
 

Debugging Aspect-Enabled Programs 

Marc Eaddy1, Alfred Aho1, Weiping Hu2, Paddy McDonald2, Julian Burger2 

 
1 Department of Computer Science 

Columbia University 

New York, NY 10027 
{eaddy, aho}@cs.columbia.edu 

 
2 Microsoft Corporation 

One Microsoft Way 

Redmond, WA 98052 
{weipingh, paddymcd, julianbu}@microsoft.com 

Abstract.  The ability to debug programs composed using aspect-oriented pro-

gramming (AOP) techniques is critical to the adoption of AOP.  Nevertheless, 

many AOP systems lack adequate support for debugging, making it difficult to 

diagnose faults and understand the program‘s composition and control flow.  

We present an AOP debug model that characterizes AOP-specific program 

composition techniques and AOP-specific program behaviors, and relates them 

to the AOP-specific faults they induce.  We specify debugging criteria that we 

feel all AOP systems should support and compare how several AOP systems 

measure up to this ideal. 

We explain why AOP composition techniques, particularly dynamic and binary 

weaving, hinder source-level debugging, and how results from related research 

on debugging optimized code help solve the problem.  We also present Wicca, 

the first dynamic AOP system to support full source-level debugging.  We dem-

onstrate how Wicca‘s powerful interactive debugging features allow a pro-

grammer to quickly diagnose faults in the base program behavior or AOP-

specific behavior. 

1   Introduction 

We use the term debuggability to mean the ability to diagnose faults in a software sys-

tem, and to improve comprehension of a system, by monitoring the execution of the 

system.  Many debugging techniques exist, including source-level debugging, printf-

style debugging, assertions, tracing, logging, and runtime visualization. 

The ability to debug aspect-enabled programs is important for many reasons.  The 

interaction of aspects with a system introduces new fault types and complicates fault 

resolution [2].  Programmers rely on debugging to diagnose these faults and perform 

post-mortem analyses.  Debugging is also an important tool for program comprehen-

sion.  Aspect functionality can drastically change the behavior and control flow of the 



 

base program, leading to unexpected behavior [2] and resulting in the same complexi-

ty that multi-threaded programs are notorious for.  Debugging provides a way to de-

mystify these intricacies and better understand the composed program.  

Aspect-oriented programming (AOP) [28] is still an emerging field with many dif-

ferent techniques for aspect specification, composition, and integration.  Along with 

tool support, debugging support serves as an indicator of AOP maturity [17, 32].  

Commercial software developers are hesitant to adopt aspect-oriented software devel-

opment practices or ship AOP-enabled products that are difficult to debug and service 

[2, 17, 24, 25]. 

Debugging is no substitute for aspect visualization [17] and testing.  Indeed they 

are complementary:  aspect visualization provides the ability to predict aspect beha-

vior; testing provides a process for automatically detecting anomalies; and debugging 

provides a way to manually detect, diagnose, and fix anomalies and to better under-

stand program behavior. 

The outline and contributions of this paper are as follows: 

 We argue that debugging aspect-enabled programs is more difficult and possibly 

more important, than debugging conventionally composed programs. 

 We present a general model for discussing debugging aspect-enabled programs.  

The model includes a classification of AOP-specific composition techniques and 

AOP-specific program behaviors, and a fault model.  We define the properties of 

an ideal AOP debugging solution, including support for debug obliviousness and 

debug intimacy. (§2) 

 We evaluate several current AOP systems as to how well they support AOP de-

bugging. (§3) 

 Since many AOP systems employ source or binary code transformations, we 

consider how this affects source-level debugging, and present solutions sug-

gested by related research on debugging optimized code. (§4) 

 We present Wicca, our dynamic AOP system that employs a novel weaving 

strategy to provide full source-level debugging, and is the first dynamic AOP 

system to do so (§5).  We present the results of a debugging experiment using 

Wicca that demonstrates its unique AOP debugging capabilities. (§6) 

2   A Debug Model for AOP 

Our AOP debug model has five components: a classification of AOP-specific compo-

sition techniques (weaving strategies), a classification of AOP-specific program beha-

viors (AOP activities), a fault model, a definition for debug obliviousness, and a set of 

debugging criteria. 

2.1   A Classification of Weaving Strategies 

The AOP-specific composition technique, i.e., weaving strategy, used by an AOP sys-

tem has a strong impact on its debuggability.  Weaving is classified as either invasive 

or noninvasive, depending upon whether or not it performs a transformation of the 



 

Fig. 1. The relationships between different 

AOP weaving strategies 
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base program code to enable aspect functionality.  Invasive systems are further classi-

fied into source weavers and binary (byte-code or machine-code) weavers.  Noninva-

sive systems are classified by whether they use a custom runtime environment or in-

terception.  Figure 1 depicts how the different dimensions of the weaving strategies 

are related. 

During source weaving (the solid line in Figure 1), aspects are woven into the pro-

gram by performing a source-to-source transformation, usually by transforming the 

abstract syntax tree representation of the 

program.  The woven source is then com-

piled to create the final program.  Because 

the aspect code is woven directly into the 

source code, it is possible to perform full 

source-level debugging on the aspect code 

using standard debuggers. 

A downside of binary weaving (the 

dashed line in Figure 1) is that debug in-

formation may be invalidated by the weav-

ing process or unavailable for injected 

code [2, 25].  Furthermore, companies like 

Microsoft have based their technical sup-

port on the assumption that an executable 

file and its associated attributes (date, size, 

checksum, and version) are fixed.  Invasive 

weaving breaks that assumption. 

Extensions to the runtime environment 

(the dotted line in Figure 1), e.g., AOP-

enabled virtual machines and call intercep-

tion plug-ins, enable aspect functionality 

noninvasively, i.e., without modifying the 

base program.  Unfortunately, aspect-

related behavior that is implemented in the 

extension may be difficult to debug. 

2.2   A Classification of AOP Activities 

An AOP activity is any program behavior that occurs either inside the base program or 

inside some AOP infrastructure in support of a concept from the AOP semantic model.  

We use the AspectJ semantic model [27] as our reference.  Table 1 categorizes the 

AOP activities that we have gathered from studying a wide-variety of AOP systems.  

Some activities, such as advice execution, map naturally to AspectJ-like language se-

mantics, while others are common implementation approaches for supporting those 

semantics.  Different AOP systems may combine or omit some activities.  For the pur-

poses of this paper, to qualify as an AOP system the only required activity is advice 

execution, which corresponds with the definition in [13]. 

We do not attempt to classify all AOP-related behavior.  The level of granularity 

chosen is designed to be widely applicable while at the same time able to differentiate 



 

AOP systems based on their varied debug capabilities.  The terminology is general 

enough to apply to other advanced techniques for the separation of concerns, including 

multi-dimensional separation of concerns (Hyper/J), composition filters, adaptive pro-

gramming, and subject-oriented programming. 

2.3   Fault Model 

Each of the AOP activities in Table 1 introduces the possibility for new types of faults 

that were absent from the base program.  Alexander et al. [2] specified a fault model 

for AOP that classified the new types of faults that AOP introduces that are distinct 

from the fault models of object-oriented and procedural programming languages.  

These AOP fault types were later extended by Ceccato et al. [8].  We build upon their 

work by generalizing and consolidating some of these fault types, by adding two of 

our own (object identity errors and incorrect join point context), and by associating 

the fault types with the AOP activities that may exhibit them. 

Incorrect pointcut descriptor or advice declaration – A pointcut does not match a 

join point when expected, or the advice type (e.g., before, around), pointcut type (e.g., 

call, execution) or deployment type (e.g., ―per‖ semantics) are incorrect.  Exhibited by 

activities: dynamic aspect selection, aspect instantiation, and aspect activation. 

Incorrect aspect composition – Multiple aspects that match the same join point are 

executed in the wrong order.  Exhibited by activities: dynamic aspect selection, aspect 

instantiation, and aspect activation. 

Table 1. AOP activities that programmers would like to be able to debug 

Activity Purpose Examples 

Dynamic 

aspect 

selection 

Determines at runtime which 

aspects apply and when. 

Dynamic residue (if, instanceof, and 

cflow residue left over by dynamic cross-

cuts) [4, 21].  Can involve runtime reflec-

tion or calls into the AOP system.  In-

cludes join point context reification [18]. 

Aspect  

instantiation 

Instantiates or selects aspect 

instances to fulfill deploy-

ment/scoping semantics [21]. 

―Per‖ deployment semantics [21], in-

stance-level advising, and aspect facto-

ries. 

Aspect  

activation 

Alters control flow to execute 

advice and provides access to 

join point context. 

Advice method call, inlined advice code, 

runtime interception [31], dynamic prox-

ies [7], and trampolines [29]. 

Advice  

execution 

Execution of the advice body. Inlined code, method call 

Bookkeeping Maintains additional AOP 

dynamic state. 

Thread-local stack for cflow pointcuts 

[21]. 

Static  

scaffolding 

Static modifications to the 

program‘s code, type system, 

or metadata. 

Introductions needed to support intertype 

declarations, per-clause aspects, mixins, 

and closures. Code hoisting. [7, 21] 

 



 

Failure to establish expected postconditions or preserve state invariants – Advice 

behavior or AOP activity causes a postcondition or state invariant of the base program 

to be violated.  Exhibited by activities: advice execution.  However, this fault can be 

caused by a faulty implementation of any AOP activity. 

Incorrect focus of control flow – A pointcut that depends on dynamic context in-

formation, e.g., the call stack, does not match a join point when expected.  The cflow 

and if pointcut types are examples.  Exhibited by activities: dynamic aspect selection, 

aspect activation, and bookkeeping. 

Incorrect changes in control dependencies – Advice changes the control flow in a 

way that causes the base program to malfunction.  For example, adding a method over-

ride changes the dynamic target of a virtual method call.  Exhibited by activities: as-

pect activation, advice execution, and static scaffolding. 

Incorrect changes in exceptional control flow – Exceptions that are thrown or 

handled differently than they were in the base program may cause new unhandled ex-

ceptions to be thrown or prevent the original exception handlers from being called.  

Exhibited by activities: dynamic aspect selection, aspect activation, and bookkeeping. 

Object identity errors – Type modifications (intertype declarations) or proxies 

break functionality related to object identity such as reflection, serialization, persis-

tence, object equality, runtime type identification, self-calls, etc.  Exhibited by activi-

ties: static scaffolding. 

Incorrect join point context – The join point context available to a piece of advice 

is incorrect due to faulty context binding or reification.  Exhibited by activities: dy-

namic aspect selection, aspect activation, and advice execution. 

This list can be extended to include more fault types.  The main idea is that AOP 

activity can introduce new types of faults that need to be debugged.  We measure the 

debuggability of an AOP system by how easy it is to diagnose these faults.  However, 

we will see in the next section that debuggability is at odds with the programmer‘s 

desire to remain oblivious of AOP activities. 

2.4   Debug Obliviousness and Intimacy 

When debugging an aspect-enabled program, the goal of debug obliviousness is to 

maintain a view of the program as if no weaving has taken place.  Obliviousness is the 

primary goal for debugging optimized programs [20] as well as programs that use 

software dynamic translation [29] because these transformations preserve the seman-

tics of the original program.  Despite the relative importance attached to this goal [15], 

we are aware of no AOP system that fully supports obliviousness during debugging.  

The only alternative is to debug the original (non-aspect-enabled) program.  However, 

the original program may not be available, or may require some aspects to function 

correctly. 

Debug obliviousness is difficult to attain for invasive AOP systems because the de-

bugger cannot distinguish between (untangle) the aspect and base program code [19].  

Noninvasive systems, on the other hand, hide most aspect-related behavior by default.  

They still need to inform the debugging process, however, so that control flow 

changes related to aspect execution are also hidden.  Otherwise, stepping through 

source code in the debugger results in unexpected jumps into aspect code.  Complete 



 

obliviousness will not be possible in cases where the program‘s join points are entirely 

bypassed, for example, when around advice does not invoke the original join point. 

Debug obliviousness becomes a liability when trying to diagnose a fault introduced 

by the AOP system.  In this situation, we desire debug intimacy, the converse of debug 

obliviousness. 

2.5   Properties of an Ideal Debugging Solution 

An ideal AOP debugging solution will support debugging of all AOP activity when 

required or desired, and complete obliviousness otherwise.  The properties of an ideal 

debugging solution for AOP are 

(P1) Idempotence – Preservation of the base program‘s debug information.  Idempo-

tence ensures that whatever debug information was available before aspects were 

added to the base program is also available after.  Noninvasive systems do not 

modify the original program at all.  AspectJ and our Wicca system are examples 

of invasive systems that use source and binary weaving and ensure the debug in-

formation is maintained. 

(P2) Debug obliviousness – The ability to hide AOP activity during debugging so 

programmers only see the base program‘s behavior and code. 

(P3) Debug intimacy – The ability to debug all AOP activity including injected and 

synthesized code. 

(P4) Dynamism – The ability to enable/disable aspects at runtime.  When a fault oc-

curs, the process of elimination can be used to rule out specific aspects. 

(P5) Aspect introduction – The ability to introduce new aspects, e.g., debugging and 

testing aspects, in an unanticipated fashion.  An example of this is dynamic as-

pect introduction that allows aspects to be introduced without restarting. 

(P6) Runtime modification (also called edit-and-continue) – The ability to modify 

base or aspect code at runtime, e.g., to quickly add a printf statement, enable 

tracing, or try out a bug fix, without restarting.  This is useful for interactive de-

bugging and for diagnosing hard-to-reproduce bugs. 

(P7) Fault isolation – The ability for the debugger to automatically determine if a 

fault lies within the base code, advice code, or some other AOP activity code.  

Invasive weavers may invalidate the traditional assumption that library bounda-

ries establish ownership since AOP-related code or metadata, possibly written by 

a third party, is intermingled with the base program [19]. 

3. An Evaluation of the Debuggability of Existing AOP Systems 

In Table 2, we show the results of our evaluation of a representative sample of AOP 

systems based on our ideal debugging properties. 

 

Static AOP.  All the Java byte-code weavers satisfy the idempotence property, be-

cause they maintain the debug information of the original program when weaving.  

Java stores debug information inside the class file, alongside the class definition and 
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AOP-Engine   

Arachne   

AspectJ  

AspectWerkz    

Axon    

CaesarJ 

CAMEO  

CLAW  
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Handi-Wrap   

Hyper/J  

JAsCo    

nitrO   

Wicca v1     

PROSE v2     

SourceWeave.NET  

Steamloom     

Wool     

 - Fully supported

 - Partial advice execution  debugging supported

 - Partial obliviousness supported

- Fully supported 

- Partial advice execution debugging supported 

- Partial obliviousness supported 
 

Table 2. AOP debuggability comparison matrix. Our system, Wicca, is shown in bold 

byte code.  The debug information is co-located with the class file, and its format is 

well documented, improving the likelihood that byte-code rewriters will propagate it 

correctly. 

For Windows executables, debug information is stored in a separate program data-

base (PDB) file that becomes invalid when the executable is transformed.  Ideally, the 

transformation process would update the debug information but this is a very complex 

process.  Our Wicca system is the only .NET byte-code weaver (that we are aware of) 

that updates the debug information, which is made possible by the Microsoft Phoenix 

backend compiler framework1. 

 

Dynamic AOP.  Invasive dynamic AOP systems transform the base program by using 

dynamic proxies [7] or by injecting join point stubs (also called hooks or trampolines) 

at all potential join points [6, 9, 16].  These systems typically support debugging of 

                                                           
1 http://research.microsoft.com/phoenix 



 

advice execution.  Aspect selection, instantiation, or activation logic, however, may be 

implemented inside the dynamic AOP infrastructure [19] and may be difficult to de-

bug.  This difficulty makes it hard to understand the woven program‘s control flow 

and diagnose problems related to aspect ordering and selection (―Why didn‘t my as-

pect run?‖)  [2]. In addition, hook injection may invalidate the base program‘s debug 

information (violating the idempotence property), which will result in a confusing or 

misleading debugging experience. 

Noninvasive dynamic AOP systems use a custom runtime environment (e.g., JRock-

it2, Steamloom [19], PROSE [31]) or take advantage of interception services (e.g., 

.NET Profiler API [16], Java debugger APIs [3, 31]), to provide AOP functionality 

without transforming the base program.  These systems have the benefit that the base 

program‘s debug information is left intact (idempotence).  They suffer from the draw-

back that any AOP activities that are implemented as part of the runtime or native li-

brary are not debuggable.  Aspect-enabled programs can be confusing to debug at the 

source level because control flow appears to change mysteriously; e.g., stepping into a 

function in the debugger results in a different function being entered.  In addition, use 

of the Java debugger APIs to implement dynamic AOP currently prevents the applica-

tion from being debugged inside a standard debugger. 

4   Source-Level Debugging 

Source-level debuggers strive to maintain the illusion of a source-level view of pro-

gram execution.  They commonly allow the programmer to set location and data 

breakpoints, step through code, inspect the stack, inspect and modify variables and 

memory, and even change the running code.  To enable this, the debugger requires a 

correspondence between the program‘s compiled code and source code.  This debug 

information is generated during compilation and consists of file names, instruction-to-

line number mappings, and the names and memory locations of symbols.  The infor-

mation is usually stored inside the program executable, library, or class file, or in a 

separate debug information file.  It may be absent if the build process excluded it, to 

lower the memory footprint for example, or if it was stripped out for the purposes of 

compression or obfuscation. 

When compilation involves a straightforward syntax-directed translation [1], the 

compiler can provide a one-to-one correspondence from byte code (or machine code) 

and memory locations to source.  The correspondence becomes more complicated as 

transformations are applied at various stages of the pre-processing, compilation, link-

ing, loading, just-in-time compilation, and runtime pipeline.  This lack of correspon-

dence between the source and compiled code makes it difficult for the debugger to 

match the actual behavior of the executing code with the expected behavior from the 

source-code perspective [34], and leads to the code location and data-value problems 

that have been studied extensively in the context of debugging optimized code [14, 20, 

                                                           
2 http://dev2dev.bea.com/jrockit 



 

29, 34].  In the context of debugging aspect-enabled programs these problems have 

been mentioned but briefly [2, 7, 24, 25]. 

In the AOP context, we define full source-level debugging as the ability to perform 

source-level debugging on all the AOP activities listed in Table 1. 

4.1   The Code Location Problem 

The code location problem arises when transformations are applied that prevent a one-

to-one correspondence between compiled code and source code.  In the domain of 

optimizing compilers [1], the problem is caused by the removal, merging, duplication 

(in-lining), reordering, or interleaving of instructions.  In the domain of AOP weaving, 

the code location problem is usually caused by the removal (e.g., hoisting [4]), inser-

tion (e.g., code synthesis, dynamic residue, aspect method calls, aspect in-lining, clo-

sures), duplication (e.g., initialization in-lining), or reordering (e.g., due to around-

advice) of instructions [21].  The problem causes the debugger to show the wrong 

source line or call stack, or show byte code (or machine code) instead of source code. 

4.2   The Data-Value Problem 

The data-value problem occurs when transformations obscure the correspondence 

between variables in the source code and locations in memory [20].  Optimizing com-

pilers commonly fold constants, eliminate common subexpressions, and represent va-

riables in registers instead of memory (sometimes the same storage location will 

represent different variables at different times).  In the context of AOP, weavers may 

add fields to classes (introduction) and formal arguments and local variables to me-

thods (e.g., for context exposure) [21].  This problem causes the debugger to show 

new variables or fields incorrectly, e.g., it may be missing or have the wrong name. 

4.3 Possible Approaches for Supporting Source-Level Debugging 

Below we have consolidated and generalized some common approaches to the 

problem of performing source-level debugging of aspect-enabled programs. 

Source weaving [33] – Wicca, AspectJ, and SourceWeave.NET [25] are example 

AOP systems that use source weaving and support full source-level debugging. 

Debugger-friendly weaving – Wicca, AspectJ, and AspectWerkz [7] are example 

AOP systems that use binary-level weaving but are able to preserve the original debug 

information, thus supporting the idempotence property (P1). 

Annotation [5] – Refers to the ability to annotate aspect code to provide rich debug 

information, to allow the debugger to hide the code in support of debug obliviousness, 

and to support fault isolation.  Although AspectJ and Steamloom [19] use byte code 

annotation, no AOP system that we are aware of currently uses annotation for debug-

ging purposes. 

Reverse engineering [2, 23] – When the debugger encounters byte or machine code 

that has no matching source information, it can hide the code if debug obliviousness is 

desired or synthesize the source code on-the-fly if debug intimacy is desired. 



 

Static analysis [20] – Static analysis techniques can be used to detect injected 

aspect code, for example, and, similar to annotation, used to provide debug 

information or to support obliviousness. 

To allow the programmer to be truly oblivious of the aspects composed with the 

program, source-level debugging must hide all AOP-related code and behavior.  How-

ever, we are aware of no AOP system that fully supports this.  In §6, we show how 

intimate source-level debugging is useful for debugging AOP-specific faults.  This is 

akin to directing a C compiler to display preprocessed source files to diagnose prob-

lems with include files and macros.  Furthermore, when the transformation technology 

is immature, as is the case for AOP, a source-level representation of the transforma-

tion helps implementers detect faults [29, 34]. 

Noninvasive AOP implementations may not weave code at all.  For these imple-

mentations, the ability to debug AOP-related code at the source level is nonsensical.  

However, these systems can still provide support for debug obliviousness and intima-

cy.  For example, intimacy can be supported by showing a runtime visualization of the 

base program and aspect behavior [17].  For obliviousness, only the base program 

behavior is shown. 

5   Wicca 

Most dynamic AOP solutions involve binary weaving, a custom runtime, dynamic 

proxies, or method call interception.  To support full source-level debugging, Wicca 

takes a new approach—it performs dynamic source weaving. 

5.1 Overview 

Wicca3 v1 is a prototype dynamic AOP system for C# applications that performs 

source weaving (the solid line in Figure 1) at runtime.  The woven source code is 

compiled in the background and the running executable is patched on-the-fly [12].  

The entire weave-compile-update process takes less than 2.5 seconds for a C# pro-

gram with 14,531 source lines on a Pentium IV 3.6 GHz processor.  Wicca v1 uses the 

.NET Profiler API to enable dynamic weaving and patching, which imposes a 5-7% 

runtime overhead on application performance when compared to running the program 

without aspects enabled.  Wicca also supports static byte-code weaving.  A more de-

tailed description of Wicca including performance measurements can be found in the 

expanded version of this paper [11]. 

Because all AOP activities are represented in source code, the programmer can per-

form full source-level debugging on the woven program using wdbg, our custom de-

bugger.  In addition, several ancillary debugging activities are supported: 

 Full source-level debugging (idempotence and debug intimacy) 

 Aspects can be enabled/disabled at runtime (dynamism) 

 Aspect rules, located in an XML file, can be changed at runtime (dynamism) 

                                                           
3 Derived from the Old Norse word vikja meaning to turn, bend and shape. 



 

 New aspects can be introduced at runtime (aspect introduction) 

 Advice code can be modified at runtime (runtime modification) 

 Base code can be modified at runtime (runtime modification) 

To our knowledge, Wicca is the first dynamic AOP system to support full source-

level debugging and modification of advice and base code at runtime.  Although Wic-

ca uses a radical approach, i.e., dynamic source weaving, this approach offers unique 

interactive source-level debugging capabilities.  If the interactive capabilities are not 

needed, static source weaving [25] is a simple and sufficient alternative. 

5.2 The Wicca Debugger (wdbg) 

Wdbg is the first debugger we are aware of that supports source-level debugging of 

dynamically updated programs.  It is an extension to the Microsoft cordbg command-

line debugger.  An extension was required because standard Windows debuggers do 

not support dynamically changing the debug information associated with the applica-

tion being debugged.  Without this extension, the source code and variables displayed 

in the debugger may be incorrect.  Static weavers do not have to deal with this issue. 

 

5.3 Limitations 

Wicca v1 has limited AOP functionality.  Only before and after advice, and method 

execution and field access join points, are supported.  Introductions (inter-type decla-

rations) are not supported.  Wicca v1 also requires source code for both the base pro-

gram and the aspects.  While Wicca v1 does not support debug obliviousness, this 

could be achieved using our statement annotation technology [10]. 

Due to a limitation of the Profiler API, we are not able to update a function that is 

active on the stack. The function is updated the next time it is called. Unfortunately, 

wdbg will incorrectly show the woven source code instead of the original source code, 

if the function has been updated yet. We expect the fix for this to be straightforward. 

6   Evaluation 

In this section we present the results of an experiment to demonstrate the interactive 

debugging capabilities of Wicca.   

6.1   Experimental Setup 

We are given a buggy C# class that is supposed to implement a stack (see Listing 1) 

and a test driver for exercising the stack class.  We will use Wicca to interactively 

diagnose and fix the bugs.  To help diagnose the bug, we create an aspect that embo-

dies the design-by-contract (DBC) [30] principle.  DBC allows the programmer to 

make assertions [22] about the system, in the form of preconditions, postconditions, 

and class invariants.  For example, the class invariant for the stack class is that the top 



 

public class Stack { 

   ArrayList elements = new ArrayList(); 

   public void push(object arg1) { 

      elements.Add(arg1); 

      elements.Add(arg1); // <-- Bug! 

   } 

   public object pop() { 

      object popped = top(); 

      elements.RemoveAt(elements.Count-1); 

      return popped; 

   } 

   public object top() { 

      return elements[elements.Count-1]; 

   } 

   ... 

Listing 1. A stack class written in C# that contains a 

bug in the push() method 

element of a non-empty stack 

must not be null.  Its push method 

has a precondition that the object 

being pushed is non-null, and a 

postcondition that the stack‘s size 

has been incremented. 

Normally, the assertion check-

ing and handling code is scattered 

throughout the system.  By loca-

lizing the assertion code into a 

DBC aspect (Listing 2), we ob-

tain many benefits including im-

proved code clarity, the ability to 

easily change the assertion viola-

tion policy, to strengthen or weaken class invariants, to add assertions to a class after-

the-fact, and to automate contract enforcement. [26]  Moreover, unlike normal asser-

tions which are only checked for debug builds, or which require continuous checking 

at runtime, Wicca can inject these test probes [22] on demand, thus completely elimi-

nating checking overhead when assertions are disabled. 

6.2   Detecting Faults using Test Probes 

To test the stack class we create a test driver that pushes several items onto the stack 

and then pops each one while writing its value to the console.  Shortly after launching 

the test driver, we notice a bug (see Listing 1) where every item in the stack is dupli-

cated.  While the driver is running, we enable the stack DBC aspect, which may al-

ready exist or which we may have introduced for this debugging task.  Wicca detects 

this change and rebuilds (reparses, reweaves, and recompiles) the driver, taking a total 

of 610 ms on a Pentium IV 3.6 GHz processor. 

Listing 3 shows the aspect rule file after we added the stack DBC aspect and 

enabled weaving.  Immediately, the aspect code detects a postcondition violation and 

public class StackDBCAspect { 

  static int __savedCount; 

 

  static void PostCond_push(Stack __this, object arg1) { 

    if (__this.isEmpty()) 

      throw new InvalidOperationException( 

        "Postcondition violated: Stack is empty after push"); 

    if (__this.top() != arg1) 

      throw new InvalidOperationException( 

        "Postcondition violated: Pushed item is not on top of stack"); 

    if (__this.count() != __savedCount + 1) 

      throw new InvalidOperationException( 

        "Postcondition violated: Stack size did not increase " + 

        "by one after push"); 

   } 

        ...pre and postconditions for pop, etc... 

Listing 2.  A design-by-contract aspect for the stack class.  Variables that start with ―__‖ 

are renamed during weaving 



 

Listing 3.  Aspect rule file with erroneous before and after advice. 

throws the exception: ―Postcondition violated: Stack is empty after push.‖ The excep-

tion message provides the file name and line number where the exception occurred.   

6.3   Just-In-Time Debugging 

We launch the Wicca debugger, wdbg, to debug the exception.  After pointing wdbg 

to the debug information of the woven program, we can step into the push method and 

see the interwoven source code (see Figure 2).  What is significant about this figure is 

that the base program and all AOP activities are debuggable at the source level. 

Looking at the source code for the push method, it is obvious that there are actually 

two bugs: the precondition and postcondition are switched and the Add method is 

called twice.  The first bug is a manifestation of an AOP-specific fault: incorrect 

pointcut descriptor.  This fault is difficult to diagnose without a source-level represen-

tation of the woven code.  From the woven code it appears that the postcondition and 

precondition are switched.  Looking closely at the aspect rules in Listing 3 reveals that 

the push precondition (PreCond_push) is erroneous because the advice type is ―after‖ 

when it should actually be ―before‖, and similarly for the postcondition. 

Fig. 2. A wdbg debugging session showing aspect code interwoven with the stack class. The 

asterisk (*) indicates the current line. 



 

A quick change to the aspect rules to fix this oversight causes Wicca to reparse, re-

weave, and recompile the driver.  As expected, an exception is thrown immediately 

but this time with the correct message: ―Postcondition violated: Stack size did not in-

crease by one after push.‖  After removing the extraneous Add method call, Wicca 

rebuilds the driver, and we immediately see the correct behavior.  At no time during 

the debugging session did we have to restart the test driver. 

7   Related Work 

A few systems deserve further comment.  SourceWeave.NET [25] employs a very 

similar source weaving strategy that is designed to improve source-level debugging.  

However, it weaves statically whereas Wicca weaves dynamically, enabling aspects to 

be introduced and reconfigured at runtime. 

Few AOP systems support debug obliviousness or fault isolation, which requires a 

debugger to identify AOP activity code.  AspectJ and Steamloom support byte-code 

annotations for identifying aspects to prevent recursion during weaving [21] and to 

facilitate aspect removal [19].  As far as we know, no AOP system uses byte-code 

annotations to support obliviousness or fault isolation. 

8   Conclusion 

We described the problem of debugging aspect-enabled programs and why it has be-

come an important gating criterion for the adoption of AOP.  We provided a debug 

model for AOP that classified all AOP activities, related them to the new type of faults 

they can introduce, outlined the properties of an ideal debugging solution, and sur-

veyed the state of the art of AOP debugging.  For source-level debugging, we ex-

plained how the nature of binary weavers gives rise to the code location problem, that 

originates from the field of optimizing compilers.  We showed how results from that 

community apply to debugging aspect-enabled programs. 

We demonstrated how our Wicca system offers a novel approach to debugging dy-

namically composed aspect-enabled programs.  Wicca is the first dynamic AOP sys-

tem to support full source-level debugging.  It does this by employing a novel dynamic 

source weaving strategy that combines source weaving with online byte-code patching 

with relatively low overhead.  Our future work will be to explore using byte-code an-

notations [10] to fully support debug obliviousness and fault isolation. 
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