
Towards Assessing the Impact of Crosscutting Concerns

on Modularity

Marc Eaddy Alfred Aho

Department of Computer Science

Columbia University

New York, NY 10027

{eaddy,aho}@cs.columbia.edu

1. INTRODUCTION

The goal of aspect-oriented programming is to

modularize crosscutting concerns. To fully

appreciate this goal, we must first understand how

crosscutting concerns affect modularity and software

quality, and to what extent. This is hard to quantify,

partly because terms such as “crosscutting”,

“concern”, and “modularity” are ill-defined [11] [1],

and partly because the scope of the crosscutting

concern problem is unknown.

We propose a research agenda whose first step is

to formalize the crosscutting concern problem. We

present a set theoretic concern model (§2) that

formalizes terminology and provides a foundation for

a suite of concern metrics (§3) for quantifying the

distribution and separation of concerns. Second, we

must determine the extent of the problem. We

advocate a concern assignment methodology (§4)

whereby all the concerns of a program (and their

associated code fragments) are rigorously identified.

The third step is to argue convincingly that

crosscutting concerns negatively impact modularity

and software quality. For this, we propose to

correlate our concern metrics with traditional

modularity metrics and external quality indicators

such as fault proneness [10] (§5).

2. CONCERN MODEL

For the concern model, we extend the work of

Berg, Conejero, and Hernández [1], which we briefly

summarize here, by applying a set theoretic

treatment. This makes the model more amenable for

defining our concern metrics.

The concern model consists of an abstract source

domain S, a target domain T, and a trace relation R.

The source domain is an abstract concern domain,

the elements of which are individual concerns. An

example of a well-defined concern domain is a

formal requirements specification.

The target domain may be another concern

domain, or an implementation specification, the

elements of which are individual software

components (e.g., files, classes, methods,

statements). The target domain can also be treated as

the source domain for another (S, T, R) tuple. This

allows a concern to be traced from initial

identification to subsequent phases of the software

lifecycle [1].

Scattering can now be defined as the case when a

source element is related to multiple target

elements. Tangling is when a target element is

related to multiple source elements. [1] These

definitions concur with [6].

We define crosscutting as follows: a crosscutting

concern is a scattered concern, i.e., a concern

related to multiple target elements. This definition

agrees with [7, p. 4]. Berg et al. [1] and some other

researchers define crosscutting with respect to

scattering and tangling; however, we do not believe

tangling is an essential ingredient. We conjecture

that tangling is included to indicate inherent

complexity, the assumption being that a tangled

concern is both harder to modularize and hurts

modularity more than a nontangled concern.

However, no evidence exists to support this claim.

3. CONCERN METRICS

We recast the closeness metrics created by Wong

et al. [13] using our set theoretic concern model, to

form the basis for our concern metrics. (We assume

that all of the concerns of the program have been

identified beforehand and associated with their

corresponding program statements, perhaps using the

methodology described in §4.)

3.1 Degree of Scattering (DOS)

Concentration (CONC) [13] measures how many

of the statements related to a concern s are contained

within a specific component t (e.g., a file, class,

method):

The drawback of this metric is that it does not

give a sense for how scattered a concern is and it

does not allow concerns to be compared. To resolve

this, we created the degree of scattering (DOS)

metric (for brevity we do not show its derivation):

where T is the set of program components. DOS is a

measure of the variance of the concentration of a

concern over all components with respect to the

worse case (i.e., when the concern is equally

scattered across all components). A concern that is

completely localized has a DOS of 0, whereas a

concern that is uniformly distributed has a DOS of 1.

A high DOS indicates the implementation of a

concern is highly scattered (crosscutting). A

localized implementation is a defining characteristic

of a module, so a concern that is crosscutting is by

definition not modular. Furthermore, the

components across which the implementation of the

concern is scattered are less modular than if the

crosscutting concern were not present. Without

providing an equation for measuring modularity, we

can assume that it is inversely proportional to the

average degree of scattering (ADOS, obtained by

averaging DOS over all the concerns of the program).

3.2 Degree of Focus (DOF)

Dedication (DEDI) [13] measures how many of

the statements contained within a component t are

related to concern s.

Again, the drawback is that it is hard to get a

sense for how well concerns are separated in a

component. To resolve this, we created the degree of

focus (DOF) metric:

where S is the set of concerns. DOF is a measure of

the variance of the dedication of a component to

every concern with respect to the worse case (i.e.,

when the component is equally dedicated to all

concerns). DOF is 0 when a component’s “attention”

is uniformly divided among every concern, and 1

when a component is dedicated to one concern. The

average degree of focus (ADOF) gives an overall

indication for how well concerns are separated in the

program.

DOS and DOF can also be used to evaluate a

software design, guide refactoring decisions, and

compare refactoring alternatives. They measure the

relationship between logical entities (concerns) and

physical entities (components). Hence, they provide

more information than traditional metrics (e.g., the

CK metrics), which only measure relations between

physical entities. For example, degree of scattering

provides a direct measure of the change impact

associated with changing a requirement, and more

accurately predicts change cost than the CK metrics.

Previous concern metrics ([14], [9], [11], and [6])

detect the presence of a concern, but do not measure

the degree of presence. A concern whose

implementation is split 99-1 between two

components would be considered equal to a concern

split 50-50. Thus, common refactorings such as

consolidating redundant code into a reusable function

would not be deemed beneficial by their metrics.

4. CONCERN ASSIGNMENT

METHODOLOGY

Our concern metrics require that statements of the

program are associated with concerns. To allow

concerns and components to be compared and to

determine the extent of the amount of crosscutting

present in a program, a complete concern assignment

must be performed.

Concern assignment is a hard problem [2].

Manual efforts to reverse engineer source code to

divine the implemented concerns can lead to

assignments that are inconsistent (different people

have different assignments), inaccurate (a statement

is assigned to the wrong concern), and incomplete

(not all statements or concerns are assigned) [3] [11]

[5] [8]. While more consistent, automated methods

also lead to inaccuracies [5] [4].1

Our goal is to obtain a complete and accurate

picture of the nature and scope of the crosscutting

present in a program. To this end, we advocate using

a formal requirements specification as the concern

domain (as opposed to reverse engineering or mining

the concerns). For concern assignment, we adopt a

form of requirements tracing where we manually

assign a requirement concern to a program statement

if the removal of the requirement would necessitate

the removal or modification of the statement.

We call this a removal dependency-based

assignment. In our experience, this methodology is

more straightforward than the minimal subsets,

minimal increments-based technique [3] because it

eliminates the need to reverse engineer the concern

domain. Assignment reduces to a simple litmus test

to determine if a removal dependency exists between

two well-defined elements.

We refer to the set of statements associated with

the requirement as the concern slice for that concern.

The concern slice directly indicates the change

1 Nevertheless, we are considering incorporating some type

of automation to ease the assignment burden.

impact associated with removing an existing

requirement, and more importantly, it approximates

the impact associated with modifying a requirement

or adding a new requirement. More evidence is

needed to confirm this hypothesis.

5. CONCLUSION

We established a formal foundation for assessing

the crosscutting concern problem. We presented

metrics that directly measure the distribution and

separation of concerns in a program, and showed

how they provide unique insights into modularity and

change impact.

We outlined a methodology for identifying all the

concerns of a program and associating them with

every program statement, which allows us to obtain a

complete picture of the crosscutting present in the

program, and evidence of the scope of the

crosscutting problem. For example, for one case

study we observed that 53% of the feature concerns

of the program where crosscutting at the file level,

indicating a significant potential for improving the

modularity of the program and motivating the need

for techniques to modularize crosscutting concerns.

We plan to conduct a series of case studies to

validate our metrics and methodology, and to

correlate our metrics with other modularity measures

[12] and external quality indicators such as fault

proneness [10]. One study is almost complete and

the preliminary results are very promising. For

example, we now know an accurate concern

assignment (as described in §4) is essential for

ensuring measurement repeatability.

6. REFERENCES

[1] K. v. d. Berg, J. M. Conejero, and J. Hernández,

"Analysis of Crosscutting across Software

Development Phases based on Traceability,"

Wkshp. on Aspect-Oriented Requirements

Engineering and Architecture Design, 2006.

[2] T. J. Biggerstaff, B. G. Mitbander, and D.

Webster, "The concept assignment problem in

program understanding," Intl. Conf. on Software

Engineering, 1993.

[3] L. Carver and W. G. Griswold, "Sorting out

Concerns," Wkshp. on Multi-Dimensional

Separation of Concerns, 1999.

[4] M. Ceccato, M. Marin, K. Mens, L. Moonen, P.

Tonella, and T. Tourwe, "Applying and

Combining Three Different Aspect Mining

Techniques," Software Quality, 14(3):2006.

[5] T. Eisenbarth, R. Koschke, and D. Simon,

"Locating features in source code," IEEE

Transactions on Software Engineering, 29(210-

224, March 2003.

[6] E. Figueiredo, A. Garcia, C. Sant'Anna, U.

Kulesza, and C. Lucena, "Assessing Aspect-

Oriented Artifacts: Towards a Tool-Supported

Quantitative Method," Wkshp. on Quantitative

Approaches in OO Software Engineering, 2005.

[7] R. E. Filman, T. Elrad, S. Clarke, and M. Aksit,

Aspect-Oriented Software Development. Boston,

MA: Addison-Wesley, 2005.

[8] A. Lai and G. C. Murphy, "The Structure of

Features in Java Code: An Exploratory

Investigation," Wkshp. on Multi-Dimensional

Separation of Concerns, 1999.

[9] A. Lai and G. C. Murphy, "Capturing Concerns

with Conceptual Modules," 2001.

[10] N. Nagappan, T. Ball, and A. Zeller, "Mining

Metrics to Predict Component Failures," 2006.

[11] M. Revelle, T. Broadbent, and D. Coppit,

"Understanding Concerns in Software: Insights

Gained from Two Case Studies," Intl. Wkshp. on

Program Comprehension, 2005.

[12] S. L. Tsang, S. Clarke, and E. Baniassad, "An

Evaluation of Aspect-Oriented Programming for

Java-based Real-time Systems Development,"

Intl. Symp. on OO Real-Time Distributed

Computing, 2004.

[13] W. E. Wong, S. S. Gokhale, and J. R. Horgan,

"Quantifying the closeness between program

components and features," Journal of Systems

and Software, 54(2):87-98, 2000.

[14] C. Zhang and H.-A. Jacobsen, "Quantifying

Aspects in Middleware Platforms," Aspect-

Oriented Software Development, 2003.

