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ABSTRACT

The spoken term detection (STD) task aims to return relevant seg-
ments from a spoken archive that contain the query terms whether
or not they are in the system vocabulary. This paper focuses on pro-
nunciation modeling for Out-of-Vocabulary (OOV) terms which fre-
quently occur in STD queries. The STD system described in this pa-
per indexes word-level and sub-word level lattices or confusion net-
works produced by an LVCSR system using Weighted Finite State
Transducers (WFST). We investigate the inclusion of n-best pronun-
ciation variants for OOV terms (obtained from letter-to-sound rules)
into the search and present the results obtained by indexing confu-
sion networks as well as lattices. The following observations are
worth mentioning: phone indexes generated from sub-words repre-
sent OOVs well and too many variants for the OOV terms degrade
performance if pronunciations are not weighted.

Index Terms— Speech Recognition, Speech Indexing and Re-
trieval, Spoken Term Detection, Weighted Finite State Transducers

1. INTRODUCTION

The rapidly increasing amount of spoken data calls for solutions to
index and search this data. Spoken term detection (STD) is a key in-
formation retrieval technology which aims open vocabulary search
over large collections of spoken documents. The major challenge
faced by STD is the lack of reliable transcriptions, an issue that
becomes even more pronounced with heterogeneous, multilingual
archives. Considering the fact that many STD queries consist of rare
named entities and foreign words, retrieval performance is highly
dependent on the recognition errors. In this context, lattice index-
ing provides a means of reducing the effect of recognition errors by
incorporating alternative transcriptions in a probabilistic framework.

The classical STD approach consists of converting the speech
to word transcripts using large vocabulary continuous speech recog-
nition (LVCSR) tools and extending classical Information Retrieval
(IR) techniques to word transcripts. However, a significant draw-
back of such an approach is that search on queries containing
out-of-vocabulary (OOV) terms will not return any result. These
words are replaced in the output transcript by alternatives that are
probable, given the acoustic and language models of the ASR. It
has been experimentally observed that over 10% of user queries can
contain OOV terms [1], as queries often relate to named entities that
typically have a poor coverage in the ASR vocabulary. The effects
of OOV query terms in spoken data retrieval are discussed in [2].
In many applications, the OOV rate may get worse over time unless
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the recognizer’s vocabulary is periodically updated. An approach
for solving the OOV issue consists of converting the speech to pho-
netic transcripts and representing the query as a sequence of phones.
Such transcripts can be generated by expanding the word transcripts
into phones using the pronunciation dictionary of the ASR system.
Another way is to use sub-word (phone, syllable, or word-fragment)
based language models. The retrieval is based on searching the
sequence of sub-words representing the query in the sub-word tran-
scripts. During 1990s NIST TREC Spoken Document Retrieval
tracks fostered speech retrieval research as described in [3]. Popular
approaches are: search on sub-word decoding [4, 5, 6] or search
on the sub-word representation of word decoding enhanced with
phone confusion probabilities and approximate similarity measures
for search [7].

OOV issue was also tackled by the IR technique of query ex-
pansion. In classical text IR, query expansion is based on expanding
the query by adding additional words using techniques like relevance
feedback, finding synonyms of query terms, finding all of the various
morphological forms of the query terms and fixing spelling errors.
Phonetic query expansion has been used for Chinese spoken doc-
ument retrieval on syllable-based transcripts using syllable-syllable
confusions from the ASR [8].

The rest of the paper is organized as follows. In Section 2 we ex-
plain the methods used for spoken term detection. These include the
indexing and search framework based on WFSTs, formation of pho-
netic queries using letter to sound models, and expansion of queries
to reflect phonetic confusions. In Section 3 we describe our experi-
mental setup and present the results. Finally, in Section 4 we sum-
marize our contributions.

2. METHODS

2.1. WFST-based Spoken Term Detection

General indexation of weighted automata provides an efficient
means of indexing speech utterances based on the within utter-
ance expected counts of substrings (factors) seen in the data [9, 4].
In the most basic form, this algorithm leads to an index represented
as a weighted finite state transducer (WFST) where each substring
leads to a successful path over the input labels for each utterance
that particular substring was observed. Output labels of these paths
carry the utterance ids, while path weights give the within utterance
expected counts. The index is optimized by weighted transducer
determinization and minimization [10] so that the search complexity
is linear in the sum of the query length and the number of indices the
query appears. Figure 1.a illustrates the utterance index structure in
the case of single-best transcriptions for a simple database consist-
ing of two strings: “a a” and “b a”. Utterance index construction is
ideal for the task of utterance retrieval where the expected count of
a query term within a particular utterance is of primary importance.
In the case of STD, this construction is still useful as the first step of
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Fig. 1. Index structures

a two stage retrieval mechanism [11] where the retrieved utterances
are further searched or aligned to determine the exact locations of
queries since the index provides the utterance information only.
Prominent complication of this setup is that each time a term occurs
within an utterance, it will contribute to the overall expected count
within that particular utterance and the contribution of distinct in-
stances will be lost. Here we should clarify what we refer to by an
occurrence and an instance. In the context of lattices where arcs
carry recognition unit labels, an occurrence corresponds to any path
whose labels comprise of the query terms, an instance corresponds
to all such paths with overlapping time-alignments. Since the index
provides neither the individual contribution of each instance to the
expected count nor the number of instances, both of these parame-
ters have to be estimated in the second stage which in turn decreases
the detection performance.

To overcome some drawbacks of the two-pass retrieval strategy,
a modified utterance index which carries the time-alignment infor-
mation of substrings in the output labels was created. Figure 1.b
illustrates the modified utterance index structure derived from the
time-aligned version of the same simple database: “a0−1 a1−2” and
“b0−1 a1−2”. In the new scheme, preprocessing of the time align-
ment information is crucial since every distinct alignment will lead
to another index entry which means substrings with slightly off time-
alignments will be separately indexed. Note that this is a concern
only if we are indexing lattices, consensus networks or single-best
transcriptions do not have such a problem by construction. Also note
that no preprocessing was required for the utterance index, even in
the case of lattices, since all occurrences in an utterance were iden-
tical from the indexing point of view (they were in the same utter-
ance). To alleviate the time-alignment issue, the new setup clusters
the occurrences of a substring within an utterance into distinct in-
stances prior to indexing. Desired behavior is achieved via assign-
ing the same time-alignment information to all occurrences of an
instance.

Main advantage of the modified index is that it distributes the to-
tal expected count among instances, thus the hits can now be ranked
based on their posterior probability scores. To be more precise, as-
sume we have a path in the modified index with a particular substring
on the input labels. Weight of this path corresponds to the posterior
probability of that substring given the lattice and the time interval in-
dicated by the path output labels. The modified utterance index pro-
vides posterior probabilities instead of expected counts provided by
the utterance index. Furthermore, second stage of the previous setup
is no longer required since the new index already provides all the
information we need for an actual hit: the utterance id, begin time
and duration. Eliminating the second stage significantly improves
the search time since time-alignment of utterances takes more time
compared to their retrieval. On the other hand, embedding time-
alignment information leads to a larger index since common paths
among different utterances are largely reduced by the mismatch be-
tween time-alignments which in turn degrades the effectiveness of
the weighted automata optimization. To smooth this effect out, time-

alignments are quantized to a certain extent during preprocessing
without altering the STD performance.

Modified utterance index structure can also be utilized to repre-
sent Position Specific Posterior Lattices (PSPL) [12] when the out-
put labels carry position information instead of time. Also, when
confusion networks are utilized instead of lattices, resulting index is
similar to what is obtained with Time-based Merging for Indexing
(TMI) [13] algorithm. In our setup confusion networks group alter-
native hypotheses that fall into the same time slot and lead to paths
that do not exist in the original lattice, similar to the case of TMI.

Searching for a user query is a simple weighted transducer com-
position operation [10] where the query is represented as a finite
state acceptor and composed with the index from the input side. The
query automaton may include multiple paths allowing for a more
general search, i.e. searching for different pronunciations of a query
word. The WFST obtained after composition is projected to its out-
put labels and ranked by the shortest path algorithm [10] to produce
results. In effect, we obtain results with decreasing posterior scores.
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1-pass Retrieval: MTWV=0.791, Search Time=    1.33s
2-pass Retrieval: MTWV=0.792, Search Time=535.59s

Fig. 2. Comparison of 1 & 2-pass strategies in terms of retrieval
performance (Maximum Term Weighted Value - MTWV [14]) and
runtime.

Figure 2 compares the proposed system with the 2-pass retrieval
system on the stddev06 data-set in a setup where dryrun06
query-set, word-level ASR lattices and word-level indexes are uti-
lized. As far as Detection Error Tradeoff (DET) curves are con-
cerned, there is no significant difference between the two methods.
However, proposed method has a much shorter search time, a natural
result of eliminating the time-costly second pass.

2.2. Query Forming and Expansion for Phonetic Search

When using a phonetic index, the textual representation of a query
needs to be converted into a phone sequence or more generally
a WFST representing the pronunciation of the query. For OOV
queries, this conversion is achieved using a letter-to-sound (L2S)
system. In this study, we use n-gram models over (letter, phone)
pairs as the L2S system, where the pairs are obtained after an
alignment step. Instead of simply taking the most likely output
of the L2S system, we investigate using multiple pronunciations
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for each query. Assume that we are searching for a letter string
l with the corresponding phone-strings {p} belonging to the set
Πn(l) : the n-best L2S pronunciations. Then the posterior proba-
bility of finding l in lattice L within time interval T can be written
as

P (l|L, T ) =
X

p∈Πn(l)

P̃ (l|p)P (p|L, T )

where P (p|L, T ) is the posterior score supplied by the modified ut-

terance index and P̃ (l|p) is the posterior probability derived from
L2S scores.

Composing an OOV query term with the L2S model returns a
huge number of pronunciations of which unlikely ones are removed
prior to search to prevent them from boosting the false alarm rates.
To obtain the conditional probabilities P̃ (l|p), we perform a nor-
malization operation on the retained pronunciations which can be
expressed as

P̃ (l|p) =
P α(l, p)P

π∈Πn(l) P α(l, π)

where P (l, p) is the joint score supplied by the L2S model and α is
a scaling parameter. Most of the time, retained pronunciations are
such that a few dominate the rest in terms of likelihood scores, a
situation which becomes even more pronounced as the query length
increases. Thus, selecting α = 1 to use raw L2S scores leads to
problems since most of the time best pronunciation takes almost all
of the posterior probability leaving the rest out of the picture. The
quick and dirty solution is to remove the pronunciation scores in-
stead of scaling them. This corresponds to selecting α = 0 which
assigns the same posterior probability P̃ (l|p) to all pronunciations:

P̃ (l|p) = 1/|Πn(l)|, for each p ∈ Πn(l). Although simple, this
method is likely to boost false alarm rates since it does not make
any distinction among pronunciations. The challenge is to find a
good query-adaptive scaling parameter which will dampen the large
scale difference among L2S scores. In our experiments we selected
α = 1/|l| which scales the log likelihood scores by dividing them
with the “length of the letter string”. This way, pronunciations for
longer queries are effected more than those for shorter ones. An-
other possibility is to select α = 1/|p|, which does the same with
the “length of the phone string”. Section 3.2.2 presents a comparison
between removing pronunciation scores and scaling them with our
method.

Similar to obtaining multiple pronunciations from the L2S sys-
tem, the query pronunciations can be extended by taking phone con-
fusion statistics into account. In this approach, the output of the L2S
system is mapped to confusable phone sequences using a sound-to-
sound (S2S) WFST, which is built by the same technique used for
generating the L2S WFST. For the case of the S2S transducer both
the input and the output alphabets are phones, and the parameters of
the phone-phone pair model were trained using alignments between
the reference and the decoded output of the RT-04 Eval set.

3. EXPERIMENTS

3.1. Experimental Setup

In the workshop, our goal was to address OOV pronunciation valida-
tion using speech in a variety of applications (recognition, retrieval,
synthesis) for a variety of types of OOVs (names, places, rare/foreign
words). To this end we selected speech from English broadcast news
(BN) and 1290 OOVs. The OOVs were selected with a minimum
of 5 acoustic instances and 4 phones per word, and common English
words were filtered out to obtain meaningful queries (e.g. NATALIE,

PUTIN, QAEDA, HOLLOWAY). Once selected, these queries were
removed from the recognizer’s vocabulary and all speech utterances
containing them were removed from training.

The LVCSR system was built using the IBM Speech Recogni-
tion Toolkit [15] with acoustic models trained on 300 hours of HUB4
data with utterances containing OOV words excluded. The excluded
utterances (around 100 hours) were used as the test set for ASR and
STD experiments. The language model for the LVCSR system was
trained on 400M words from various text sources. The LVCSR sys-
tem’s WER on a standard BN test set RT04 was 19.4%. This system
was also used for generating lattices used by the OpenFST [16] based
STD system from Bogazici University.

WFST-based STD indexer used in this work encodes input and
output labels [10] before WFST optimization since OpenFST Li-
brary supports the determinization of functional transducers only.
Even though this situation compromises the search efficiency, it im-
proves indexing time since few common paths exist before the final
optimization step detailed in [9].

3.2. Results

The gold standard experiments were conducted using the reference
pronunciations for the query terms, which we refer to as reflex. The
L2S system was trained using the reference pronunciations of the
words in the vocabulary of the LVCSR system. This system was
then used to generate multiple pronunciations for the OOV query
words. Further variations on the query term pronunciations were ob-
tained by applying a phone confusion S2S transducer to the best L2S
pronunciation. However experiments with single-best transcriptions
utilizing the composition of S2S and L2S did not yield any significant
improvement over those utilizing L2S.

3.2.1. Gold Standard - Reflex

For the reflex experiments, we used the reference pronunciations to
search for OOV queries in various indexes. The indexes were ob-
tained from word and sub-word (fragment) based LVCSR systems.
The output of the LVCSR systems were in the form of 1-best tran-
scripts, consensus networks, and lattices. The results are presented
in Table 1. Best performance (in terms of Actual Term Weighted
Value - ATWV [14]) is obtained using sub-word lattices converted
into a phonetic index.

Table 1. Reflex Results

Data P(FA) P(Miss) ATWV
Word 1-best .00001 .770 .215
Word Consensus Nets .00002 .687 .294
Word Lattices .00002 .657 .322

Fragment 1-best .00001 .680 .306
Fragment Consensus Nets .00003 .584 .390
Fragment Lattices .00003 .485 .484

3.2.2. L2S

For the L2S experiments, we investigated varying the number of pro-
nunciations for each query for two scenarios and different indexes.
The first scenario considered each pronunciation equally likely (un-
weighted queries) whereas the second made use of the L2S proba-
bilities properly normalized (weighted queries). The results are pre-
sented in Figure 3 and summarized in Table 2. For the unweighted
case the performance peaks at 3 pronunciations per query. Using
weighted queries improves the performance over the unweighted
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case. Furthermore, adding more pronunciations does not degrade
the performance. Best results are comparable to the reflex results.

Table 2. Best Performing N-best L2S Pronunciations

Data L2S Model Best P(FA) P(Miss) ATWV
Word Gold 1 .00001 .796 .190
1-best Weighted 6 .00004 .730 .233

Word
Lattices

Gold 1 .00002 .698 .281
Unweighted 3 .00005 .625 .322

Weighted 6 .00005 .606 .346

Frag. Gold 1 .00001 .757 .229
1-best Weighted 10 .00005 .662 .286

Frag.
Lattices

Gold 1 .00003 .597 .372
Unweighted 3 .00006 .512 .425

Weighted 6 .00006 .487 .453

The DET plot for weighted L2S pronunciations using indexes
obtained from fragment lattices is presented in Figure 4. The single
dots indicate MTWV (using a single global threshold) and ATWV
(using term specific thresholds [17]) points.

98

95

90

80

60

40
.1.05.02.01.004.001.0001

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

False Alarm probability (in %)

Combined DET Plot: Weighted Letter-to-Sound 1-5 Best Fragment Lattices

1-best, MTWV=0.334, ATWV=0.372
2-best, MTWV=0.354, ATWV=0.422
3-best, MTWV=0.352, ATWV=0.440
4-best, MTWV=0.339, ATWV=0.447
5-best, MTWV=0.316, ATWV=0.451
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4. CONCLUSION

Phone indexes generated from sub-words represent OOVs better
than those generated from words. Using multiple pronunciations
obtained from L2S system improves the performance, particularly
when the alternatives are properly weighted. Modeling phonetic
confusions does not yield significant improvements.
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