Storage of String Literals using gcc in a Unix Environment

Chae Jubb
ecj2122@columbia.edu

28 November 2014

1 Introduction

Most, if not all, C programs use string literals to
communicate with the user who runs the resulting
program. They are probably most often seen in print
statements as format specifiers for functions such as
fprintf and related. The use of string literals, how-
ever, is not limited to this family of print statements.
String literals may be assigned to a char pointers or
used as shorthand for an initializer for char arrays,
among others.

Because of the vast differences in these two use
cases, we investigate gcc’s handling of string literals
when used in these ways. How does gcc handle the
differences in write permissions? How does it opti-
mize for size vs. speed of the resulting executable?
This paper attempts to answer these and other ques-
tions.

2 Background

Below I present a background description of both
string literals and the layout of gcc output executa-
bles. Both will be helpful in understanding the fol-
lowing analysis.

That analysis is done using Ubuntu 14.04 64 bit
version with gcc 4.8.2.

2.1 Description of String Literals

String literals are described in §3.1.4 of the C89 stan-
dard as a “sequence of zero more more multibyte
characters enclosed in double-quotes”. These string
literals are required to have static storage duration

and type “array of char”. Additionally, identical
string literals need not be distinct, meaning the com-
piler is permitted to combine and isolate them. How-
ever, we cannot edit string literals. An attempt to
modify a string literal results in undefined behavior.
In practice, this usually amounts to a segmentation
fault.

We also see the C standard describe the char array
initialization in §3.5.7. A char array may be initial-
ized by a string literal, which is optionally enclosed
in braces. If there is enough room or the size of the
array unknown, a terminating null character will be
copied into the array after the characters that make
up the string literal.

2.2 Description of ELF

The Executable and Linkable Format file format is
used as the standard binary format for Unix exe-
cutables. At a high level, the executable consists of
many sections which are loaded into specific mem-
ory segments upon execution. (These segments will
be marked with Read/Write/Execute permissions de-
pending on the section loaded.) For our purposes, the
following segments are relevant:

.text This section contains the program code. It
is usually loaded in a segment with Read and
Execute permissions.

.rodata This section contains read-only data. As
the name suggests, it is usually loaded in a seg-
ment with only Read permissions.

.data This section contains writable data. Initial-
ized static variables fall into this section, which



is usually loaded into a segment with Read and
Write permissions.

.bss This section also contains writable data. It is
very similar to the .data section except it stores
uninitialized (or initialized to 0) static variables.
At runtime, it is virtually indistinguishable from
the .data section.

2.3 Assembly: x86 Style

As we are examining the emitted assembly code, we
provide a brief introduction to the x86 ISA. We do so
by analyzing one of the most complicated instructions
used below:

rep movs QWORD PTR es:[rdi],
QWORD PTR ds: [rsil

While this single instruction may seem intimidat-
ing (and you may wonder how it’s even implemented
in Silicon!), we break it down and find it more man-
ageable.

rep prefix This prefix indicates that we will repeat
the following command the number of times stored in
the ecx register. Properly, we repeat until ecx equals
zero, decrementing ecx after each repetition. In this
case, we execute the movs operation ecx times.

movs instruction This instruction will move the
value from the second operand into the first operand.
It is important to note that a mov instruction does not
clear the data from the second operand. It may be
more appropriately thought of as a copy operation.

movs operand We analyze the first operand only
for brevity. Firstly, we are operating on the value
at the address stored in the rdi register (destination
index). (The es prefix indicates that we are using
the segment specified by the es register. This can be
ignored for our purposes.)

The QWORD PTR indicates that we are treating the
rdi value as the address of a quadword. This quad-
word specification is important, because it tells us
how big a space to copy (4 words or 64 bits) in a sin-
gle iteration. Had this been DWORD (2 words), WORD

(1 word), or BYTE (1 byte), we would need to adjust
the ecx register in order to copy the same amount of
data.

2.3.1 Summary

The instruction mentioned above will copy ecx num-
ber of QWORDs from the section of data starting with
the address in rdi to the section of data starting with
address in rsi. We are copying a total of ecx*4 bytes.

2.4 Pointers vs. Arrays

Pointers are often implicitly converted to arrays,
when being passed as function arguments, for exam-
ple. However, the C programmer must not lose sight
of their important differences.

The C standard describes the frequent conversion
of arrays to pointers:

Except when it is the operand of the sizeof
operator or the unary & operator, or is a char-
acter string literal used to initialize an array of
character type [...] an lvalue that has type “ar-
ray of type ” is converted to an expression that
has type “pointer to type ” that points to the
initial member of the array object and is not an
lvalue.

This implicit conversion happens often, but the
underlying structure is fundamentally different. We
must remember that when an array is filled with a
string literal, that array is editable; however, when a
pointer points to a string literal, that string literal is
read-only. This difference (and others) motivates the
different ways in which the compiler handles string
literals.

3 Outline

To examine the behavior most clearly, we design the
test program such that we are simply assigning a
string literal and then printing it using printf. The
printf will better ensure that the variable we assign
the string literal to is not optimized away.!

1By invoking printf on our variable, we ensure the opti-
mizing compiler will not deem it unnecssary and remove it.



I #include <stdio.h>

N

int main() {
char c¢[5] = "word”; y
printf(?%s\n”, c); 5
return 0; 6

} 7

Figure 1: Simple program with single array 10

I #include <stdio.h>

N}

int main() {
char c1[211] =
”wordsandwordsandwords”
”wordsandwordsandwords”
”wordsandwordsandwords”
”wordsandwordsandwords”
”wordsandwordsandwords”
”wordsandwordsandwords”
”wordsandwordsandwords”
”wordsandwordsandwords”
”wordsandwordsandwords”
”wordsandwordsandwords” ;

char *c2 = ”wordsandwordsandwords” ;
printf ("%s %s\n”, cl, c2);
return 0;

}

Figure 2: Moderately complicated program with ar-
ray and pointer

Experimentation is done using three different size
strings (including null character): 5, 22, 211. These
arbitrarily chosen values allow us to experiment with
short, medium, and long strings. All strings of each
length will be identical.

The simplest programs have only one string literal,
assigned to either a char array or a char pointer. We
see an example in Figure 1.

More complicated programs have each one char
array and one char pointer. Enough of these types
of programs were tested to allow for each combination
of sizes. We see an example in Figure 2.

Finally, more versions are tested such that we have
two identical arrays of the same size. A variation is
done on this such that one array will be labeled const
and the other not. We see an example in Figure 3.

1 #include <stdio.h>

3 int main() {

const char cl[22] =
”wordsandwordsandwords” ;

char ¢2[22] = ”"wordsandwordsandwords” ;

char *c3 = ”"wordsandwordsandwords” ;

printf ("%s %s %s\n”, cl, c2,
return 0;

c3);

Figure 3: Complicated program with multiple arrays
and a pointer

We are thus testing a total of 21 programs.
Each program will be compiled with various opti-
mization flags. The sets of flags used include:

00 Default optimization (none).

01 Basic optimizations

02 More optimizations. Nearly all optimizations

without a space-speed tradeoff

03 Even more optimizations.

0s Optimize for size

03 fmerge-all-constants Includes 03 optimiza-
tions plus an optimization to merge identical

constants, including constant initialized arrays.

4 Analysis

I first lay out an analysis for the default case: no
optimization by highlighting the result of each test.
From that, I move on to the differences that each
subsequent level of optimization causes.

4.1 Default Optimization 00

The analysis of the single string literal was by far the
most straightforward.

Using a char pointer produced a simple mov in-
struction:

mov QWORD PTR [rbp-0x8], 0x4005d4



where 0x4005d4 is an address in the .rodata section
that is the beginning of a string of bytes represent-
ing that string literal. We note this behavior was
consistent regardless of the size of the string. The
only difference was the size allocated in the .rodata
section for the string.

4.1.1 char arrays

Using a short char array, however, produced mov in-
structions that filled space on the stack with an im-
mediate:

mov
mov

DWORD PTR [rbp-0x10], 0x64726f77
BYTE PTR [rbp-Oxc], 0x0

The first instruction here loads in “word” and the
second the null terminating byte.

Similarly, a medium-sized char array produced the
following instructions:

movabs rax, 0x646e617364726f77
mov QWORD PTR [rbp-0x20], rax
movabs rax, 0x646e617364726f77

mov QWORD PTR [rbp-0x18], rax
mov DWORD PTR [rbp-0x10] ,0x64726f77
mov WORD PTR [rbp-Oxc], 0x73

These instructions load the medium-sized string
“wordsandwordsandwords” onto the stack. We im-
portantly note that this does include loading the null
byte because with the final mov instruction we are
loading a WORD size not a BYTE, meaning we are re-
ally loading 0x0073 onto the stack to complete the
array.

Finally, we examine a long string. This case is
much more interesting as we are in fact copying the
string from the .rodata section onto the stack.

lea rdx, [rbp-0xf0]

mov eax,0x4006b8

mov ecx,0xla

mov rdi,rdx

mov rsi,rax

rep movs QWORD PTR es: [rdi],
QWORD PTR ds: [rsi]

mov rax,rsi

mov rdx,rdi

movzx ecx, WORD PTR [rax]
mov WORD PTR [rdx],cx
add rdx,0x2

add rax,0x2

movzx ecx, BYTE PTR [rax]
mov BYTE PTR [rdx],cl
add rdx,0x1

add rax,0x1

Let’s demystify the above snippet. We first load the
address of the stack array into rdx. Next, we load
the address of the 211 character string in the .rodata
section. After this, we move the number of QWORDs (8
bytes) that we’ll copy using the rep command. We
then move from the .rodata section to the stack.

The commands after this are simply to fill in the
bytes we did not copy because we were copying with
QWORD length. The syntax is a bit unusual to fit the
syntax of the rep paradigm.

4.1.2 Combined Results

When we compile a program with multiple string lit-
erals we interestingly see independent behavior. That
is the arrays will behave as above and the pointers
will behave as above, with each having no effect on
the others.

We do see, though, that when the array uses an
address in the .rodata section, it is the same address
that the pointer uses, here 0x4006d8:

lea rdx, [rbp-0x£f0]
mov eax,0x4006d8
mov ecx,0xla

mov rdi,rdx

mov rsi,rax

rep movs QWORD PTR es: [rdi],
QWORD PTR ds: [rsil

mov rax,rsi

mov rdx,rdi

movzx ecx,WORD PTR [rax]
mov WORD PTR [rdx],cx
add rdx,0x2

add rax,0x2

movzx ecx,BYTE PTR [rax]
mov BYTE PTR [rdx],cl
add rdx,0x1



add
mov

rax,0x1
QWORD PTR [rbp-0xf8],0x4006d8

We finally note that labeling const seems to have
no effect on how the string literal is loaded.

4.2 Some Optimization 01

Applying a small level of optimization has very little
effect in terms of how the arrays are loaded. The only
noticeable effect was the consolidation of movs when
using a medium-length string and the elimination of
a stack variable for the pointer (which is only used in
the printf statement):

movabs rax,0x646e617364726£77

mov QWORD PTR [rsp],rax

mov QWORD PTR [rsp+0x8], rax

mov DWORD PTR [rsp+0x10],0x64726£77
mov WORD PTR [rsp+0x14],0x73

mov QWORD PTR [rsp+0x20],rax

mov QWORD PTR [rsp+0x28],rax

mov DWORD PTR [rsp+0x30],0x64726£f77
mov WORD PTR [rsp+0x34],0x73

mov r8d,0x4006d4d4

All but the last line show how the two medium-sized
arrays are loaded. Notice only one movabs command,
putting the long constant into a register, compared
to that same constant being reloaded into the register
before each use when compiled with no optimization.
The final line shows the address of the string constant
being loaded directly into the r8 register.

We notice, however, that the constant value cor-
responding to the short string is not loaded into a
register. It is directly movd onto a stack address each
time.

4.3 More Optimization 02

We see very little effect on the loading of arrays here.
The single noticeable difference was the reordering of
the loads into the array. At lower levels of optimiza-
tion, the arrays were loaded in order: this is no longer
the case. Additionally, when two arrays were present,
their loads were interspersed with each other.

4.4 Most Optimization 03

We see no difference here in the structure of loads of
arrays and pointers. There are differences in code,
but none are related to the storage of string literals.

4.5 Merging Constants

The fmerge-all-constants flag seems to have no ef-
fect when used in conjunction with 03 and Os (which
will be discussed below).

4.6 Optimizing for Size Os

We see a clear effect when compiling with Os. First,
we see that the compiler lowers the threshold for di-
rectly loading vs. copying into an array. Medium-
sized strings are now copied from .rodata in the
same way that long strings are.

This will reduce the size of the binary because there
is a size-overheard involved with the mov command.
That is, we must specify that it is a mov command
and also where to move—in each instruction. With
the rep movs approach, we have a single instruction
that will repeat multiple times, thus saving space.

However, short strings are not loaded in this way.
They still use mov instructions.

A final, interesting note: when using this opti-
mization level, the compiler can detect overlapping
strings.

Let us consider the case where we have a long string
being stored into an array as well as a medium-sized
string being stored into a pointer. Here, we will copy
data into the array from the .rodata section, where
this is a string of length 211. When assigning the
pointer, however, we simply point to the appropriate
byte 21 from the end of the large sequence. That is,
the strings will share a null byte in .rodata! It is im-
portant to note that this is only possible because the
strings end the same. Additionally important to note:
they do not share an null byte once the sequence of
bytes in copied into the array. More precisely, the
source of the array copy shares a null byte with the
pointer.

We only see this behavior with a combination of
medium and large strings. Short strings are still di-



rectly loaded. However, a combination of medium
and short strings do this regardless of which is as-
signed to an array and which to a pointer.

5 Findings

As expected, the compiled binaries reflect that
paradigm that assigning a string literal to an array is
shorthand notation for braced initializer. The strings
are always copied into the stack location of that ar-
ray variable. On the other hand, pointers are sim-
ply loaded with the address of a string literal in the
.rodata section. This reflects the usual paradigm
of raising a segmentation fault upon attempting to
write to a string literal.

Even at no optimization, if the string is long
enough that the compiler decides to store it in
.rodata and have it copied in, it will condense the
reference to that string literal such that there is only
one copy in the .rodata section.

Optimization level has surprisingly little effect
(outside of 0s). We see very few changes as we move
through 00 to 03.

However, using Os will increase the compiler’s pref-
erence for using the copy from .rodata over using
multiple mov instructions. Of note, the compiler will
recognize when one string ends with another, arrang-
ing the .rodata section such that string literals may
share null bytes.

Even though arrays and pointers are sometimes
interchangeably used, this investigation makes clear
their underlying, important differences. The compiler
handles them drastically differently, and the careful
C programmer will do the same.



