorithm to OOV words by mapping the confus-
ability transducer output to the selected confusion net arcs and run
cross-language experiments testing on unseen languages.
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