
Draft paper submission. Do not distribute.

On the Relationship between Crosscutting Concerns and Defects:

An Empirical Investigation

Marc Eaddy, Vibhav Garg,

Alfred Aho

Columbia University

New York, New York

{eaddy, vgarg, aho}@

cs.columbia.edu

Nachiappan Nagappan

Microsoft Research

Redmond, Washington

nachin@microsoft.com

 Kaitlin Duck Sherwood

University of British Columbia

Vancouver, British Columbia

ducky@webfoot.com

Abstract

Empirical studies indicate that crosscutting

concerns negatively impact internal quality indicators

(e.g., cause increased coupling). However, empirical

evidence indicating that crosscutting negatively

impacts external quality indicators is lacking. To

address this, we present the results of an experiment to

determine if concerns whose implementations are

scattered are more likely to have defects. Our results

provide preliminary evidence that scattering is

strongly correlated with defects at statistically

significant levels.

1. Introduction

It is hard to write reliable software. Defects creep

in at every stage of the development process, avoid

detection during testing, and eventually escape to the

customer. Enormous effort goes into safe development

techniques, program analysis, and prerelease testing to

reduce the number of defects in a delivered software

system. To better direct these efforts, we need a way

to estimate where defects are likely to occur.

We consider the possibility that crosscutting

concerns are a likely source of defects. A crosscutting

concern is a concern of the program (e.g., feature,

requirement) whose implementation is scattered across

the program and often tangled with the source code

related to other concerns.
1
 Several empirical studies

[19] [16] [28] [36] [38] argue that crosscutting

concerns degrade code quality because they negatively

impact internal quality metrics (i.e., measures derived

from the program itself [25]), such as program size,

coupling, and separation of concerns.

1
 For this study, we consider a crosscutting concern to

be synonymous with a scattered concern, agreeing with

the definition in [17].

But do these negative impacts on internal quality

metrics also result in negative impacts on external

quality? Internal metrics are of little value unless there

is convincing evidence that they are related to

important externally visible quality attributes [22],

such as maintenance effort, field reliability, and

observed defects [13].

We argue in this paper that crosscutting concerns

might negatively impact at least one external quality

attribute—defects. Our theoretical basis is that a

crosscutting concern is harder to implement and

change consistently because multiple locations in the

code (that may not be explicitly related) have to be

updated simultaneously. Furthermore, crosscutting

concerns may be harder to understand because

developers must reason about code that is distributed

across the program, and must mentally untangle the

code from the code related to other concerns.

Some controlled experiments on program

comprehension suggest our theory is valid. Letovsky

and Soloway use the term delocalized plan to refer to a

concern whose implementation is “realized by lines

scattered in different parts of the program.” They

observed that programmers had difficulty

understanding delocalized plans, and this resulted in

several kinds of incorrect modifications [27].

Robillard, Coelho, and Murphy observed that

programmers made incorrect modifications when they

failed to account for the scattered nature of the concern

they were modifying:

“Unsuccessful subjects made all of their code

modifications in one place even if they should

have been scattered to better align with the

existing design.” [33]

Other studies (e.g., [20] [8]) indicate that programmers

make mistakes when modifying classes whose

implementations are scattered due to inheritance.

Finally, enhancements or bug fixes applied to a

crosscutting concern may induce changes in multiple

Draft paper submission. Do not distribute.

source files, leading to increased code churn.

Nagappan and Ball showed that code churn is a good

predictor of system defect density [30], and we

propose that changes to crosscutting concerns may be

the root cause.

A strong relationship between crosscutting and

defects, if it exists, indicates the need for further

studies to determine the root cause of the relationship:

Are changes to crosscutting concerns more likely to be

applied inconsistently? Are crosscutting concerns

inherently more difficult to understand?

This paper is organized in the classic way. After

discussing the state of the art for assessing the impact

of crosscutting concerns on code quality (Section 2),

we describe the design of our study (Section 3). Our

results are reported in Section 4. In Section 5 we

discuss threats to validity. Section 6 concludes.

2. Background and Related Work

Several researchers have studied the impact of

crosscutting concerns on code quality. Most of the

effort has concentrated on developing new internal

metrics, or adapting existing ones, for quantifying

crosscutting, and assessing the impact of modularizing

crosscutting concerns using techniques such as aspect-

oriented programming.

2.1. Concern Metrics

Several researchers (e.g., [38], [26], and [32]) have

created concern metrics that measure scattering in

absolute terms (e.g., number of classes that contribute

to the implementation of the concern). For example,

Garcia and colleagues used their concern diffusion

metrics in several studies (e.g., [19] [16]) to show that,

in general, modularizing crosscutting concerns using

aspect-oriented programming improves separation of

concerns.

In Section 3.6, we describe our degree of scattering

metrics, which we believe complement the concern

diffusion metrics by providing a more fine-grained

measurement of scattering. We include both sets of

metrics in our correlation results for comparison and to

determine which metric is most strongly correlated

with defects.

We know of one study besides our own that

correlates aspect-/concern- related metrics with

external quality attributes. Bartsch and Harrison

examined change history data for a set of aspects and

found a statistically significant correlation between

aspect coupling and maintenance effort [2]. Their

metrics were different from ours (aspect coupling

versus concern scattering), and their external quality

indicator was different (effort versus defects).

Whereas we investigated the impact of a crosscutting

concern on code quality prior to refactoring using

aspects, they looked at the impact after refactoring. A

benefit of our scattering metrics is that they may help

identify the crosscutting concerns that would benefit

the most from refactoring.

2.2. Correlating Metrics with Defects

Several researchers have attempted to find a

relationship between defects and internal product

metrics, such as code churn [30], size metrics [14] [9]

[21], object-oriented metrics (e.g., the CK metrics [10])

[9] [21], and design metrics [9]. We add to this body

of research by examining the relationship between

concern metrics and defects.

2.3. Mining Software Repositories

In recent years, researchers have learned to exploit

the vast amount of data that is contained in software

repositories such as version and bug databases [29]

[30] [31] [39]. The key idea is that one can map

problems (in the bug database) to fixes (in the version

database) and thus to those locations in the code that

caused the problem [11] [18] [35]. In Section 3.4, we

describe how we use these techniques to systematically

map defects to methods and fields.

3. Study Design

The goal of our study was to answer the questions:

Are crosscutting concerns defect prone? Which

scattering metric is the best at predicting defects?

Which scattering level (e.g., class level, method level)

is the most appropriate for predicting defects? Finally,

which is more important for predicting defects: the size

of the concern implementation (in terms of lines of

code), i.e., concern size, or how much that

implementation is scattered?

3.1. Research Hypotheses

We formalize these questions to form our research

hypotheses:

 Hypothesis

H1 The more scattered a concern’s implementation

is, the more likely it is to have defects.

H2 Our degree of scattering measures are more

strongly correlated with defect count than direct

(absolute) scattering measures.

Draft paper submission. Do not distribute.

H3 Scattering at the method level is more strongly

correlated with defect count than at the class

level.

H4 Scattering is a better predictor of defects than

the concern size.

3.2. Our Case Studies

For our experiment we looked at two open source

projects: Mylar and dbviz. Mylar
2
 is a commercial-

grade plug-in for the Eclipse
3
 integrated development

environment that enables a task-focused development

methodology [24]. It was developed by a team of

experienced Ph.D. students and professional

developers in conjunction with one of the authors of

this paper. Version 1.0.1 consists of 168,457 lines of

Java code (LOCs); however, we limited our analysis to

two components: bugzilla.core and bugzilla.ui, totaling

56 classes, 427 methods, 457 fields, 13,649 lines of

Java code. From here on, we refer to this subset as

Mylar-Bugzilla.

Dbviz
4
 is a database schema visualization program

developed by students for a software engineering class

at University of Illinois at Urbana-Champaign.

Version 0.5 consists of 77 classes, 458 methods, 391

fields, and 12,744 lines of Java code.

2
 http://www.eclipse.org/mylar

3
 http://www.eclipse.org

4
 http://jdbv.sourceforge.net/dbviz

We selected these projects in part because they had

a source code version archive (CVS), a bug database

(Bugzilla
5
 for Mylar-Bugzilla, SourceForge

6
 for

dbviz), were well documented, and were of modest

size. This last criterion was important because of our

manual concern and bug assignment methodology.

Figure 1 depicts our operational methodology for

assigning defects to concerns. The following sections

describe the methodology in detail.

3.3. Concern Identification Methodology

Our first step was to identify the concerns for each

program. To reduce inconsistency during concern

assignment, it is important that the concerns be well

defined [12]. We also want the concerns to cover most

of the source code (or subset, in the case of Mylar-

Bugzilla) so that we can capture most of the defects.

We relied on the project documentation and our

familiarity with the projects to help us specify the

concerns. The requirements for the Mylar-Bugzilla

component were reverse engineered based on the “New

and Noteworthy” section of the Mylar web site and

personal experience with the development and usage of

the component. For dbviz, the requirements were

organized as a set of use case documents.

5
 http://www.bugzilla.org

6
 http://www.sourceforge.net

 Bug

Database

(Bugzilla)

 Version

Archive

(CVS)

Bug 149606

Some queries

not converted

to tasks

Bug Report
Concern

Description

void exec() {

+ if (!ret)

+ return -1;

- if (ret == 0)

- exit(-1);

CVS Diff

(v1.5-v1.4)
Program Entities

(Query class)
Ver Date Dev Comment

…

1.5 Dec-07 sue Fix 149606

1.4 Nov-24 joe Fix 142661

1.3 Nov-24 joe Fix 165491

…

Version History

(query.java)

Query

count

exec()

class Query {

 int count=2;

 void exec(){

 ... }

Concern 9d

Convert query

hits to tasks

 Concern

List

(subjective)

Source Code

(query.java)

Concern

Assignment

(subjective)

Filter

(subjective)

Indirect

Link

Direct Link

Key:

Subjective Link

Figure 1. Our methodology for associating defects with concerns in Mylar-Bugzilla

Draft paper submission. Do not distribute.

We used 28 of Mylar-Bugzilla’s functional and

nonfunctional requirements related to the bugzilla.core

and bugzilla.ui components (i.e., requirement

concerns), and dbviz’s 13 use cases (i.e., use-case

concerns).

Ideally, the project selection criteria would have

included the requirement that all projects have the

same concern domain (e.g., requirements, use cases).

However, we had difficulty finding projects that met

all of these criteria.

3.4. Mapping Concerns to Source Code

We used the ConcernMapper [34] plug-in for

Eclipse to manually assign methods and fields in the

source code to one or more concerns. We extended

ConcernMapper to store mapping data in a database

and to calculate the concern metrics.

To determine if a method or field was related to a

concern, we required (1) that the method be executed

or the field read/written during the execution of a

hypothetical test case for the concern [37], and (2) that

the element would need to be removed or changed if

we wanted to completely remove the concern from the

program [12]. The first test associates the concern

with a large number of elements that are conceptually

unrelated (e.g., Main, String.append). The second test

is more subjective and attempts to prune the list of

nonessential elements (e.g., generic elements or

elements shared by many concerns). A side effect of

the second test is that it automatically excludes

libraries since the methods and fields contained therein

cannot be changed or removed (because we do not

have the source code).

Our assignment methodology results in some

classes, methods, and fields not being mapped because

they are not specific to any concern. In addition,

limitations of our tool prevented us from assigning

inner classes and enumeration types. Table 1

summarizes the project and mapping statistics.

3.5 Mapping Defects to Concerns

Each project had a source code version archive

(CVS) for keeping track of source code changes and a

bug database (e.g,. Bugzilla) for keeping track of

defects
7
. Effort was made by the project teams to

avoid reporting duplicate defects.

We define the term defect as an error in the source

code, and the term failure to refer to an observable

error in the program behavior. In other words, every

failure can be traced back to some defect, but a defect

7
 We use the terms defect and bug interchangeably.

need not result in a failure. The bug databases did not

distinguish between prerelease defects (e.g., defects

discovered during development and testing) and

postrelease defects (e.g., defects that cause failures

observed by a customer).

A defect fix is the set of lines in the source code

(which may span multiple files or even multiple

versions of the same file) added, removed, or modified

to fix a defect. Our underlying assumption is that it is

reasonable to associate a defect with a concern if the

source code that implements the concern must be

changed to fix the defect.

Unfortunately, although both projects had a version

archive, the amount of detail available in the change

logs for understanding the reason for a change varied

considerably. Because of this, we used two different

techniques for associating defects with concerns.

Mylar-Bugzilla. Every change in Mylar-Bugzilla is

automatically associated with an entry in the bug

database. This is because Mylar-Bugzilla was

developed using Mylar. When a developer begins

working on a bug fix, they use the Mylar Task List to

first indicate that the bug is active [24]. When they

check-in their changes, Mylar automatically creates a

commit message based on the bug that was active:

“RESOLVED - bug 149606: Some queries not

converted to tasks. https://bugs.eclipse.org/bugs/

show_bug.cgi?id=149606.”

 We relied on change history data to assign defects

to program entities (e.g., methods and fields). We only

considered fixed defects (i.e., their resolution was

“fixed” and their severity was not “enhancement”).

This limitation was necessary for us to automatically

associate defects with bug fixes (i.e., we did not have

to figure out how to fix the bug ourselves). This filter

netted 1368 defects. We excluded defects that did not

require changes to bugzilla.core or bugzilla.ui, which

left us with 110 defects.

To determine which program entities were

associated with a defect fix, we manually inspected the

lines that were added, removed, or modified. We

ignored inconsequential changes to whitespace,

comments, and element names, and changes to

Table 1. Descriptive statistics for projects and mappings

 Mylar-Bugzilla dbviz

Entity All Mapped % All Mapped %

Classes 56 44 79 77 59 77

Methods 427 253 59 458 280 61

Fields 457 230 50 391 204 52

Lines 13649 5914 43 12744 4672 37

Defects 110 101 92 56 47 84

Draft paper submission. Do not distribute.

methods and fields that were later removed (i.e., did

not exist in the latest version). (We discuss the

implications of this in Section 5.)

Using this process we were able to objectively map

all 110 defects to program entities. After both

mappings were complete
8
, we assigned bugs to

concerns if they shared a method or field in common.

In other words, a bug was assigned to a concern if the

bug fix was tangled (shared a program entity) with the

concern. However, we had to leave out 9 defects

because they mapped to program entities not associated

with any concern. This resulted in 101 defects mapped

to 28 requirements concerns.

Dbviz. For dbviz, commit messages were written by

the developer. Here is a typical example:

“Fixed a bug where adding a table via the

ConnectionList wasn't undoing properly.”

Although we could have used information retrieval

techniques to associate defect descriptions with change

log entries [35] and then with concerns, we instead

relied on our judgment to associate defects directly

with concerns. There were a few cases where defect

identifiers were used in the commit message, which

allowed us to validate some of our defect assignments;

however, they were not used consistently. Despite

these issues, we found the assignment to be

straightforward.

Since we were not able to automatically associate

defects with defect fixes, we included “open” and

“closed” defects, which totaled 56 defects. We ignored

1 defect that was a general refactoring request (“Move

action classes to dedicated package”) and 8 defects that

were associated with features not covered by any use

case.
9
 This resulted in 47 defects mapped to 13 use-

case concerns.

8
 To eliminate bias, a different person performed the

mapping of concerns to program entities.
9
 For example, “zooming,” “about box,” and “logging,”

were not covered by any use case.

3.6. Concern Metrics

A concern is scattered (i.e., crosscutting) if it is

implemented by multiple program elements [4] [12]

[15]. We investigated a concern-based size metric and

four different scattering metrics to determine which (if

any) had the strongest correlation with defects. Table

2 provides a description of the metrics.

The concern diffusion metrics, created by Garcia

and colleagues, measure scattering in absolute terms as

a count of the number of classes (CDC) or methods

(CDO) that implement the concern [16].
10

 Our degree

of scattering metrics (DOSC and DOSM) provide

more information by further considering how the

concern’s code is distributed among the elements [12].

Our scattering metrics build upon the concentration

metric (CONC) introduced by Wong et al. [37].

where t is a class when measuring DOSC and a method

when measuring DOSM. Since we assigned concerns

at the method level, we counted the LOCs for the

method as relating to the concern.

Degree of scattering is a measure of the variance of

the concentration of a concern over all components

with respect to the worst case (i.e., when the concern is

equally scattered across all components):

For DOSC, T is the set of classes in the program, and

for DOSM, the set of methods.

The difference between CDC and DOSC is

illustrated in Figure 2. The pie chart shows how the

10

 They can also measure constructs from aspect-

oriented programming such as aspects and advice.

Table 2. Concern-based metrics

Lines of Code for Concern

(LOCC)

Number of lines of code that contribute to the implementation of a concern (i.e.,

number of lines of concern code).

Concern Diffusion over

Components (CDC)

Number of classes that contribute to the implementation of a concern and other

classes and aspects which access them [16].

Concern Diffusion over

Operations (CDO)

Number of methods which contribute to a concern’s implementation plus the

number of other methods and advice accessing them [16].

Degree of Scattering over

Classes (DOSC)

Degree to which the concern code is distributed across classes. When DOSC is 0

all the code is in one class. When DOSC is 1 the code is equally divided among

all the classes. See the example in Figure 2. [12]

Degree of Scattering over

Members (DOSM)

Degree to which the concern code is distributed across methods and fields.

Varies from 0 to 1 similar to DOSC. [12]

Draft paper submission. Do not distribute.

code related to the concern is distributed among four

classes. In the first scenario, the implementation is

evenly divided among the four classes (the worst case).

The DOSC value is

 = 1 0 = 1

In the second scenario, the DOSC value is

 = 0.08

DOSC is close to 0, indicating the implementation in

the second scenario is almost completely localized (0

means completely localized). CDC cannot distinguish

the two implementations, as evident by the value of 4

for both. Our hypothesis (H2) is that degree of

scattering more accurately quantifies the modularity of

a concern, and so should be a better predictor of

defects than absolute scattering metrics such as CDC

and CDO.

4. Results and Discussion

In this section we discuss the results for the four

hypotheses. Each hypothesis is discussed in a separate

subsection.

4.1. Is Scattering Correlated with Defect

Count?

Table 3 presents our Spearman correlation results

for the Mylar project. For Mylar, all scattering metrics

(DOSC, DOSM, CDC, and CDO) have positive

correlations with defects, and CDC and CDO are

strongly correlated (.569 and .609). All correlations

are statistically significant at the 5% level, that is, there

is a 95% probability that (for Mylar) a relationship

exists. As with all statistical analysis results, we

cannot assume this correlation will hold for other

projects or even for future versions of Mylar. Only

when more studies replicate our results can we become

confident that the relationship is real.

For dbviz (see Table 4), the small sample size—

only 13 use-case concerns—severely limited the

statistical significance of our results. For this project,

we were not able to learn anything about the

relationship between scattering and defects.

From both tables we observe that the scattering

metrics are strongly correlated with each other. This is

expected since CDC and CDO are coarser versions of

DOSC and DOSM. In addition, the member-level

metrics were strongly correlated with their class-level

counterparts. This is also expected since a class is only

associated with a concern if at least one of its members

is associated.

In summary, the Mylar case study showed a

positive statistically significant correlation between

scattering and defects, which supports our hypothesis

H1:

4.2. Which Scattering Metric has the Strongest

Correlation with Defect Count?

For Mylar, CDC and CDO were more strongly

correlated with defects than DOSC and DOSM. Thus,

we weakly reject our hypothesis H2:

We were somewhat surprised by this result. We

expected DOSC and DOSM to decidedly outperform

CDC and CDO because we believe degree of scattering

more faithfully quantifies the scattered nature of a

concern.

It is possible that the way we chose concerns was a

factor. For Mylar, we created an initial list of

requirements and updated it as we did the mapping.

This can lead to a kind of concern identification bias

whereby the assignor may choose concerns based on

how well they align with the code.
11

 In contrast, for

11

 We have also witnessed this phenomenon in a

previous study [12].

Concern scattering is strongly correlated with

defects.

 CDC = 4

DOSC = 1.00

Figure 2. Comparing CDC and DOSC for two different

implementations of the same concern

 CDC = 4

DOSC = 0.08

Absolute scattering measures are more strongly

correlated with defects than degree of scattering

measures.

Draft paper submission. Do not distribute.

Scattering at the method level appears to be more

strongly correlated with defects than at the class

level.

dbviz we used existing use cases. The results bear out

our conjecture: the average DOSC (ADOSC) was

much higher in dbviz (.787) than Mylar (.362).

Clearly, the way concerns are defined significantly

impacts scattering measures.

Another factor is that we only analyzed a portion of

Mylar, i.e., Mylar-Bugzilla. It is likely that the

scattering measures for the concerns would change if

we took into account the entire Mylar codebase.

Moreover, only 110 of the 1368 (8%) fixed defects in

Mylar required changes to Mylar-Bugzilla. This begs

the question: which concerns are associated with the

remaining 1258 defects? It is likely that the defect

counts for the concerns would change significantly if

we took into account all of Mylar.

4.3. What Level of Scattering has the Strongest

Correlation with Defect Count?

Although the difference is slight, for Mylar,

method-level scattering was more strongly correlated

with defects than class-level scattering when

comparing DOSM (.498) versus DOSC (.389) and

CDO (.609) versus CDC (.569). Nevertheless, we

weakly accept our hypothesis H3:

4.4. Is Concern Size A Better Predictor of

Defect Count than Scattering?

For Mylar, the size of the concern implementation

(LOCC) alone was the best predictor of defect count

(the correlation is .767 at a 1% significance level).

This is consistent with several other studies ([9], [21],

and [6]) that found a statistically significant

relationship between size metrics and defects. This

indicates that larger concerns have more defects.

However, this is not a foregone conclusion, since a

study conducted by Fenton and Ohlsson [14] found

that size metrics were not good predictors of fault-

prone modules.

Size is an important metric as it is often correlated

with other internal product metrics [13]. For example,

if a concern has a large number of classes involved in

its implementation (CDC), this usually implies a large

number of lines (LOCC). In fact, CDC and CDO

cannot increase without a simultaneous increase in

LOCC. Looking at Tables 3 and 4, we indeed see a

high correlation: for Mylar-Bugzilla, CDC-LOCC is

.653 and CDO-LOCC is .706, and for dbviz, CDO-

LOCC is .885.

The DOSC and DOSM equations are not directly

dependent on the number of lines associated with a

concern, but rather on how those lines are distributed

across classes and methods. Despite this, for Mylar-

Bugzilla DOSC and DOSM are correlated with LOCC,

although the correlation is not as strong as CDC and

CDO (.389 for DOSC and .498 for DOSM), and for

Table 3. Correlation matrix for Mylar. Shows how the concern metrics correlate with each

other and with defects. Bold values indicate a statistically significant correlation. The sample

size N (number of concerns) is 28.

 DOSC DOSM CDC CDO LOCC Defects

DOSC

Correlation
Coefficient

1.000 .641 .844 .568 .375 .389

Sig. (2-tailed) . (<.0005) (<.0005) (.002) (.049) (.041)

DOSM

Correlation
Coefficient

 1.000 .771 .909 .626 .498

Sig. (2-tailed) . (<.0005) (<.0005) (<.0005) (.007)

CDC

Correlation
Coefficient

 1.000 .779 .653 .569

Sig. (2-tailed) . (<.0005) (<.0005) (.002)

CDO

Correlation
Coefficient

 1.000 .706 .609

Sig. (2-tailed) . (<.0005) (.001)

LOCC

Correlation
Coefficient

 1.000 .767

Sig. (2-tailed) . (<.0005)

Defects

Correlation
Coefficient

 1.000

Sig. (2-tailed) .

Draft paper submission. Do not distribute.

dbviz, DOSM is highly correlated with LOCC (.878).

This could mean that for Mylar-Bugzilla, it just so

happens that larger concerns are distributed more

uniformly.

If concern size has the highest correlation with

defects, why consider scattering at all? In fact, the

high correlations between scattering and size might

indicate that scattering is a surrogate for size, i.e.,

scattering and LOCC may be collinear. To evaluate

this possibility, we created four separate predictive

models:

1. Linear regression using only LOCC,

2. Multiple linear regression using only scattering

metrics (DOSC, DOSM, CDC, and CDO),

3. Multiple linear regression using ALL concern

metrics, and

4. Multiple linear regression using components

obtained via Principal Component Analysis [23].

R
2
 [5] is a measure for how well the model accounts

for the defect count given the dataset (e.g., the number

of defects associated with the concerns in Mylar-

Bugzilla). It cannot be interpreted as the quality of the

dataset to make future predictions. Adjusted R
2

accounts for any bias in the R
2
 measure by taking into

account the degrees of freedom of the predictor

variables (e.g., DOSC) and the sample population.

The results in Table 5 indicate that a model built

using LOCC alone is a better predictor (Adj. R
2
 is

.720) of defect count than a model built using all the

scattering metrics (Adj. R
2
 is .675), although the

difference in predictive power is not very significant.

The most accurate model combined all metrics (Adj.

R
2
 is .753). Based on this data, we weakly reject our

hypothesis H4—more studies are needed before we can

make stronger conclusions:

Although concern size is a better predictor of defect

count than scattering, scattering may be important to

consider for other reasons, e.g., for identifying

crosscutting concerns that weaken the modularity of

the program.

5. Threats to Validity

There are several factors that affect the validity of

our experiment.

Table 4. Correlation matrix for dbviz. Shows how the concern metrics correlate with each

other and with defects. Bold values indicate a statistically significant correlation. The sample

size N (number of concerns) is 13.

 DOSC DOSM CDC CDO LOCC Defects

DOSC

Correlation
Coefficient

1.000 .588 .863 .537 .289 .188

Sig. (2-tailed) . (.035) (<.0005) (.058) (.338) (.539)

DOSM

Correlation
Coefficient

 1.000 .694 .920 .878 .419

Sig. (2-tailed) . (.008) (<.0005) (<.0005) (.154)

CDC

Correlation
Coefficient

 1.000 .635 .507 .510

Sig. (2-tailed) . (.020) (.077) (.075)

CDO

Correlation
Coefficient

 1.000 .885 .536

Sig. (2-tailed) . (<.0005) (.059)

LOCC

Correlation
Coefficient

 1.000 .528

Sig. (2-tailed) . (.064)

Defects

Correlation
Coefficient

 1.000

Sig. (2-tailed) .

Table 5. Regression fit for four predictive models

Model R2 Adjusted R2 Std. Error

LOCC only .730 .720 3.88488

Scattering

metrics

.723 .675 4.18562

All metrics .799 .753 3.64583

Principal

components

.775 .747 3.68906

Concern size is a slightly better predictor of defects

than scattering; however, the best predictor

combines size and scattering.

Draft paper submission. Do not distribute.

5.1. Internal Validity

In the Mylar study, 9 of the 110 defects were

mapped to methods or fields not covered by any

concern. In most cases, this is not an issue since a

program element may be related to a concern from a

different concern domain (e.g., “resource

deacquisition” is a programming concern rather than a

requirement or design concern). However, it may also

mean that some concerns were not accounted for,

which can skew the measurements.

Many of the Mylar defects were clearly

enhancements although they were not classified as

such. This can lead to inflated concern defect counts.

Although the change history indicated which defect

was fixed, in some cases unrelated modifications were

included with the defect fix [7], which can lead to false

positives where a defect is associated with the wrong

concern.

There were many code changes that involved

methods and fields that were not present in the latest

version because they were removed or renamed. This

can result in a false negative where a defect should

have been associated with a concern but was not. To

reduce these we would need a concern mapping for

every revision, not just the latest.

Finally, our measurement tool only counts the lines

of code associated with methods and fields. It does not

exclude comments or whitespace inside the methods,

nor does it count lines associated with inner class,

enumeration type, and namespace declarations, and

import statements. This explains the low code

coverage for Mylar (43%) and dbviz (37%) shown in

Table 1. This can result in higher LOCC counts that

can skew results, or lower counts that can produce

false negatives (i.e., a bug should have been mapped to

a concern but was not).

5.2. External Validity

Studies (e.g., [26] [32]) have shown that concern

identification and assignment is highly subjective,

which limits the repeatability of our results and their

applicability to other projects. Our future work is to

incorporate a more automated concern assignment

methodology (e.g., [1]).

As stated by Basili et al., drawing general

conclusions from empirical studies in software

engineering is difficult because any process depends to

a large degree on a potentially large number of relevant

context variables. For this reason we cannot assume

that the results of a study generalize beyond the

specific environment in which it was conducted [3].

6. Conclusions and Future Work

Ours is the first study that associates concerns with

defects and uses statistical analysis to correlate concern

metrics with defects. We examined the concerns of

two medium-size projects and found that the more

scattered the implementation of a concern is, the more

likely it is to have defects. All the measures we

investigated were effective predictors of defects. We

also found that the size of the concern alone, in terms

of lines of code, was the strongest predictor of defects.

This evidence, although preliminary, is important

for several reasons. It adds credibility to the claims

about the dangers of crosscutting made by the aspect-

oriented programming and programming language

communities. By establishing a relationship between

concern metrics and an external quality indicator, we

provide a stronger form of validation for these metrics

than previous empirical studies (e.g., [19] [16]).

It is important to realize that the novelty of our

experiment and the subjectivity inherent in our

methodology, severely limit the applicability of our

results. Further studies are needed before we can

attempt to draw generalizable conclusions about the

relationship between scattering and defects.

Several questions remain. Can we reduce the

likelihood of defects by reducing crosscutting, or is the

likelihood constant regardless of how the concern is

implemented? What is the relationship between code

churn and scattering? If a relationship exists, we can

use code churn to help identify crosscutting concerns

[7] and as a cost-effective surrogate for measuring

scattering. When code churn levels are dangerously

high, concern analysis may provide an explanation and

an actionable plan for reducing churn (i.e., modularize

the underlying crosscutting concerns).

All the data for the case studies is available at

http://www.cs.columbia.edu/~eaddy/mylar_study.

ACKNOWLEDGMENTS

This paper would not have been possible without the

help of Gail C. Murphy, who arranged the Mylar-

Bugzilla study and provided excellent feedback.

References

[1] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, E.

Merlo, "Recovering Traceability Links between Code and

Documentation," IEEE Trans. Soft. Eng., 28(10):970-983,

October 2002.

[2] M. Bartsch, R. Harrison, "Towards an Empirical

Validation of Aspect-Oriented Coupling Measures," in

Workshop on Assessment of Aspect Techniques (ASAT 2007),

March 12 2007.

Draft paper submission. Do not distribute.

[3] V. Basili, F. Shull, F. Lanubile, "Building Knowledge

through Families of Experiments," IEEE Transactions on

Software Engineering, 25(4):456-473, 1999.

[4] K. v. d. Berg, J. M. Conejero, J. Hernández, "Analysis of

Crosscutting across Software Development Phases based on

Traceability," in Wkshp. on Aspect-Oriented Requirements

Eng. and Arch. Design (Early Aspects 2006), May 21 2006.

[5] N. Brace, R. Kemp, R. Snelgar, SPSS for Psychologists.

Hampshire, UK: Palgrave Macmillan, 2003.

[6] L. Briand, J. Wuest, J. Daly, V. Porter, "Exploring the

Relationships Between Design Measures and Software

Quality in Object Oriented Systems," Journal of Systems and

Software, 51:245-273, 2000.

[7] G. Canfora, L. Cerulo, M. D. Penta, "On the Use of Line

Co-change for Identifying Crosscutting Concern Code," in

International Conference on Software Maintenance (ICSM

2006), Sept 24-27 2006.

[8] M. Cartwright, "An empirical view of inheritance,"

Information and Software Technology, 40:795-799, 1998.

[9] M. Cartwright, M. Shepperd, "An Empirical

Investigation of an Object-Oriented Software System," IEEE

Transactions on Software Engineering, 26(8):786-796, 2000.

[10] S. Chidamber, C. Kemerer, "A Metrics Suite for Object

Oriented Design," IEEE Transactions on Software

Engineering:476-493, 1994.

[11] D. Čubranić, G. C. Murphy, "Hipikat: Recommending

Pertinent Software Development Artifacts," in Intl. Conf. on

Software Engineering (ICSE 2003), 2003, pp. 408-418.

[12] M. Eaddy, A. Aho, G. C. Murphy, "Identifying,

Assigning, and Quantifying Crosscutting Concerns," in

Workshop on Assessment of Contemporary Modularization

Techniques (ACoM 2007), May 22 2007.

[13] K. E. Emam, "A Methodology for Validating Software

Product Metrics," Tech. Rep. NCR/ERC-1076, National

Research Council of Canada, June 2000.

[14] N. E. Fenton, N. Ohlsson, "Quantitative analysis of

faults and failures in complex software systems," IEEE

Transactions on Software Engineering, 26(8):797-814, 2000.

[15] E. Figueiredo, A. Garcia, C. Sant'Anna, U. Kulesza, C.

Lucena, "Assessing Aspect-Oriented Artifacts: Towards a

Tool-Supported Quantitative Method," in Wkshp. on Quant.

Approaches in OO Soft. Eng. (QAOOSE 2005), July 2005.

[16] F. C. Filho, N. Cacho, E. Figueiredo, R. Maranhao, A.

Garcia, C. M. F. Rubira, "Exceptions and Aspects: The Devil

is in the Details," in Intl. Conf. on Foundations of Software

Engineering (FSE 2006), 2006, pp. 152-162.

[17] R. E. Filman, T. Elrad, S. Clarke, M. Aksit, Aspect-

Oriented Software Development. Boston, MA: Addison-

Wesley, 2005.

[18] M. Fischer, M. Pinzger, H. Gall, "Populating a Release

History Database from Version Control and Bug Tracking

Systems," in International Conference on Software

Maintenance (ICSM 2003), 2003, pp. 23-32.

[19] A. Garcia, C. Sant'Anna, E. Figueiredo, U. Kulesza, C.

Lucena, A. v. Staa, "Modularizing Design Patterns with

Aspects: A Quantitative Study," in Aspect Oriented Software

Development (AOSD 2005), March 14-18 2005.

[20] R. Harrison, S. Counsel, R. Nithi, "Experimental

assessment of the effect of inheritance on the maintainability

of object-oriented systems," Journal of Systems and

Software, 52:173-179, 2000.

[21] R. Harrison, L. Samaraweera, M. Dobie, P. Lewis, "An

Evaluation of Code Metrics for Object-Oriented Programs,"

Information and Software Technology, 38:443-450, 1996.

[22] ISO/IEC, "IDS 14598-1 Information Technology -

Software Product Evaluation," 1996.

[23] E. J. Jackson, A User's Guide to Principal Components.

New York, NY: John Wiley & Sons, Inc., 1991.

[24] M. Kersten, G. C. Murphy, "Using task context to

improve programmer productivy," in Foundations of

Software Engineering (FSE 2006), November 2006.

[25] T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, J. P.

Hudepohl, "Classification-Tree Models of Software Quality

Over Multiple Releases," IEEE Transactions on Reliability,

49(1):4-11, 2000.

[26] A. Lai, G. C. Murphy, "The Structure of Features in Java

Code: An Exploratory Investigation," in Wkshp. on Multi-

Dimensional Sep. of Concerns (OOPSLA 1999), Nov. 1999.

[27] S. Letovsky, E. Soloway, "Delocalized Plans and

Program Comprehension," IEEE Software, 3(3):41-9, 1986.

[28] M. Lippert, C. V. Lopes, "A study on exception detecton

and handling using aspect-oriented programming," in Intl.

Conf. on Software Eng. (ICSE 2000), 2000, pp. 418-427.

[29] A. Mockus, P. Zhang, P. Li, "Drivers for customer

perceived software quality," in International Conference on

Software Engineering (ICSE 2005), 2005, pp. 225-233.

[30] N. Nagappan, T. Ball, "Use of Relative Code Churn

Measures to Predict System Defect Density," in Intl. Conf. on

Software Engineering (ICSE 2005), May 15-21 2005.

[31] T. Ostrand, E. Weyuker, R. M. Bell, "Predicting the

location and number of faults in large software systems,"

IEEE Transactions on Software Eng., 31(4):340-355, 2005.

[32] M. Revelle, T. Broadbent, D. Coppit, "Understanding

Concerns in Software: Insights Gained from Two Case

Studies," in International Workshop on Program

Comprehension (IWPC 2005), May 15-16 2005.

[33] M. P. Robillard, W. Coelho, G. C. Murphy, "How

Effective Developers Investigate Source Code: An

Exploratory Study," IEEE Transactions on Software

Engineering, 30(12):889-903, December 2004.

[34] M. P. Robillard, F. Weigand-Warr, "ConcernMapper:

Simple View-Based Separation of Scattered Concerns," in

Wkshp. on Eclipse Tech. eXchange (ETX 2005), Oct. 2005.

[35] J. Śliwerski, T. Zimmermann, A. Zeller, "When Do

Changes Induce Fixes?," in Workshop on Mining Software

Repositories (MSR 2005), 2005, pp. 24-28.

[36] S. L. Tsang, S. Clarke, E. Baniassad, "An Evaluation of

Aspect-Oriented Programming for Java-based Real-time

Systems Development," in Intl. Symp. on OO Real-Time

Distributed Computing (ISORC 2004), May 12-14 2004.

[37] W. E. Wong, S. S. Gokhale, J. R. Horgan, "Quantifying

the closeness between program components and features,"

Journal of Systems and Software, 54(2):87-98, 2000.

[38] C. Zhang, H.-A. Jacobsen, "Quantifying Aspects in

Middleware Platforms," in Aspect-Oriented Software

Development (AOSD 2003), March 2003, pp. 130-139.

[39] T. Zimmermann, P. Weißgerber, S. Diehl, A. Zeller,

"Mining Version Histories to Guide Software Changes,"

IEEE Transactions on Software Eng., 31(6):429-445, 2005.

