Loop Optimizations in Modern C Compilers

Chae Jubb
ecj2122@columbia.edu

10 December 2014

Abstract

Many programs spend a significant portion of execution time in loops.

Because of this, loop opti-

mizations are increasingly important. We see two major types of optimizations affecting loop performance:
general and loop-specific. General optimizations help loop performance simply because the loop is repeated
many times. Loop-specific optimizations better performance because they alter the structure of the loop
or make improvements that require many iterations to be efficient due to a large overhead. We discuss
loop optimization strategies and then, using directed test cases, analyze how gcc and clang use those
techniques to optimize at different levels. We find clang to be much more aggressive in optimizations at a
lower level. At the highest optimization levels, these compilers produce executables that perform similarly.
Importantly, at the most common optimization level (-02), clang equals or exceeds gcc performance.

1 Introduction

Loop performance is a large contributor to the over-
all performance of many applications. Programs, es-
pecially mathematical and scientific, spend a large
majority of their execution in loops. This makes the
performance especially critical. Small inefficiencies
are magnified with hundreds or thousands of itera-
tions. Because it’s in the compiler’s best interests to
emit high-performing code, many special techniques
are used specifically to increase loop performance.
We examine the use of a subset of these technique
and compare both emitted code and runtime perfor-
mance across multiple optimization levels for multiple
C compilers.

2 Method

To examine loop optimization techniques, we first
prepare some sample programs. These programs are
then compiled using clang! and gcc?. For each com-
piler, various optimization levels are examined: -00,

Lclang version 3.5
2gcc version 4.8.2

-01, -02, -03. The binaries are generated for Intel
x86 targets: an i7 quad-core, a Xeon 16-core, and a
Pentium 4.

We then analyze each output binary in two ways.
First, we examine the emitted x86 assembly code.
This allows us to directly verify techniques used by
the compiler in transforming the source code to the
target x86. Second, the binary is performance-tested.
Because the compiler strives to create binaries that
perform well—not binaries that look as if they per-
form well—this portion is critical.

The disparities in runtimes of each test are drastic;
thus, performance characteristics are used to evaluate
the effectiveness of a different optimization level on
a certain program compiled with a certain compiler.
The times ought not be compared across tests.

3 Loop Optimizations

Before beginning discussion of results, we first in-
troduce common loop optimizations. The tech-
niques described include both machine-independent
and machine-dependent optimizations. As the names
suggest, the former category is used to make gen-

1

2

1

5

6

7} 7

void bad_invariant () { 1

int i, a = 4; 2
for(i = 0; i < 5; ++i) {
int a2 = a * a; |
/* loop body; ‘a‘ not touched x/ 5
} 6

void good_invariant () {

int i, a = 4;
int a2 = a * a;
for(i = 0; i < 5; ++i) {
/* loop body; ‘a‘ not touched x/
}

}

Figure 1: Re-calculating a loop invariant each itera-
tion

eral loop optimizations more concerned with the'’
algorithm wused; whereas, the latter is more con—_,_:
cerned with the implementation and takes into ac-.
count specifics of the target device. 5

Before beginning our examination of loop opti-°

Figure 2: Calculating a loop invariant outside the
loop.

void bad-induction () {
int i, j, *array;
for (i 0; 1< 32; ++i) {
int j 4 x i
/* loop body, uses ‘i‘ x/
array [j] rand () ;

mizations, we note that many, many optimizations }

will help loop performance. While not loop-specific,
optimizations such as moving variables to registers
from the stack will help performance, simply because
of the gains of the optimization will be realized in
each iteration.

3.1 Machine-Independent

We first consider optimizations made independent of
the x86 architecture. These include strategies such
as identifying loop invariants, inverting the loop, and
removing induction variables.

3.1.1 Loop Invariants

One simple technique used to improve the perfor-
mance of loops is moving invariant calculations out-
side the loop. We see a sample program in Figure 1
that unnecessarily re-calculates a loop invariant on
each iterations. This will cause wasted cycles, hurting
performance. Luckily, many compilers will recognize
that program as equivalent to the one in Figure 2,
and, as such, produce the optimized code. (It will, of
course, take into account the differences in scope of
that loop-invariant variable.)

3.1.2 Induction Variables

Nearly all for loops and some while loops will have
variables that function as a sort of loop counter. We

Figure 3: Inefficient redundant induction variables

label variables such as these as “induction variables”.
More formally, any variable whose value is altered by
a fixed amount each loop iteration is an induction
variable.

We can generally apply two types of optimizations
to induction variables: reduction of strength and
elimination. Generally, reduction of strength involves
replacing an expensive operation (like multiplication)
with a less expensive one (such as addition). Some-
times, however, a compiler may realize an induction
variable is redundant and completely eliminate it.

Figure 3 shows an example of an ineflicient use
of two redundant induction variables. We improve
this slightly in Figure 4 when we invoke a reduction
of strength. Finally, Figure 5 shows the redundant
variable completely optimized away.

3.1.3 Loop Unrolling

We next turn our attention to a simple trick some-
times employed: loop unrolling. This optimization
is extremely straightforward and can only be applied
to loops with a known length. Rather than having
a loop with n iterations, the compiler will produce
target code that simply repeats n times. This opti-

1

void ros_induction () {
int i, j, xarray;
for(i =0, j = —4; i < 32; ++i) {
int j 4= 4;
/* loop body, uses ‘i‘ x/
array [j] rand () ;

}
}

Figure 4: Reduction of strength with redundant in-
duction variables

void elim_induction () {

int i, *array;

for(i = 0; i < 32; ++i) {
/* loop body, uses ‘i‘ x/
array [i*4] = rand () ;

Figure 5: Elimination of redundant induction vari-
ables

mization may increase performance on some proces-
sors because it eliminates any jump instructions. In
fact, minimizing jump instructions is often the goal
of many optimizations (even those not loop-specific)
because that type of instruction presents the possi-
bility of a costly branch-misprediction. We do not
always use loops, though, because of a major draw-
back: increased binary size.

3.1.4 Loop Inversion

We now turn our attention to another optimization
designed to reduce the number of branch instructions.
Loop inversion is a fairly simple transformation: a
while loop is converted to a do-while loop wrapped
by an if statement as shown in Figure 6 and Figure 7.

To fully analyze the effectiveness of this optimiza-
tion, we consider three cases: first iteration, any mid-
dle iteration, final iteration.

First Iteration We consider the two cases of the
first iteration. Either the loop is entered or it is not.
When the condition is not true before entering the
loop, each version produces a single jump instruction.

void pre_inversion () {
while (/% condition =*/) {
/* loop body x/

Figure 6: Example while loop before inversion

void post_inversion () {
if (/% condition */) {
do {
/* loop body =/
} while (/* condition x/);
}
}

Figure 7: Example while loop after inversion

We see no gain, but, more importantly, no loss in
performance in this case.

When the condition is true, both execution flows
behave as they would for any middle, non-final iter-
ation.

Middle Iteration With a non-final iteration, we
obviously see the same behavior between the two ver-
sion. This is due to the well-known behavior of while
and do-while loops.

Final Iteration By having the comparison after
the loop rather than at the beginning, we can save
cycles. The unoptimized version will run the last iter-
ation, jump to the beginning to check the condition.
Seeing the condition is no longer satisfied, we jump
back to outside the loop.

Now we consider the optimized version. We run
the last iteration and then check the loop condition.
It will not be satisfied, and thus, we do not jump to
the beginning and instead fall through.

This optimization results in a savings of 2 jumps.
While this savings may seem trivial, consider nested
loops. If this optimization were applied to an inner
loop, the savings could be quite noticeable.

3.2 x86 Optimizations

1 #include <stdlib.h>

> #include <stdint .h>

We now turn our attention to the more specialized op- ,
timizations that directly target the x86 ISA’s specific
features. These optimizations exploit things such as®
memory addressing, flags, and register number and;i
width, to name a few. 8

9

10

3.2.1 Use of Flags

Often a for loop is used to repeat an exact executiorﬁ
sequence a pre-determined number of times. The in—l'1
dex variable might not be used in any way other thans
managing the number of iterations.

In a scenario such as this, we can take advantage
of the x86 Zero Flag (ZF). This flag is a special bit
that is set according to a complex set of rules that es-
sentially amount to checking if the most recent value
was equal to zero.

By taking advantage of this flag, we can eliminate
an instruction in this type of loop. We replace an
explicit cmp and a check flag instruction with the cor-
responding implicit cmp and flag-checking during the
jne instruction.

We see an unoptimized

mov ecx 0x0
<body of loop>
add ecx 0x1

cmp ecx 0x20

jb <body>

transformed into an optimized

mov ecx 0x20
<body of loop>
sub ecx 0x1

jne <body>

3.2.2 SSE2 / XMM

Since the Pentium III processor, Intel has included
support for Streaming SIMD Extensions. In con-
junction with this, 8 128-bit processors xmmO through
xmm7 were added. Originally permitted to hold only
4 single-precision floating point numbers, SSE2 ex-
panded this to support two 64-bit integers, four 32-
bit integers, eight 16-bit integers, or sixteen 8-bit in-

int loop-inv(uint8_t len) {
int a[256];
int i = 0;

while (len < 255) {
a[len] = 0;
++tlen;
++i

}

return i;

}

Figure 8: Directed test for loop inversion

tegers. Using these xmm* registers, we can now ma-
nipulate four integers at a time! This means we have
the potential to cut the number of writes four-fold.

We consider this here in the loop-specific optimiza-
tions because of the overhead to set-up these regis-
ters, they would likely not be used for a one-time
write to memory.

4 Test Cases

Now that we have discussed loop optimizations we
wish to target, we examine the directed test cases to
evaluate gcc and clang performance.

The first, simplest test case is one to explicitly
check for loop inversion. The source for this can be
found in Figure 8.

We also test explicitly for the handling of induction
variables and loop constants using the source found
in Figure 9.

The final test base test case is a program used to
count the number of zeros in the binary representa-
tion of a 32-bit integer. To more fully explore how
these compilers optimize, we analyze the code emit-
ted using 5 different input programs. Source for three
of these programs can be found in Figure 10 (branch-
ing version), Figure 11 (non-branching version), Fig-
ure 12 (nested for loop). The final two programs are
similar except they use an infinite for and while,
respectively, with an explicit break statement.

1 #include <stdlib.h>
2 #include <stdint.h>

. int xind_var(uintl6_-t in) {
int *a = malloc(sizeof *xa x

o}

int i, marker;
for (i = 0; i < in; ++i) {

marker = 4 % i;

a[marker + 0] = in % 2;
a[marker + 1] = in % 3;
a[marker + 2] = in % 5;
a[marker + 3] = in % T7;

}

return a;

in x 4);

2)

Figure 9: Directed test for loop inversion

#include <stdint.h>

1
3 int count_zeros(uint32_-t a)
4

{
unsigned int counter = O0;
unsigned int i = 0;
for (; 1 < 32; ++i, a>= 1) {
if ((a & 0x00000001) == 0)

counter++;

}

return counter;

Figure 10: Branching version of count zeros

1 #include <stdint.h>

2

3 int count_zeros(uint32_t a)

4

ll}

unsigned int counter = 0;
unsigned int i = 0;
for (; 1 < 32; ++i, a >>=

1)

counter += !(a & 0x00000001);

}

return counter;

Figure 11: Non-branching version of count zeros

1 #include <stdint.h>

int count_zeros(uint32_t a) {
unsigned int counter = O0;
unsigned int i, j = 0;
for (5 j < 4; ++j) {
for (i =0; i < 8; ++i, a>= 1) {
counter += !(a & 0x00000001);
}

}

return counter;

}

Figure 12: Nested loop version of count zeros

5 Analysis

The above sample programs were compiled using each
clang and gcc and each of the the previously men-
tioned optimization levels. We can comment on the
emitted x86 as well as the performance. Notable per-
formance measures will be discussed below, with the
full performance data available in Appendix A.

5.0.1 General Loop Format

Before continuing, we introduce the general layout
that each compiler uses when it generates loops.
There is not much performance effect; mostly a pref-
erence for where the jump statements ought to occur.

We see these general layouts for gcc and clang in
Figure 13 and Figure 14, respectively.

Unless otherwise noted, all loops have the basic
structure corresponding to the compiler that pro-
duced that loop. Most of the optimizations are sim-
ply dictating the appearance of the “body” section of
the loop and the placement of the loop itself.

5.1 Loop Inversion

We begin with one of our simpler examples, the loop
inversion described in Figure 8. The primary op-
timizations we expect to be made are loop inver-
sion, elimination of unnecessary variables, and, fi-
nally, elimination of the loop itself.

GCC

Initialization

Increment

Figure 13: gcc loop layout

clang

Initialization

Increment

Figure 14: clang loop layout

xor eax ,eax

cmp edi 0 xff
je 4005d4 <return>
mov al ,0 xfe

sub al , dil
movzx eax, al
inc eax
ret

Figure 15: Loop Inversion: clang at -01. Compiled
from Figure 8

5.1.1 No Optimization

Without optimization, the code emitted by both com-
pilers is as expected. We see a clear transforma-
tion of each statement into corresponding x86. Each
compiler uses it preferred loop structure as described
above.

5.1.2 Some Optimization -01

Once we apply an optimization we immediately see
loop inversion from gcec. The first two instructions
are a check as to whether we should do anything or
simply return 0.

cmp dil,Oxff
je 4005f8 <store 0 in eax and return>

We also see the array and the i variable optimized
away as unnecessary. The return value is calculated
indirectly using len.

clang is much more aggressive in its initial opti-
mizations than gcc. All local variables as eliminated,
as is the loop itself. All that remains is a few instruc-
tions to calculate i based on the len parameter. We
see how compact the entire optimized output is in
Figure 15.

At this point, clang is finished optimizing. Higher
levels have no effect on the function.

5.1.3 More Optimization -02

Increasing the optimization level for gcc eliminates
the loop and produces output with only trivial differ-
ences from clang -01.

5.1.4 Summary

At high optimization levels, the compilers emit code
with nearly identical performance across machines.
Optimizing produces up to a 30x boost in per-
formance. Because it optimizes more aggressively,
clang performance hits the peak sooner. However,
as -01 is not a common optimization level, the effect
of this boost may not have a large real-world effect.

5.2 Induction Variables
Constants

and Loop

Our attention now turns to a program designed to
identify the handling of induction variables and loop
constants. This program is described in Figure 9.

5.2.1 No Optimization

Compiling with -00 provides insight into what is
guaranteed by compilers when using a flag indicat-
ing that “no optimization” ought to be performed.
Statements in the C code must have a correspon-
dence to an instruction or sequence of instructions
in the emitted code. That is, statements cannot be
intermixed and all statements must have some corre-
sponding instructions that perform the statement.

While this may seem straightforward, we present a
portion of the output assembly by each compiler for
computing the result of the modulus operator. We
will consider the line a[marker + 3] = in % 7.

The clang assembly is more transparent and ex-
pected, though it does use the infamously slow idiv
instruction (Figure 16), retrieving the modulus com-
puted during this instruction from edx. However, gcc
uses a faster3, more obscure algorithm. However, be-
cause there is a clear correspondence between the C
statement and a block of x86, this is acceptable at
-00.

5.2.2 Some Optimization -01

Adding a touch of optimization, we see a few changes
in the code emitted from gcc. Most noticeably, we see

3gcc runs this test nearly twice as fast as clang without
optimization

movzx eax ,WORD PTR [rbp—0x2]

cdq

mov ecx, 0x7

idiv ecx ; result: eax = eax’ * ecx + edx
mov eax ,DWORD PTR [rbp—0x18] marker

add eax ,0x3

movsxd r8 ,eax

mov r9 ,QWORD PTR [rbp—0x10] ; a

mov DWORD PTR [r9+4r8x4],edx

Figure 16: Implementation of Modulus Operator:

clang at -00. Computing modulus by 7. Simplified
from original (preserves structure)

mov eax ,DWORD PTR [rbp—Oxc] ; marker
cdqe

add rax ,0x3

lea rdx , [rax*44-0x0]

mov rax ,QWORD PTR [rbp—0x8] ; a

lea rsi ,[rdx4rax 1]

; rsi = addr of a[marker + 3]
movzx ecx ,WORD PTR [rbp—0x14] ; in
movzx eax ,CX
imul eax ,eax ,0x2493 begin magic
shr eax ,0x10
mov edx , ecx
sub edx , eax
shr dx,1
add eax ,edx
shr ax,0x2
mov edx , eax
mov eax ,edx
shl eax ,0x3
sub eax ,edx
sub ecx ,eax
mov edx , ecx
movzx eax,dx ; end magic
mov DWORD PTR [rsi],eax result of % 7
Figure 17: Implementation of Modulus Operator:

gcc at —00. Computing modulus by 7.

vpinsrw xmmO,xmm0, r8d ,0x0 ; in % 2
vpinsrw xmm0,xmm0, edi ,0x2 ; in % 3
vpinsrw xmmO,xmm0, ecx ,0x4 ; in % 5
vpinsrw xmmO,xmm0, esi ,0x6 ; in % 7
xor ecx , ecx
mov rdx , rax

excluding NOPs for alignment of loop

\}movdqu XMMWORD PTR [rdx | ,xmm0

add rdx ,0x10

inc ecx

cmp ecx ,ebx

jl 400740 ; vmovdqu command

Figure 18: Implementation of Modulus Operator:

clang at -00. Computing modulus by 7. Simplified
from original (preserves structure)

loop inversion. Additionally, the redundant induction
variable marker is removed. This is replaced with
direct 4x multiplication in the memory addressing.
The implementation of this optimization is machine-
dependent and is permitted here because that multi-
plication by constant in this way is a permitted x86
addressing mode.* However, the loop constants are
still computed each time, greatly hindering perfor-
mance gains.

With our other compiler, clang, we see another ag-
gressive optimization. Along with loop inversion and
the elimination of an induction variable, we see use
of the architecture-specific xmm* registers. As men-
tioned previously, these registers permit us to write
a block of 4 integers in one write. Because of the
novelty and efficiency of this algorithm, we include a
portion of the emitted x86 in Figure 18.

Using these specialized registers show a huge per-
formance bonus: about 2x over usual registers.
All optimizations considered, 01 gives about a 25x
speedup over 00.

5.2.3 Use of xmm registers by clang

We saw above that xmm registers were used easily be-
cause we were writing 4 entries at a time. We natu-

4Other ISAs such as MIPS do not permit this. On a MIPS
architecture, we would likely see reduction of strength: the
multiplication converted to a constant addition during each
iteration.

rally wonder the effects of writing some non-multiple
of 4 in each loop iteration.

Less than Eight Entries When we write five en-
tries in each loop iteration, we see clang using the
xmm registers along with one extended register ecx.
We do not revert to solely using extended width reg-
isters because we do not have a multiple of 4.

Eight Entries Expectations are not met when
loading eight entries simultaneously. Only one xmm
register is used in conjunction with four extended
width registers. In an attempt to determine if this
was a conscious decision due to some performance
hit caused by using multiple xmm interchangeably, we
hand-tune the assembly to use both xmm0 and xmm1 in
conjunction with two vmovdqu commands.® By using
two xmm registers rather than one, we notice a nearly
30 percent performance improvement. We are left
only to wonder why does not use multiple specialized
registers.

5.2.4 More Optimization -02 and -03

clang makes no optimizations after the -01 level.

On the other hand, gcc continues making opti-
mizations. 02 sees loop invariants calculated outside
the loop. That is, all moduli operations are done be-
fore entering the loop and repeated assigned during
iteration.

Finally at 03, we see gcc also using the xmm reg-
isters. It is perhaps worth noting that with 8 writes
per loop, gcc does in fact use multiple xmm registers
to achieve the same performance as the above hand-
tuned x86 (though in a more complex way).

5.2.5 Architecture Differences

If an architecture does not have support for xmm regis-
ters holding integers, obviously they cannot be used.
The tests run on a Pentium 4 processor do not com-
pile to xmm registers. For machines such as these, we
do not see speedups comparable to those with xmm
registers. We see only a 5x speedup compared to a
25x speedup (clang 00 to 01).

5The relevant code snippets are available in Appendix B

This difference underscores the importance of the
target architecture in performance. Without ad-
vanced hardware, compilers cannot use advanced op-
timization techniques.

5.2.6 Summary

Again we see clang making more aggressive opti-
mizations than gcc. Interestingly, clang performs
much more poorly with no optimization: nearly twice
as slow as its gcc counterpart, because of the choice
of modulus implementation.

At maximum optimization, we see nearly identi-
cally performing code, though at the commonly used
02, we see clang as a clear winner, performing ap-
proximately twice as fast as the corresponding gcc
binary.

5.3 Constant-Length Loops

Our final analysis considers the programs designed to
count the number of zeros in the binary representa-
tion of a 32-bit integer as seen in Figure 10, Figure 11,
and Figure 12. In addition to these samples, versions
with an infinite for and while loop in conjunction
with an explicit break statement were examined. By
analyzing these different versions of the program, we
can gather some sense of how much “error-correcting”
the compiler can do on non-optimal code.

5.3.1 No Optimization

All versions of the programs emit assembly as ex-
pected according to the compiler’s preferred loop
structure. The performance of the samples was gener-
ally homogeneous—with the strong exception of the
branching sample. The branching version took 2-3
times as long as the others. This serves as a clear
indicator that branching in tight loops ought to be
avoided as much as possible.

5.3.2 Some Optimization -01

We first note that both compilers immediately recog-
nize the infinite for and infinite while loops as being
equivalent to the non-branching version with a finite
for loop.

The most obvious optimization applied to all ver-
sions with both compilers is the conversion of the
incrementing for loop into a decrementing one. The
compiler identifies the static number of loop itera-
tions and takes advantage of the Zero Flag to save
an instruction, as described previously. We note a
slight difference in the handling of the nested for
loop between compilers. gcc converts both loops to
the decrementing style, while clang is only able to
optimize the outer loop in this way. The inner loop
remains an incrementing loop.

While not a loop-specific optimization, we see the
use of the stack is completely eliminated. All tempo-
rary values are stored in registers.

Branching Case The optimization of the branch-
ing case (again Figure 10) is much more compiler-
dependent. We see gcc use an add with carry in-
struction as follows:

and ecx,0x1
cmp ecx,0x1
adc eax,0x0

While this version is certainly an improvement over
the -00 version, it’s performance relative to the op-
timized version of the non-branching sample greatly
varies across architectures.

We see clang perform comparatively better than
gcc. clang recognizes the branching sample as func-
tionally identical to the non-branching algorithm and
emits the same exact target code for the two samples!
In fact all but the nested for samples have the same
exactly target code when compiled with clang.

5.3.3 More Optimization with gcc: -02 -03

The only further loop-based optimization we see by
advancing to —-02 is a slight loop reorganization that
has little performance effect. In fact, performance is
actually reduced on some architectures.® Because we
see the difference across all gcc samples, it is likely
due to some change in the consistent loop body.
Further optimizing at the -03 level produces two
changes. First, the nested for example now has a

6We recall that compilers will optimize for the “average”
machine.

completely unrolled inner loop. This eliminates a few
jump instructions, which is good for pipelined per-
formance. Second, the branching version now uses a
conditional move:

lea ecx, [rax+0x1]
test dil,Oox1
cmove eax,ecx

This has little effect on two of three architectures
tested; the program slows by approximately 45 per-
cent on the third (Pentium 4).

5.3.4 More Optimization with clang: -02

The only further optimization made at the -02 level
is loop unrolling. clang completely unrolls the nested
for loop program. We now have 32 repetitions of a
shr, not, and, add cycle.

5.3.5 Summary

For this third example, we see clang making
the clever realization that the branching and non-
branching samples are functionally equivalent. This
allows us to remove conditional statements, which al-
low the pipeline to flow more naturally. A more nat-
urally flowing pipeline—that is, one will fewer stalls
mis-predictions—will give better performance.

Loop unrolling takes advantage of this fact: by
eliminating conditional jump statements, we cannot
have mis-predictions! It is not surprising, then, that
the samples which were ultimately unrolled have the
best performance across architectures. It is surpris-
ing, however, that this comes from the (arguably)
worst-written sample. Both branching and non-
branching samples are reasonable implementations of
the algorithm. Ostensibly, an unnecessary nested for
loop is exactly that: unnecessary. However, we see
30—40 percent performance boosts in comparison to
non-unrolled loops.

We should not, however, take this result and use
it as an endorsement of unnecessary and cluttering
control constructs. They serve only to obfuscate the
purpose of the code and when compilers begin to rec-
ognize the ability to optimize, there will be no ad-
vantage. If performance is that high a consideration,
inline assembly is likely the best solution.

10

6 Conclusions

In line with Amdahl’s Law, improving the perfor-
mance of loops will likely improve the performance
of the entire program as most of the execution time
of many programs is spent inside loops. Modern C
compilers such as gcc and clang provide many loop-
specific optimizations that can better performance
metrics.

With these machine-independent and machine-
dependent optimizations available, the compiler is
able to take quite inefficient programs and increase
performance by orders or magnitude.

Both gcc and clang use standard loop optimiza-
tions such as loop inversion, reduction of induction
variables, extracting loop constants, and loop un-
rolling. They seem to also have a nearly identical set
of x86 optimizationsAs these two compilers are dom-
inating the market and competing with each other, it
is only natural that they mirror each other’s progress.

However, we see obvious potential optimizations
that neither compiler is able to make. Nested for
loops are sometimes converted to a single loop via
loop unrolling. Neither compiler, though, was able
to recognize that the nesting was functionally unnec-
essary and could be reduced to an equivalent, still-
rolled loop. Unused variables are optimized away,
why not superfluous control structures?

If generalizations about the loop performance of
compilers could be made, it would be this: clang
seems to produce better target code at lower opti-
mization levels, but the two compilers produce very
similarly performing code at the highest optimization
levels. Considering pure, unoptimized code, in cases
with a clear performance differential, gcc seems to
outperform clang.

We note, though, that many shun the highest levels
of optimization because it often creates large binaries.
Similarly, many avoid using low levels of optimiza-
tion because it doesn’t do enough. Perhaps the most
common optimization level is -02, where compilers
often strike a pleasant balance between speed and
size. With this level of optimization on the modern
systems tested with loop-dominant programs, clang
executable performance is equal to if not better than
gcc binary performance. |

A Performance Evaluation

Below we see the median execution times over 20 tests. The magnitudes of the times themselves are largely
irrelevant between different tests but are help equivalent across all of the same tests over different optimization
levels, compilers, and machines. The number of iterations was chosen to provide a reasonable runtime. We

see a table for each compiler on each machine.

Performance for i7 Quad core can be found in Table 1 and Table 2 for gcc and clang, respectively. Perfor-
mance for Xeon 16-core can be found in Table 3 and Table 4 for gcc and clang, respectively. Performance

for Pentium 4 can be found in Table 5 and Table 6 for gcc and clang, respectively.

gcc | 00 01 02 03
Basic 1.535250 0.740309 0.750498 0.744492
Branch 4.331550 0.745291 0.738352 0.745730
Infinite for 1.756510 0.743746 0.752588 0.741769
Infinite while 1.743800 0.740280 0.751422 0.739939
Nested for 1.595010 0.623453 0.440711 0.437040
Induction variable | 5.004260 0.203298 0.203790 0.192637
Loop inversion | 6.033830 0.182433 0.187445 0.187577

Table 1: gcc, Intel i7 Quad Core, times in seconds

clang ‘ 00 o1 02 03
Basic 1.620 0.640 0.640 0.640
Branch 3.640 0.640 0.640 0.640
Infinite for 1.670 0.640 0.640 0.640
Infinite while 1.670 0.640 0.640 0.640
Nested for 1.670 0.720 0.460 0.460
Induction variable | 2.320 0.410 0.410 0.410
Loop inversion 4.050 0.180 0.180 0.180

Table 2: clang, Intel i7 Quad Core, times in seconds

11

gcce | 00 01 02 03

Basic 1.565 0.890 0.740 0.740
Branch 3.460 0.720 0.750 0.740
Infinite for 1.580 0.890 0.740 0.740
Infinite while 1.580 0.890 0.740 0.740
Nested for 1.630 0.820 0.800 0.460
Induction variable | 3.380 0.410 0.410 0.220
Loop inversion 4.590 1.760 0.170 0.170

Table 3: gcc, Intel Xeon 16 core, times in seconds

clang ‘ 00 o1 02 03
Basic 1.620 0.640 0.640 0.640
Branch 3.640 0.640 0.640 0.640
Infinite for 1.670 0.640 0.640 0.640
Infinite while 1.670 0.640 0.640 0.640
Nested for 1.670 0.720 0.460 0.460
Induction variable | 2.320 0.410 0.410 0.410
Loop inversion 4.050 0.180 0.180 0.180

Table 4: clang, Intel Xeon 16 core, times in seconds

gec | 00 01 02 03
Basic 4.015420 1.484550 1.490820 1.491320
Branch 7.169850 1.814280 1.831730 2.643850
Infinite for 4.386650 1.481490 1.489430 1.491940
Infinite while 4.376770 1.479890 1.487900 1.490690
Nested for 4.804280 1.605150 1.717000 1.188230
Induction variable | 9.997740 3.948260 4.112130 4.387550
Loop inversion 11.033000 2.070470 0.688073 0.688639

Table 5: gcc, Intel Pentium 4, times in seconds

clang | 00 01 02 03
Basic 3.377270 1.654560 1.654590 1.654020
Branch 6.779970 1.651640 1.652980 1.654070
Infinite for 3.882610 1.652520 1.654050 1.652970
Infinite while 3.876050 1.651210 1.653400 1.652260
Nested for 3.626910 1.719660 0.993197 0.997602
Induction variable | 16.628900 3.65794 3.833720 4.08955
Loop inversion 12.505200 0.679849 0.676784 0.680679

Table 6: clang, Intel Pentium 4, times in seconds

12

B SSE2 Usage

Below we show excerpts from the x86 using xmm registers. Figure 20 shows what clang emits. Figure 22
shows the hand-tuned x86 based on clang output. Figured 21 shows what gcc emits. We also present the
modified source code in Figure 19 (modified from Figure 9).

1 #include <stdlib .h>
#include <stdint.h>

2

int *ind_var(uintl6_t in) {

int *a = malloc(sizeof *a % in % 8);

6 int i, marker;

7 for (i = 0; i < in; ++i) {

8 marker = 8 x i}

9 a[marker + 0] = in % 2;
a[marker + 1] = in % 3;
a[marker + 2] = in % 5;

2 a[marker + 3] = in % 7;
a[marker + 4] = in % 11;
a[marker + 5] = in % 13;
a[marker + 6] = in % 17;
a[marker + 7] = in % 19;

}
return a;
}
Figure 19: Alteration of Figure 9 with 8 sequential writes per loop.
prepare r8d, esi, ebx, edx
vpinsrw xmm0,xmm0,r8d ,0x0 ; in % 2
vpinsrw xmm0,xmm0, esi ,0x2 ; in % 3
vpinsrw xmm0,xmm0, ebx ,0x4 ; in % 5
vpinsrw xmm0,xmm0, edx,0x6 ; in % 7

prepare r8d, edx, esi, edi
vmovdqu XMVMWORD PTR [rbx—0x1c] ,xmm0
mov DWORD PTR [rbx—0xc],r8d
mov DWORD PTR [rbx—0x8] ,edx
mov DWORD PTR [rbx—0x4], esi
[

mov DWORD PTR [rbx],edi
add rbx ,0x20

inc ecx

cmp ecx ,rl4dd

jl 400740 ; vmovdqu

Figure 20: Selections from clang version of induction variable C code from Figure 19.

13

prepare edx

vmovd xmml,edx ; in % 2
prepare esi

vmovd xmm0, esi

prepare esi, edi
vpinsrd xmmO0,xmm0, esi ,0x1
xor esi,esi

vpinsrd xmml,xmml, edi ,0x1

vpunpcklgdq xmm?2,xmml,xmm0

vinsertf128 ymm2,ymm2,xmm2,0x1
beginning of main loop

mov rdi, rsi
add rsi,0x1
shl rdi ,0x5
cmp ecx , esi

vmovdqu XMVWORD PTR [rax+rdi 1] ,xmm?2
vextractf128 XMMWORD PTR [rax+rdi*14+0x10] ,ymm2,0x1

ja 400776 ; beginning of main loop
cmp edx , r8d

mov ecx ,r8d

je 4007d0 ; exit_final

vzeroupper

; shift_unpack_leave:

shl ecx ,0x2

vpunpcklgdq xmmO,xmml,xmm0

movsxd rcx,ecx

vmovdqu XMMWORD PTR [rax+rcx *4] ,xmm0
mov rbx ,QWORD PTR [rbp—0x8]

leave
ret

NOPs for alignment
xor ecx , ecx

vpinsrd xmmO0,xmm0, esi ,0x1

vpinsrd xmml,xmml, edi,0x1

jmp 40079d ; shift_unpack_leave
NOPs for alignment
exit_final:

vzeroupper

mov rbx ,QWORD PTR [rbp—0x8]
leave

ret

Figure 21: Selections from gcc version of induction variable C code from Figure 19.

14

prepare r8d, esi, ebx, edx

vpinsrw xmm0,r8d,0x0 ; in % 2
vpinsrw xmmO, esi ,0x2 ; in % 3
vpinsrw xmm0,ebx,0x4 ; in % 5
vpinsrw xmm0,edx,0x6 ; in % 7
prepare r8d, edx, esi, sdi
vpinsrw xmml,r8d,0x0 ; in % 11
vpinsrw xmml,edx,0x2 ; in % 13
vpinsrw xmml, esi ,0x4 ; in % 17
vpinsrw xmml, edi ,0x6 ; in % 19

NOPs for alignment
vmovdqu XMVWORD PTR [rbx—0x1c] ,xmm0
vmovdqu XMMWORD PTR [rbx—0xc] ,xmml
add rbx ,0x20

inc ecx
cmp ecx ,rldd
jl 4007b0 ; first movdqu

Figure 22: Selections from Hand-optimized version of induction variable C code from Figure 19.

15

