
Statement Annotations for Fine-Grained Advising 
 

Marc Eaddy  Alfred Aho 
 

Department of Computer Science 
Columbia University 
New York, NY 10027 

{eaddy,aho}@cs.columbia.edu 
 

ABSTRACT 

AspectJ-like languages are currently ineffective at modularizing heterogeneous concerns that are tightly coupled 
to the source code of the base program, such as logging, invariants, error handling, and optimization.  This leads 
to complicated and fragile pointcuts and large numbers of highly-repetitive and incomprehensible aspects.  We 
propose statement annotations as a robust mechanism for exposing the join points needed by heterogeneous 
concerns and for enabling declarative fine-grained advising. 

We propose an extension to Java to support statement annotations and AspectJ’s pointcut language to match 
them.  This allows us to implement heterogeneous concerns using a combination of simple and robust aspects and 
explicit and local annotations.  We illustrate this using a logging aspect that logs messages at specific locations in 
the source code.  Statement annotations also simplify advising specific object instances, local variables, and 
statements.  We demonstrate this using an aspect that traces method calls made to specific object instances and 
calls made from specific call sites. 

Keywords 
statement annotations, byte code annotations, fragile pointcut problem, logging problem, statement-level join 
points, instance-local advising

1. INTRODUCTION 
Aspect-Oriented Programming (AOP) improves the 
separation of concerns by modularizing the code 
related to a concern that would otherwise be scattered 
throughout a program and tangled with the code 
related to other concerns.  AspectJ-like languages are 
designed to modularize homogeneous concerns, 
which crosscut at module boundaries [17] and have a 
regular structure and common behavior [23].   

1.1 Heterogeneous Concerns 
Unfortunately, heterogeneous concerns, which 
exhibit irregular logic, are located at arbitrary places 
in the source code, and/or are highly coupled to the 
low-level structure of the code, are difficult to 
modularize using AspectJ-like languages [23].  

Workarounds include creating complex and fragile 
pointcuts, writing a large number of highly-repetitive 
aspects, refactoring the base program to artificially 
expose the needed join points, or even abandoning 
AOP in favor of non-AOP solutions.  The inability 
for AOP languages to effectively express 
heterogeneous concerns severely limits the potential 
for AOP to separate crosscutting concerns. 
This problem was first observed by researchers 
working on refactoring programs to use aspects.  
Murphy et al. needed to identify join points “in the 
middle of methods” to refactor graphical user 
interface code [15].  Since AspectJ could not capture 
these join points directly, their solution was to insert 
dummy method calls “which exist solely to provide 
access to the desired join points.”  This workaround 
has become so common in the AspectJ community 
that it is considered a de facto aspect refactoring 
idiom [8] [13]. 
In another refactoring exercise, Sullivan et al. 
observed that the logging concern was scattered 
across 180 different locations in the HyperCast 
application [20].  The arbitrary locations of the log 
messages required 20-30 complicated pointcut 
declarations that could only approximate the actual 
locations.  Furthermore, the pointcuts were highly 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted 
without fee provided that copies are not made or 
distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first 
page. To copy otherwise, or republish, to post on servers 
or to redistribute to lists, requires prior specific 
permission and/or a fee.  
 
Reflection, AOP and Meta-Data for Software Evolution 
(RAM-SE 2006) 



public class HelloWorld { 

 public static void main(String args[]) { 

  @State(State.Starting) 

  System.out.println("Hello, World!"); 

 } 

} 

Listing 1. Statement annotation example. 

dependent on the structure of the underlying source 
code and would easily break when the code is 
modified.  This is referred to as the fragile pointcut 
problem [14] [20].  Pointcut fragility in turn leads to 
the AOSD-evolution paradox [22], where programs 
written using AOP are actually harder to evolve, even 
though they are more modular.  Other researchers 
have commented on the fragility of logging, 
optimization, and error handling aspects and the need 
for more robust and powerful pointcut languages [1] 
[5] [14] [17] [18] [19].  

1.2 Our Approach: Statement 
Annotations 

Statement annotations allow us to “name” any 
statement in a method body in a declarative fashion 
and attach arbitrary metadata.  Statement annotations 
can be used to expose the join points needed to 
implement a heterogeneous concern or to perform 
fine-grained (instance- and statement-level) advising.  
This provides many benefits: 
Pointcuts are simple and robust because they depend 
on semantically meaningful annotations instead of 
arbitrary program syntax or source locations [14] [3]; 
Advising is more fine-grained because advice can be 
applied to individual statements or object instances.  
While this is possible using other techniques, 
statement annotations provide a simple declarative 
way to perform fine-grained advising; 
Advice is more reusable because it can access 
annotation metadata instead of hard-coding it; 
Concerns can be easily integrated using a unified 
AOP solution instead of requiring a mixture of an 
AOP solution (for homogeneous concerns) and a non-
AOP solution (for heterogeneous concerns); 
The relationship between the base code and aspects 
is local and explicit, improving comprehensibility 
and maintainability [11]. 
Statement annotations must be invasively scattered 
throughout the base program and are thus 
crosscutting.  We view this as an engineering 
tradeoff: we gain robustness, explicitness, and 
locality at the expense of obliviousness and 
modularity.  Modularity is not sacrificed completely, 
however.  Indeed, the parts of the concern that can be 
modularized effectively are specified in the aspect; 
the remainder is specified using annotations. 

1.3 Outline 
In Section 2 we describe statement annotations, show 
how pointcut matching in AspectJ-like languages can 
be easily extended to match them, and how they can 
be used to implement the heterogeneous logging 
concern.  In Section 3 we describe fine-grained 

advising and how it can be used to enable instance- 
and statement-level tracing.  We discuss the tension 
between locality/explicitness and modularity with 
respect to statement annotations in Section 4 and 
related work in Section 5.  Section 6 concludes. 

2. STATEMENT ANNOTATIONS 
Java and C#/.NET provide a flexible mechanism for 
allowing the programmer to attach annotations to 
program elements such as classes, methods, and 
fields.  The annotations are stored in the class file as 
metadata and can be retrieved via reflection.  
However, these languages do not support annotating 
statements or byte code within the method body.  
This is unfortunate because statement annotations 
have the potential for a wide variety of uses: 

Optimization – Statement annotations could 
potentially be used to enable OpenMP1-style parallel 
processing directives for Java.  For example, some 
researchers have annotated for-loops to guide loop 
parallelization [2].  In addition, a compiler or other 
tool could annotate byte code with static analysis 
results to improve opportunities for optimization at 
JIT-time. 

Bookkeeping – A form of byte code marking is used 
by AspectJ to prevent recursive weaving [10], by 
Steamloom to allow efficient enabling/disabling of 
advice at runtime [9], and by Spec#2 to ignore 
injected code when performing static analysis.  
However, none of these systems allow arbitrary user-
defined metadata to be associated with byte code.  

Debugging and fault isolation – A debugger could 
selectively show or hide injected code based on the 
programmer’s desired level of obliviousness.  
Injected byte code could be marked to indicate the 
source weaver or tool to improve fault isolation. 

Listing 1 shows an example of what a statement 
annotation could look like in Java.3   

                                                           
1 http://www.openmp.org 
2 http://research.microsoft.com/specsharp 
3  For the remainder of the paper we will use examples in 

AspectJ and Java.  However, our extensions can be easily 
made to other languages. 



2.1 Statement Annotation Matching 
In AspectJ 5, pointcut expressions may contain 
annotation patterns, but they can only match regular 
Java annotations defined on methods, fields, etc.  We 
extend the pointcut expression matching algorithm to 
match statement annotations, effectively extending 
the AspectJ join point model to include any annotated 
statement.  This gives us fine-grained control over 
when advice is applied and can simplify pointcut 
expressions that have many special cases. 

Our proposed extension is very simple:  Any pointcut 
expression that allows an annotation pattern should 
consider statement annotations in addition to regular 
annotations.  For example, if method foo has the 
method annotation MA, and the statement annotation 
SA is used at a particular call-site, then the following 
AspectJ pointcuts will match that call-site: 

call(@MA * *(..)) 
call(@SA * *(..)) 
@annotation(MA) 

@annotation(SA) 

This matching algorithm allows us to use the same 
annotation at either method- or statement-level 
granularity.  If in the future we decide we need to be 
able to distinguish the two, we can introduce a new 
pointcut that only matches statement annotations. 

2.2 Statement Annotations Simplify 
Complicated Pointcuts 

In the HyperCast paper, Sullivan et al. observed that 
while it is sometimes possible to create pointcuts that 
match specific statements, they can become quite 
complicated [20]: 
pointcut HCLogicalAddrChanged(HC_Node node): 
set(I_LogicalAddress 
HC_Node.MyLogicalAddress) 

&& (withincode(void 
HC_Node.messageArrivedFromAdapter(I_Messa
ge)) 

|| withincode(void 
HC_Node.timerExpired(Object)) 

|| withincode(void 
HC_Node.resetNeighborhood())) 

&& target(node); 

Tourwé et al. observed that these kinds of 
complicated pointcuts arise because the pointcut 
language is too simplistic [22].  This hinders the 
evolvability of the base program because the 
pointcuts are likely to break if the underlying code 
changes. 

This pointcut can be simplified if we are allowed to 
annotate the base program using method annotations: 
pointcut HCLogicalAddrChanged(HC_Node node): 
set(I_LogicalAddress 
HC_Node.MyLogicalAddress) 

&& withincode(@MyAnnotation * *(..)) 
&& target(node); 

We can further simplify the pointcut by annotating 
the specific statements that require advising:4 
pointcut HCLogicalAddrChanged(HC_Node node): 
set(@MyAnnotation I_LogicalAddress 
HC_Node.MyLogicalAddress) 
&& target(node); 

In general, annotations allow program elements to be 
explicitly named, eliminating the need for 
complicated pointcut expressions [3] or meta-
programming.  Annotations are explicit and 
collocated with the source code so they are more 
likely to be maintained as the program evolves.  
Pointcuts are only dependent on the annotations 
instead of the underlying structure of the code so they 
are more robust to changes and more reusable. 
In the next section we show how to use a simple 
pointcut that matches statement annotations to 
implement the heterogeneous logging concern. 

2.3 Heterogeneous Concern Example: 
Logging 

Logging is the ability to record user-defined 
messages at specific points during the execution of 
the application.  Logging is an example of a 
heterogeneous concern because its very nature is ad 
hoc—each log message is unique and often located at 
arbitrary points in the source code.  Although both 
the tracing and logging concerns are complementary, 
and indeed often co-exist within the same application, 
logging is cumbersome to express using existing 
pointcut languages.  This problem has become known 
colloquially as the logging problem [4] [12] [1] [21], 
however, it is a general problem that occurs anytime 
we try to capture a heterogeneous concern using 
AspectJ-like pointcut languages. 
Listing 2 shows how the Note statement annotation 
can be used to expose specific join points within a 
method and attach arbitrary user-defined messages 
which can be logged by an aspect.  When naming 
annotations, Kiczales and Mezini advice is to “choose 
a name that describes what is true about the points, 
rather than describing what a particular advice will do 
at those points.” [11]  Using their terminology, we 
chose an “annotation-property”-like name for the 
annotation, e.g., Note, as opposed to an “annotation-
call”-like name, e.g., Log.5   

                                                           
4 Sullivan et al. took a different approach to simplify the 

pointcut that requires the base programmer to update a 
finite state machine (FSM) [20].  We believe our 
approach is complementary.  Indeed, statement 
annotations can be used to update the FSM. 

5 We thank Dean Wampler for suggesting this. 



a. 
...several statements... 
@Note("Searching for plug-ins...") 

...several statements... 

b. 
@Note("Entering very long, but hopefully not infinite, loop") 

while (true) { ... } 
@Note("Loop exited successfully") 

a-b. Using statement annotations to expose interesting events. 

aspect LogNotesAspect { 

 before(Note noteAnnotation) : @annotation(noteAnnotation) { 

  System.out.println(noteAnnotation.value() + " [" + thisJoinPoint + "]"); 

 } 

} c. Aspect for logging notes. 

Listing 2.  Logging using statement annotations.

2.3.1 Statement Annotations versus Procedure 
Calls and Macros 

The statement annotations in Listing 2 could be 
replaced with plain old procedure/method calls or 
macros.  However, advice methods are more 
powerful because they have access to richer join 
point context information and more evolvable 
because they can access this context implicitly.  
Another difference is that plain old method calls are 
always called, and therefore always incur some 
overhead, even if the aspect is disabled.  While 
macros can be used to alleviate this overhead by 
expanding to nothing at compile time, they do not 
help us at runtime. 
Finally, resorting to method calls and macros to 
implement a crosscutting concern represents a 
fundamental failure of our AOP language.  Some 
crosscutting concerns are implemented using AOP 
and some using non-AOP techniques even though the 
concerns may be very similar (e.g., tracing versus 
logging, error detection versus error handling) and 
may even share a common base implementation. 

2.3.2 Statement Annotations versus Dummy 
Method Calls 

In Listing 2a, an Event annotation appears at an 
arbitrary location in a method body.  Without the 
annotation it would be difficult or impossible to 
identify the join point using an AspectJ pointcut, and, 
even if we could, the resulting pointcut would be very 
fragile [20].  An alternative to using a statement 
annotation is to insert a dummy method call at this 
location, a common AspectJ programming idiom.   

However, we find this unsatisfactory for several 
reasons.  Dummy methods require a proliferation of 
empty methods which adversely affects design and 
code quality and can be confusing to the base 
programmer [15].  Statement annotations obviate the 
need for empty methods. Furthermore, statement 

annotations are less confusing because programmers 
familiar with annotation usage in Java and .NET are 
accustom to the interpretation of annotations at 
compile-time or postcompilation.  Functionality that 
is woven into the base program as a result of the 
annotations will be less surprising, than, say, using 
around advice to replace empty method calls. 

Unlike a statement annotation, a dummy method call 
is not directly associated with the next statement in 
the method body.  Instead, it adds a new join point to 
the program.  In the cases where the use of a 
statement annotation mirrors a method call or macro 
(aka an “annotation-call”), a dummy method call can 
be used instead.  However, in the cases where a 
statement annotation is used to name and/or associate 
metadata with another statement (aka an “annotation-
property”), dummy methods cannot be used.  This 
makes dummy methods unsuitable for expressing 
some heterogeneous concerns such as local variable 
invariants and loop optimization hints [7] [6] and for 
performing fine-grained advising. 

2.4 Statement Annotations Improve 
Statement-Level Pointcuts 

Listing 2b shows statement annotations that bracket a 
while-loop.  While AspectJ cannot match loops, some 
researchers have proposed extensions to the pointcut 
language to support matching statement-level join 
points of this kind [7] [6] [17].  While these proposed 
pointcuts make it easier to advise arbitrary 
statements, they are still fragile when they are used to 
identify specific statements. 

Statement annotations allow individual statements to 
be discriminated without relying on the specific 
statement syntax.  This means that if a while-loop is 
changed to a for-loop by the base programmer, the 
aspect will be unaffected.  Furthermore, because 
statement annotations are explicit they are more 



class BankAccount { 

 public void transferFundsTo(float amount, BankAccount destination) { 

  // Trace all calls made to the ar object 

  @Trace AuthorizationRequest ar = new AuthorizationRequest(this, destination); 

  // Trace a call made at a specific call site 

  @Trace destination.deposit(amount); 
  ... 

a. Statement annotations for tracing instances and specific method calls. 

aspect TraceAspect { 

 static Set instances = new HashSet(); 

 after() returning(Object o) : call(@Trace *.new(..)) { 

  instances.add(o); 

 } 

 before(Object o) : call(* *(..)) && target(o) && if(instances.contains(o)) { 

  System.out.println("Calling: " + thisJoinPoint); 

 } 

 before : call(@Trace * *(..)) { 

  System.out.println("Calling: " + thisJoinPoint); 

 } 

} b. Trace aspect using statement annotation matching. 

Listing 3.  Instance- and statement-level tracing.  The statement annotations in (a) indicate that all calls to the 
ar instance should be traced as well as the destination.deposit method call  The first advice in (b) adds 
instances created with the Trace annotation to the set.  The second advice traces all calls to instances in the 
advised set.  The third advice traces all calls originating from call-sites marked with the Trace annotation. 

likely to be kept up to date when the base source code 
is modified. 

3. DECLARATIVE FINE-GRAINED 
ADVISING 

Statement annotations are the first technique we are 
aware of for supporting declarative (as opposed to 
programmatic) instance- and statement-level 
advising.  Examples of systems that support 
programmatic advising are Steamloom [9] and Eos 
[16].  The AspectJ aspectOf construct supports this to 
a lesser extent.  The benefit of using statement 
annotations is that they only declare the 
programmer’s intention.  The actual advising is done 
by the aspect, where low-level decisions such as if 
and how instances will be advised can be deferred, 
rather than scattering these decisions throughout the 
base program, thus improving the separation of 
concerns. 

Tracing is the ability to record some or every method 
call6 made during the execution of an application.  
Unlike logging, tracing is a homogeneous concern 
because it is highly structured in nature—the message 
format is consistent and the message is recorded at 
                                                           
6 As well as other join points that can be easily expressed 

using AspectJ-like pointcut languages, such as field 
access. 

regular points in the execution of the application that 
are easily quantified using AspectJ-like pointcuts. 
Annotations allow us to use tracing in a more 
heterogeneous fashion.  For example, imagine we 
have a Trace annotation.  We can use it as a method 
annotation and attach it to a particular method so that 
all calls to that method will be traced.  Or we can use 
it as a statement annotation to trace calls made to a 
specific object instance or to advise specific call-
sites.  This would be hard to do using existing 
pointcut languages. 

Listing 3 shows an example of instance-level 
advising.  The Trace statement annotation marks the 
ar object instance which will cause all method calls 
to it to be traced.  The TraceAspect has advice that 
matches constructor calls that are marked with the 
Trace annotation and adds the object instance to the 
set of advised instances.  Another advice matches any 
method call to an instance in the advised set. 
In their paper on optimization aspects, Siadat et al. 
needed to advise a specific method call out of 
multiple calls to that method in the method body, but 
observed that AspectJ-like pointcut languages did not 
support this level of granularity [19].  Listing 3 shows 
an example of how this statement-level advising can 
be achieved using statement annotations. 
Notice that the Tracing aspect is a normal AspectJ 
aspect.  Without statement annotation matching 



support, the aspect will trace method calls to any 
instance of a class that has a Trace annotation on its 
constructor.   With annotation support, we can narrow 
the focus to specific instances and call sites. 

4. DISCUSSION 
Looking at the examples, it may appear that the 
logging and tracing concerns have not been 
modularized at all.  However, the parts of these 
concerns that can be modularized effectively, 
including how messages are formatted, what join 
point context is used, and where messages are sent, 
are modularized by the aspect.  For example, it would 
be relatively easy to change the aspects to send 
messages to a different location or to support 
asynchronous logging and tracing. 
The parts of these concerns that cannot be 
modularized effectively, namely the user-defined 
messages, the locations in code, and which object 
instances and statements to advise, are better captured 
using statement annotations.  The explicitness and 
locality of statement annotations makes it less likely 
that changes to the source code will invalidate the 
aspects, and makes it unnecessary for the programmer 
to have global system knowledge to assure that the 
pointcuts match correctly [14]. 

5. RELATED WORK 
Rho et al. present a fine-grained generic aspect 
language called LogicAJ2 [19].  Their pointcut 
language can match arbitrary declarations, 
statements, and expressions, and can bind to arbitrary 
join point context.  The use of meta-variables in 
pointcuts, introductions and advice enables them to 
achieve heterogeneous, context-dependent effects. 
Unfortunately, identifying specific statements still 
requires referencing concrete base entities. This 
introduces dependencies which might break if base 
entities change. 
By explicitly annotating the base code, using our 
statement annotations, for example, the base 
programmer could express these conceptual 
dependencies of aspects on base entities in a less 
fragile way at the expense of giving up obliviousness 
and introducing scattering in the base code.  This 
remains interesting future work. 

6. CONCLUSION 
We showed that by combining statement annotations 
and pointcuts, we can support instance- and 
statement-level advising, simplify pointcut 
expressions to make them more robust and reusable, 
and elegantly express heterogeneous concerns such as 
logging.  We did this by proposing a natural 
extension to the AspectJ pointcut matching algorithm 

that is consistent with AspectJ’s overall language 
philosophy. 

For identifying individual statements and code 
locations, statement annotations are more robust than 
using complex pointcuts or meta-programming, and 
more elegant and obvious than using dummy 
methods.  For advising specific object instances and 
statements, statement annotations are simpler and 
more succinct than using programmatic advising. 

Unfortunately, annotations require intrusive 
(nonoblivious) changes to the base program and do 
not completely modularize concerns.  It remains our 
future work to develop an AOP solution that can 
completely modularize heterogeneous concerns, 
possibly involving aspect visualization or automatic 
aspect refactoring, in a way that is easy to understand, 
maintain, and evolve. 

7. ACKNOWLEDGMENTS 
We thank Boriana Ditcheva for creating a 
preprocessor for legalizing statement annotations for 
C#, Vibhav Garg for adding support for statement-
level advising to Steamloom, and Kevin Sullivan and 
Yuanyuan Song for information about HyperCast.  
We also thank Matthew Arnold, Pascal Costanza, 
Günter Kniesel, and Dean Wampler for their 
feedback. 

8. REFERENCES 
[1] R. Bodkin, A. Colyer, and J. Hugunin. “Applying 

AOP for Middleware Platform Independence,” 
Practitioner Report. In Proc. of Aspect-Oriented 
Software Development (AOSD’03), March 2003. 

[2] W. Cazzola, A. Cisternino, D. Colombo. “[a]C#: C# 
with a Customizable Code Annotation Mechanism,”  
In Proc. of the Symposium on Applied Computing 
(SAC'05), March 2005. 

[3] V. Cepa and S. Kloppenburg. “Representing Explicit 
Attributes in UML,” In Proc. of the Workshop on 
Aspect-Oriented Modeling (AOM’05), March 2005. 

[4] J. W. Cocula.  “Can AOP really solve the ‘logging 
problem’?,”.  Online posting.  AspectJ Users 
Discussion Forum. April 2003. 
http://dev.eclipse.org/ mhonarc/lists/aspectj-
users/msg00383.html 

[5] A. Colyer, A. Clement, R. Bodkin, and J. Hugunin, 
“Using AspectJ for component integration in 
middleware,” Practitioner Report.  In Proc. of 
Object-Oriented Programming, Systems, Languages, 
and Applications (OOPSLA’03), October 2003. 

[6] B. Harbulot and J. Gurd. “Using AspectJ to Separate 
Concerns in Parallel Scientific Java Code,” In Proc. 
of Aspect-Oriented Software Development 
(AOSD’04), March 2004. 

[7] B. Harbulot and J. Gurd. “A Join Point for Loops in 
AspectJ,” In Proc. of Aspect-Oriented Software 
Development (AOSD’06), March 2006. 



[8] W. Harrison, H. Ossher, and P. Tarr.  
“Asymmetrically vs. Symmetrically Organized 
Paradigms for Software Composition,” IBM 
Research Report RC22685 (W0212-147), December 
2002. 

[9] M. Haupt, M. Mezini, C. Bockisch, T. Dinkelaker, 
M. Eichberg and M. Krebs. “An Execution Layer for 
Aspect-Oriented Programming Languages,” In Proc. 
of Virtual Execution Environments (VEE'05), June 
2005. 

[10] E. Hilsdale and J. Hugunin. “Advice weaving in 
AspectJ,” In Proc. of Aspect-Oriented Software Dev. 
(AOSD’04), March 2004. 

[11] G. Kiczales and M. Mezini.  “Separation of 
Concerns with Procedures, Annotations, Advice and 
Pointcuts,” In Proc. of the European Conference on 
Object-Oriented Programming (ECOOP’05), 
Springer LNCS, July 2005. 

[12] G. Kiczales.  “Can AOP really solve the ‘logging 
problem’?” Online posting.  AspectJ Users 
Discussion Forum, April 2003. 
http://dev.eclipse.org/ mhonarc/lists/aspectj-
users/msg00390.html 

[13] G. Kiczales.  “General Best Practice Question,” 
Online posting.  AspectJ Users Discussion Forum, 
July 2003.  http://dev.eclipse.org/mhonarc/ 
lists/aspectj-users/msg00726.html 

[14] C. Koppen and M. Stoerzer. “PCDiff: Attacking the 
Fragile Pointcut Problem,” In Proc. of the European 
Interactive Workshop on Aspects in Software 
(EIWAS’04), August 2004. 

[15] G. C. Murphy, A. Lai, R. J. Walker, and M. P. 
Robillard.  “Separating Features in Source Code: An 
Exploratory Study,” In Proc. of the International 
Conference on Software Engineering (ICSE’01), 
May 2001. 

[16] H. Rajan and K. Sullivan. “Eos: Instance-Level 
Aspects for Integrated System Design,” In Proc. of 
the European Software Engineering Conference and 
Symposium on the Foundations of Software 
Engineering (ESEC/FSE’03), September 2003. 

[17] H. Rajan and K. Sullivan. “Generalizing AOP for 
Aspect-Oriented Testing,” In Proc. of Aspect-
Oriented Software Development (AOSD’05), March 
2005. 

[18] T. Rho, G. Kniesel, and M. Appeltauer. “Fine-
Grained Generic Aspects,” in Proc. of the AOSD 
Workshop on Foundations of Aspect-Oriented 
Languages (FOAL’06), March 2006. 

[19] J. Siadat, R. J. Walker, and C. Kiddle.  
“Optimization Aspects in Network Simulation,” In 
Proc. of Aspect-Oriented Software Development 
(AOSD’06), March 2006. 

[20] K. Sullivan, W. Griswold, Y. Song, Y. Cai, M. 
Shonle, N. Tewari, and H. Rajan, “Information 
Hiding Interfaces for Aspect-Oriented Design,” In 
Proc. of the European Software Engineering 
Conference and Symposium on the Foundations of 
Software Engineering (ESEC/FSE’05), September 
2005. 

[21] K. Sullivan.  “Handling Logging and Tracing 
Concerns,” Online posting.  AOSD.NET Discussion 
Forum, July 2005. http://aosd.net/pipermail/discuss_ 
aosd.net/2005-July/001621.html 

[22] T. Tourwé, J. Brichau, and K. Gybels.  “On the 
Existence of the AOSD-Evolution Paradox,” In Proc. 
of the AOSD 2003 Workshop on Software 
Engineering Properties of Languages for Aspect 
Technologies, March 2003. 

[23] M. Trifu and V. Kuttruff, “Capturing Nontrivial 
Concerns in Object-Oriented Software,” In Proc. of 
the Working Conference on Reverse Engineering 
(WCRE'05), November 2005. 


