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Abstract 
 

Empirical studies indicate that crosscutting 

concerns negatively impact internal quality indicators 

(e.g., cause increased coupling).  However, empirical 

evidence indicating that crosscutting negatively 

impacts external quality indicators is lacking.  To 

address this, we present the results of an experiment to 

determine if concerns whose implementations are 

scattered are more likely to have defects.  Our results 

provide preliminary evidence that scattering is 

strongly correlated with defects at statistically 

significant levels. 

 

1. Introduction 
 

It is hard to write reliable software.  Defects creep 

in at every stage of the development process, avoid 

detection during testing, and eventually escape to the 

customer.  Enormous effort goes into safe development 

techniques, program analysis, and prerelease testing to 

reduce the number of defects in a delivered software 

system.  To better direct these efforts, we need a way 

to estimate where defects are likely to occur. 

We consider the possibility that crosscutting 

concerns are a likely source of defects.  A crosscutting 

concern is a concern of the program (e.g., feature, 

requirement) whose implementation is scattered across 

the program and often tangled with the source code 

related to other concerns.
1
  Several empirical studies 

[19] [16] [28] [36] [38] argue that crosscutting 

concerns degrade code quality because they negatively 

impact internal quality metrics (i.e., measures derived 

from the program itself [25]), such as program size, 

coupling, and separation of concerns. 

                                                           
1
 For this study, we consider a crosscutting concern to 

be synonymous with a scattered concern, agreeing with 

the definition in [17]. 

But do these negative impacts on internal quality 

metrics also result in negative impacts on external 

quality?  Internal metrics are of little value unless there 

is convincing evidence that they are related to 

important externally visible quality attributes [22], 

such as maintenance effort, field reliability, and 

observed defects [13]. 

We argue in this paper that crosscutting concerns 

might negatively impact at least one external quality 

attribute—defects.  Our theoretical basis is that a 

crosscutting concern is harder to implement and 

change consistently because multiple locations in the 

code (that may not be explicitly related) have to be 

updated simultaneously.  Furthermore, crosscutting 

concerns may be harder to understand because 

developers must reason about code that is distributed 

across the program, and must mentally untangle the 

code from the code related to other concerns. 

Some controlled experiments on program 

comprehension suggest our theory is valid.  Letovsky 

and Soloway use the term delocalized plan to refer to a 

concern whose implementation is “realized by lines 

scattered in different parts of the program.” They 

observed that programmers had difficulty 

understanding delocalized plans, and this resulted in 

several kinds of incorrect modifications [27].  

Robillard, Coelho, and Murphy observed that 

programmers made incorrect modifications when they 

failed to account for the scattered nature of the concern 

they were modifying: 

“Unsuccessful subjects made all of their code 

modifications in one place even if they should 

have been scattered to better align with the 

existing design.” [33] 

Other studies (e.g., [20] [8]) indicate that programmers 

make mistakes when modifying classes whose 

implementations are scattered due to inheritance. 

Finally, enhancements or bug fixes applied to a 

crosscutting concern may induce changes in multiple 
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source files, leading to increased code churn.  

Nagappan and Ball showed that code churn is a good 

predictor of system defect density [30], and we 

propose that changes to crosscutting concerns may be 

the root cause. 

A strong relationship between crosscutting and 

defects, if it exists, indicates the need for further 

studies to determine the root cause of the relationship: 

Are changes to crosscutting concerns more likely to be 

applied inconsistently? Are crosscutting concerns 

inherently more difficult to understand? 

This paper is organized in the classic way.  After 

discussing the state of the art for assessing the impact 

of crosscutting concerns on code quality (Section 2), 

we describe the design of our study (Section 3).  Our 

results are reported in Section 4.  In Section 5 we 

discuss threats to validity.  Section 6 concludes. 

 

2. Background and Related Work 
 

Several researchers have studied the impact of 

crosscutting concerns on code quality.  Most of the 

effort has concentrated on developing new internal 

metrics, or adapting existing ones, for quantifying 

crosscutting, and assessing the impact of modularizing 

crosscutting concerns using techniques such as aspect-

oriented programming. 

 

2.1. Concern Metrics 
 

Several researchers (e.g., [38], [26], and [32]) have 

created concern metrics that measure scattering in 

absolute terms  (e.g., number of classes that contribute 

to the implementation of the concern).  For example, 

Garcia and colleagues used their concern diffusion 

metrics in several studies  (e.g., [19] [16]) to show that, 

in general, modularizing crosscutting concerns using 

aspect-oriented programming improves separation of 

concerns. 

In Section 3.6, we describe our degree of scattering 

metrics, which we believe complement the concern 

diffusion metrics by providing a more fine-grained 

measurement of scattering.  We include both sets of 

metrics in our correlation results for comparison and to 

determine which metric is most strongly correlated 

with defects. 

We know of one study besides our own that 

correlates aspect-/concern- related metrics with 

external quality attributes.  Bartsch and Harrison 

examined change history data for a set of aspects and 

found a statistically significant correlation between 

aspect coupling and maintenance effort [2].  Their 

metrics were different from ours (aspect coupling 

versus concern scattering), and their external quality 

indicator was different (effort versus defects).  

Whereas we investigated the impact of a crosscutting 

concern on code quality prior to refactoring using 

aspects, they looked at the impact after refactoring.  A 

benefit of our scattering metrics is that they may help 

identify the crosscutting concerns that would benefit 

the most from refactoring. 

 

2.2. Correlating Metrics with Defects 
 

Several researchers have attempted to find a 

relationship between defects and internal product 

metrics, such as code churn [30], size metrics [14] [9] 

[21], object-oriented metrics (e.g., the CK metrics [10]) 

[9] [21], and design metrics [9].  We add to this body 

of research by examining the relationship between 

concern metrics and defects. 

 

2.3. Mining Software Repositories 
 

In recent years, researchers have learned to exploit 

the vast amount of data that is contained in software 

repositories such as version and bug databases [29] 

[30] [31] [39].  The key idea is that one can map 

problems (in the bug database) to fixes (in the version 

database) and thus to those locations in the code that 

caused the problem [11] [18] [35].  In Section 3.4, we 

describe how we use these techniques to systematically 

map defects to methods and fields. 

 

3. Study Design 
 

The goal of our study was to answer the questions: 

Are crosscutting concerns defect prone?  Which 

scattering metric is the best at predicting defects?  

Which scattering level (e.g., class level, method level) 

is the most appropriate for predicting defects?  Finally, 

which is more important for predicting defects: the size 

of the concern implementation (in terms of lines of 

code), i.e., concern size, or how much that 

implementation is scattered? 

 

3.1. Research Hypotheses 
 

We formalize these questions to form our research 

hypotheses: 

 

 Hypothesis 

H1 The more scattered a concern’s implementation 

is, the more likely it is to have defects. 

H2 Our degree of scattering measures are more 

strongly correlated with defect count than direct 

(absolute) scattering measures. 
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H3 Scattering at the method level is more strongly 

correlated with defect count than at the class 

level. 

H4 Scattering is a better predictor of defects than 

the concern size. 

 

3.2. Our Case Studies 
 

For our experiment we looked at two open source 

projects: Mylar and dbviz.  Mylar
2
 is a commercial-

grade plug-in for the Eclipse
3
 integrated development 

environment that enables a task-focused development 

methodology [24].  It was developed by a team of 

experienced Ph.D. students and professional 

developers in conjunction with one of the authors of 

this paper.  Version 1.0.1 consists of 168,457 lines of 

Java code (LOCs); however, we limited our analysis to 

two components: bugzilla.core and bugzilla.ui, totaling 

56 classes, 427 methods, 457 fields, 13,649 lines of 

Java code.  From here on, we refer to this subset as 

Mylar-Bugzilla. 

Dbviz
4
 is a database schema visualization program 

developed by students for a software engineering class 

at University of Illinois at Urbana-Champaign.  

Version 0.5 consists of 77 classes, 458 methods, 391 

fields, and 12,744 lines of Java code. 

                                                           
2
 http://www.eclipse.org/mylar 

3
 http://www.eclipse.org 

4
 http://jdbv.sourceforge.net/dbviz 

We selected these projects in part because they had 

a source code version archive (CVS), a bug database 

(Bugzilla
5
 for Mylar-Bugzilla, SourceForge

6
 for 

dbviz), were well documented, and were of modest 

size.  This last criterion was important because of our 

manual concern and bug assignment methodology. 

Figure 1 depicts our operational methodology for 

assigning defects to concerns.  The following sections 

describe the methodology in detail. 

 

3.3. Concern Identification Methodology 
 

Our first step was to identify the concerns for each 

program.  To reduce inconsistency during concern 

assignment, it is important that the concerns be well 

defined [12].  We also want the concerns to cover most 

of the source code (or subset, in the case of Mylar-

Bugzilla) so that we can capture most of the defects.  

We relied on the project documentation and our 

familiarity with the projects to help us specify the 

concerns.  The requirements for the Mylar-Bugzilla 

component were reverse engineered based on the “New 

and Noteworthy” section of the Mylar web site and 

personal experience with the development and usage of 

the component.  For dbviz, the requirements were 

organized as a set of use case documents. 

                                                           
5
 http://www.bugzilla.org 

6
 http://www.sourceforge.net 
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Figure 1. Our methodology for associating defects with concerns in Mylar-Bugzilla 
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We used 28 of Mylar-Bugzilla’s functional and 

nonfunctional requirements related to the bugzilla.core 

and bugzilla.ui components (i.e., requirement 

concerns), and dbviz’s 13 use cases (i.e., use-case 

concerns). 

Ideally, the project selection criteria would have 

included the requirement that all projects have the 

same concern domain (e.g., requirements, use cases).  

However, we had difficulty finding projects that met 

all of these criteria. 

 

3.4. Mapping Concerns to Source Code 
 

We used the ConcernMapper [34] plug-in for 

Eclipse  to manually assign methods and fields in the 

source code to one or more concerns.  We extended 

ConcernMapper to store mapping data in a database 

and to calculate the concern metrics. 

To determine if a method or field was related to a 

concern, we required (1) that the method be executed 

or the field read/written during the execution of a 

hypothetical test case for the concern [37], and (2) that 

the element would need to be removed or changed if 

we wanted to completely remove the concern from the 

program [12].  The first test associates the concern 

with a large number of elements that are conceptually 

unrelated (e.g., Main, String.append).  The second test 

is more subjective and attempts to prune the list of 

nonessential elements (e.g., generic elements or 

elements shared by many concerns).  A side effect of 

the second test is that it automatically excludes 

libraries since the methods and fields contained therein 

cannot be changed or removed (because we do not 

have the source code). 

Our assignment methodology results in some 

classes, methods, and fields not being mapped because 

they are not specific to any concern.  In addition, 

limitations of our tool prevented us from assigning 

inner classes and enumeration types.  Table 1 

summarizes the project and mapping statistics. 

 

3.5 Mapping Defects to Concerns 
 

Each project had a source code version archive 

(CVS) for keeping track of source code changes and a 

bug database (e.g,. Bugzilla) for keeping track of 

defects
7
.  Effort was made by the project teams to 

avoid reporting duplicate defects. 

We define the term defect as an error in the source 

code, and the term failure to refer to an observable 

error in the program behavior.  In other words, every 

failure can be traced back to some defect, but a defect 

                                                           
7
 We use the terms defect and bug interchangeably. 

need not result in a failure.  The bug databases did not 

distinguish between prerelease defects (e.g., defects 

discovered during development and testing) and 

postrelease defects (e.g., defects that cause failures 

observed by a customer). 

A defect fix is the set of lines in the source code 

(which may span multiple files or even multiple 

versions of the same file) added, removed, or modified 

to fix a defect.  Our underlying assumption is that it is 

reasonable to associate a defect with a concern if the 

source code that implements the concern must be 

changed to fix the defect. 

Unfortunately, although both projects had a version 

archive, the amount of detail available in the change 

logs for understanding the reason for a change varied 

considerably.  Because of this, we used two different 

techniques for associating defects with concerns. 

 

Mylar-Bugzilla.  Every change in Mylar-Bugzilla is 

automatically associated with an entry in the bug 

database.  This is because Mylar-Bugzilla was 

developed using Mylar.  When a developer begins 

working on a bug fix, they use the Mylar Task List to 

first indicate that the bug is active [24].  When they 

check-in their changes, Mylar automatically creates a 

commit message based on the bug that was active: 

“RESOLVED - bug 149606: Some queries not 

converted to tasks. https://bugs.eclipse.org/bugs/ 

show_bug.cgi?id=149606.” 

 We relied on change history data to assign defects 

to program entities (e.g., methods and fields).  We only 

considered fixed defects (i.e., their resolution was 

“fixed” and their severity was not “enhancement”).  

This limitation was necessary for us to automatically 

associate defects with bug fixes (i.e., we did not have 

to figure out how to fix the bug ourselves).  This filter 

netted 1368 defects.  We excluded defects that did not 

require changes to bugzilla.core or bugzilla.ui, which 

left us with 110 defects. 

To determine which program entities were 

associated with a defect fix, we manually inspected the 

lines that were added, removed, or modified.  We 

ignored inconsequential changes to whitespace, 

comments, and element names, and changes to 

Table 1. Descriptive statistics for projects and mappings 

 Mylar-Bugzilla dbviz 

Entity All Mapped % All Mapped % 

Classes 56 44 79 77 59 77 

Methods 427 253 59 458 280 61 

Fields 457 230 50 391 204 52 

Lines 13649 5914 43 12744 4672 37 

Defects 110 101 92 56 47 84 
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methods and fields that were later removed (i.e., did 

not exist in the latest version).  (We discuss the 

implications of this in Section 5.) 

Using this process we were able to objectively map 

all 110 defects to program entities.  After both 

mappings were complete
8
, we assigned bugs to 

concerns if they shared a method or field in common.  

In other words, a bug was assigned to a concern if the 

bug fix was tangled (shared a program entity) with the 

concern. However, we had to leave out 9 defects 

because they mapped to program entities not associated 

with any concern.  This resulted in 101 defects mapped 

to 28 requirements concerns.   

 

Dbviz.  For dbviz, commit messages were written by 

the developer.  Here is a typical example:  

“Fixed a bug where adding a table via the 

ConnectionList wasn't undoing properly.” 

Although we could have used information retrieval 

techniques to associate defect descriptions with change 

log entries [35] and then with concerns, we instead 

relied on our judgment to associate defects directly 

with concerns.  There were a few cases where defect 

identifiers were used in the commit message, which 

allowed us to validate some of our defect assignments; 

however, they were not used consistently.  Despite 

these issues, we found the assignment to be 

straightforward. 

Since we were not able to automatically associate 

defects with defect fixes, we included “open” and 

“closed” defects, which totaled 56 defects.  We ignored 

1 defect that was a general refactoring request (“Move 

action classes to dedicated package”) and 8 defects that 

were associated with features not covered by any use 

case.
9
  This resulted in 47 defects mapped to 13 use-

case concerns. 

                                                           
8
 To eliminate bias, a different person performed the 

mapping of concerns to program entities. 
9
 For example, “zooming,” “about box,” and “logging,” 

were not covered by any use case. 

3.6. Concern Metrics 
 

A concern is scattered (i.e., crosscutting) if it is 

implemented by multiple program elements [4] [12] 

[15].  We investigated a concern-based size metric and 

four different scattering metrics to determine which (if 

any) had the strongest correlation with defects.  Table 

2 provides a description of the metrics. 

The concern diffusion metrics, created by Garcia 

and colleagues, measure scattering in absolute terms as 

a count of the number of classes (CDC) or methods 

(CDO) that implement the concern [16].
10

  Our degree 

of scattering metrics (DOSC and DOSM) provide 

more information by further considering how the 

concern’s code is distributed among the elements [12].  

Our scattering metrics build upon the concentration 

metric (CONC) introduced by Wong et al. [37]. 

 

 

 

where t is a class when measuring DOSC and a method 

when measuring DOSM.  Since we assigned concerns 

at the method level, we counted the LOCs for the 

method as relating to the concern.   

Degree of scattering is a measure of the variance of 

the concentration of a concern over all components 

with respect to the worst case (i.e., when the concern is 

equally scattered across all components): 

 

 

For DOSC, T is the set of classes in the program, and 

for DOSM, the set of methods. 

The difference between CDC and DOSC is 

illustrated in Figure 2.  The pie chart shows how the 
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 They can also measure constructs from aspect-

oriented programming such as aspects and advice. 

Table 2. Concern-based metrics 

Lines of Code for Concern 

(LOCC) 

Number of lines of code that contribute to the implementation of a concern (i.e., 

number of lines of concern code). 

Concern Diffusion over 

Components (CDC)  

Number of classes that contribute to the implementation of a concern and other 

classes and aspects which access them  [16].  

Concern Diffusion over 

Operations (CDO) 

Number of methods which contribute to a concern’s implementation plus the 

number of other methods and advice accessing them [16].  

Degree of Scattering over 

Classes (DOSC) 

Degree to which the concern code is distributed across classes.  When DOSC is 0 

all the code is in one class.  When DOSC is 1 the code is equally divided among 

all the classes. See the example in Figure 2. [12] 

Degree of Scattering over 

Members (DOSM) 

Degree to which the concern code is distributed across methods and fields.  

Varies from 0 to 1 similar to DOSC. [12] 
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code related to the concern is distributed among four 

classes.  In the first scenario, the implementation is 

evenly divided among the four classes (the worst case). 

The DOSC value is 

 

  

 = 1  0 = 1 
 

In the second scenario, the DOSC value is 

 

  

 = 0.08 
 

DOSC is close to 0, indicating the implementation in 

the second scenario is almost completely localized (0 

means completely localized).  CDC cannot distinguish 

the two implementations, as evident by the value of 4 

for both.  Our hypothesis (H2) is that degree of 

scattering more accurately quantifies the modularity of 

a concern, and so should be a better predictor of 

defects than absolute scattering metrics such as CDC 

and CDO. 

 

4. Results and Discussion 
 

In this section we discuss the results for the four 

hypotheses.  Each hypothesis is discussed in a separate 

subsection. 

 

4.1. Is Scattering Correlated with Defect 

Count? 
 

Table 3 presents our Spearman correlation results 

for the Mylar project.  For Mylar, all scattering metrics 

(DOSC, DOSM, CDC, and CDO) have positive 

correlations with defects, and CDC and CDO are 

strongly correlated (.569 and .609).  All correlations 

are statistically significant at the 5% level, that is, there 

is a 95% probability that (for Mylar) a relationship 

exists.  As with all statistical analysis results, we 

cannot assume this correlation will hold for other 

projects or even for future versions of Mylar.  Only 

when more studies replicate our results can we become 

confident that the relationship is real. 

For dbviz (see Table 4), the small sample size—

only 13 use-case concerns—severely limited the 

statistical significance of our results.  For this project, 

we were not able to learn anything about the 

relationship between scattering and defects. 

From both tables we observe that the scattering 

metrics are strongly correlated with each other.  This is 

expected since CDC and CDO are coarser versions of 

DOSC and DOSM.  In addition, the member-level 

metrics were strongly correlated with their class-level 

counterparts.  This is also expected since a class is only 

associated with a concern if at least one of its members 

is associated. 

In summary, the Mylar case study showed a 

positive statistically significant correlation between 

scattering and defects, which supports our hypothesis 

H1: 

 

4.2. Which Scattering Metric has the Strongest 

Correlation with Defect Count? 
 

For Mylar, CDC and CDO were more strongly 

correlated with defects than DOSC and DOSM.  Thus, 

we weakly reject our hypothesis H2: 

 

We were somewhat surprised by this result.  We 

expected DOSC and DOSM to decidedly outperform 

CDC and CDO because we believe degree of scattering 

more faithfully quantifies the scattered nature of a 

concern. 

It is possible that the way we chose concerns was a 

factor.  For Mylar, we created an initial list of 

requirements and updated it as we did the mapping.  

This can lead to a kind of concern identification bias 

whereby the assignor may choose concerns based on 

how well they align with the code.
11

  In contrast, for 

                                                           
11

 We have also witnessed this phenomenon in a 

previous study [12].   

Concern scattering is strongly correlated with 

defects. 

  CDC = 4 

DOSC = 1.00 

Figure 2.  Comparing CDC and DOSC for two different 

implementations of the same concern 

  CDC = 4 

DOSC = 0.08 

Absolute scattering measures are more strongly 

correlated with defects than degree of scattering 

measures. 
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Scattering at the method level appears to be more 

strongly correlated with defects than at the class 

level. 

dbviz we used existing use cases.  The results bear out 

our conjecture: the average DOSC (ADOSC) was 

much higher in dbviz (.787) than Mylar (.362).  

Clearly, the way concerns are defined significantly 

impacts scattering measures. 

Another factor is that we only analyzed a portion of 

Mylar, i.e., Mylar-Bugzilla.  It is likely that the 

scattering measures for the concerns would change if 

we took into account the entire Mylar codebase.  

Moreover, only 110 of the 1368 (8%) fixed defects in 

Mylar required changes to Mylar-Bugzilla.  This begs 

the question: which concerns are associated with the 

remaining 1258 defects?  It is likely that the defect 

counts for the concerns would change significantly if 

we took into account all of Mylar. 

 

4.3. What Level of Scattering has the Strongest 

Correlation with Defect Count? 
 

Although the difference is slight, for Mylar, 

method-level scattering was more strongly correlated 

with defects than class-level scattering when 

comparing DOSM (.498) versus DOSC (.389) and 

CDO (.609) versus CDC (.569).  Nevertheless, we 

weakly accept our hypothesis H3: 

 

4.4. Is Concern Size A Better Predictor of 

Defect Count than Scattering? 
 

For Mylar, the size of the concern implementation 

(LOCC) alone was the best predictor of defect count 

(the correlation is .767 at a 1% significance level).  

This is consistent with several other studies ([9], [21], 

and [6]) that found a statistically significant 

relationship between size metrics and defects. This 

indicates that larger concerns have more defects.  

However, this is not a foregone conclusion, since a 

study conducted by Fenton and Ohlsson [14] found 

that size metrics were not good predictors of fault-

prone modules. 

Size is an important metric as it is often correlated 

with other internal product metrics [13].  For example, 

if a concern has a large number of classes involved in 

its implementation (CDC), this usually implies a large 

number of lines (LOCC).  In fact, CDC and CDO 

cannot increase without a simultaneous increase in 

LOCC.  Looking at Tables 3 and 4, we indeed see a 

high correlation:  for Mylar-Bugzilla, CDC-LOCC is 

.653 and CDO-LOCC is .706, and for dbviz, CDO-

LOCC is .885. 

The DOSC and DOSM equations are not directly 

dependent on the number of lines associated with a 

concern, but rather on how those lines are distributed 

across classes and methods.  Despite this, for Mylar-

Bugzilla DOSC and DOSM are correlated with LOCC, 

although the correlation is not as strong as CDC and 

CDO (.389 for DOSC and .498 for DOSM), and for 

Table 3. Correlation matrix for Mylar.  Shows how the concern metrics correlate with each 

other and with defects.   Bold values indicate a statistically significant correlation.  The sample 

size N (number of concerns) is 28. 

 DOSC DOSM CDC CDO LOCC Defects 

DOSC 

Correlation 
Coefficient 

1.000 .641 .844 .568 .375 .389 

Sig. (2-tailed) . (<.0005) (<.0005) (.002) (.049) (.041) 

DOSM 

Correlation 
Coefficient 

 1.000 .771 .909 .626 .498 

Sig. (2-tailed)  . (<.0005) (<.0005) (<.0005) (.007) 

CDC 

Correlation 
Coefficient 

  1.000 .779 .653 .569 

Sig. (2-tailed)   . (<.0005) (<.0005) (.002) 

CDO 

Correlation 
Coefficient 

   1.000 .706 .609 

Sig. (2-tailed)    . (<.0005) (.001) 

LOCC 

Correlation 
Coefficient 

    1.000 .767 

Sig. (2-tailed)     . (<.0005) 

Defects 

Correlation 
Coefficient 

     1.000 

Sig. (2-tailed)      . 
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dbviz, DOSM is highly correlated with LOCC (.878).  

This could mean that for Mylar-Bugzilla, it just so 

happens that larger concerns are distributed more 

uniformly. 

If concern size has the highest correlation with 

defects, why consider scattering at all?  In fact, the 

high correlations between scattering and size might 

indicate that scattering is a surrogate for size, i.e., 

scattering and LOCC may be collinear.  To evaluate 

this possibility, we created four separate predictive 

models: 

1. Linear regression using only LOCC, 

2. Multiple linear regression using only scattering 

metrics (DOSC, DOSM, CDC, and CDO), 

3. Multiple linear regression using ALL concern 

metrics, and 

4. Multiple linear regression using components 

obtained via Principal Component Analysis [23]. 

R
2
 [5] is a measure for how well the model accounts 

for the defect count given the dataset (e.g., the number 

of defects associated with the concerns in Mylar-

Bugzilla).  It cannot be interpreted as the quality of the 

dataset to make future predictions.  Adjusted R
2
 

accounts for any bias in the R
2
 measure by taking into 

account the degrees of freedom of the predictor 

variables (e.g., DOSC) and the sample population. 

The results in Table 5 indicate that a model built 

using LOCC alone is a better predictor (Adj. R
2
 is 

.720) of defect count than a model built using all the 

scattering metrics (Adj. R
2
 is .675), although the 

difference in predictive power is not very significant.  

The most accurate model combined all metrics (Adj. 

R
2
 is .753).  Based on this data, we weakly reject our 

hypothesis H4—more studies are needed before we can 

make stronger conclusions: 

 

Although concern size is a better predictor of defect 

count than scattering, scattering may be important to 

consider for other reasons, e.g., for identifying 

crosscutting concerns that weaken the modularity of 

the program. 

 

5. Threats to Validity 
 

There are several factors that affect the validity of 

our experiment. 

 

Table 4.  Correlation matrix for dbviz.  Shows how the concern metrics correlate with each 

other and with defects.   Bold values indicate a statistically significant correlation.  The sample 

size N (number of concerns) is 13. 

 DOSC DOSM CDC CDO LOCC Defects 

DOSC 

Correlation 
Coefficient 

1.000 .588 .863 .537 .289 .188 

Sig. (2-tailed) . (.035) (<.0005) (.058) (.338) (.539) 

DOSM 

Correlation 
Coefficient 

 1.000 .694 .920 .878 .419 

Sig. (2-tailed)  . (.008) (<.0005) (<.0005) (.154) 

CDC 

Correlation 
Coefficient 

  1.000 .635 .507 .510 

Sig. (2-tailed)   . (.020) (.077) (.075) 

CDO 

Correlation 
Coefficient 

   1.000 .885 .536 

Sig. (2-tailed)    . (<.0005) (.059) 

LOCC 

Correlation 
Coefficient 

    1.000 .528 

Sig. (2-tailed)     . (.064) 

Defects 

Correlation 
Coefficient 

     1.000 

Sig. (2-tailed)      . 

Table 5. Regression fit for four predictive models 

Model R2 Adjusted R2 Std. Error 

LOCC only .730 .720 3.88488 

Scattering 

metrics 

.723 .675 4.18562 

All metrics .799 .753 3.64583 

Principal 

components 

.775 .747 3.68906 

    

Concern size is a slightly better predictor of defects 

than scattering; however, the best predictor 

combines size and scattering. 
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5.1. Internal Validity 
 

In the Mylar study, 9 of the 110 defects were 

mapped to methods or fields not covered by any 

concern.  In most cases, this is not an issue since a 

program element may be related to a concern from a 

different concern domain (e.g., “resource 

deacquisition” is a programming concern rather than a 

requirement or design concern). However, it may also 

mean that some concerns were not accounted for, 

which can skew the measurements. 

Many of the Mylar defects were clearly 

enhancements although they were not classified as 

such.  This can lead to inflated concern defect counts.  

Although the change history indicated which defect 

was fixed, in some cases unrelated modifications were 

included with the defect fix [7], which can lead to false 

positives where a defect is associated with the wrong 

concern. 

There were many code changes that involved 

methods and fields that were not present in the latest 

version because they were removed or renamed.  This 

can result in a false negative where a defect should 

have been associated with a concern but was not.  To 

reduce these we would need a concern mapping for 

every revision, not just the latest. 

Finally, our measurement tool only counts the lines 

of code associated with methods and fields.  It does not 

exclude comments or whitespace inside the methods, 

nor does it count lines associated with inner class, 

enumeration type, and namespace declarations, and 

import statements.  This explains the low code 

coverage for Mylar (43%) and dbviz (37%) shown in 

Table 1.  This can result in higher LOCC counts that 

can skew results, or lower counts that can produce 

false negatives (i.e., a bug should have been mapped to 

a concern but was not). 

 

5.2. External Validity 
 

Studies (e.g., [26] [32]) have shown that concern 

identification and assignment is highly subjective, 

which limits the repeatability of our results and their 

applicability to other projects.  Our future work is to 

incorporate a more automated concern assignment 

methodology (e.g., [1]). 

As stated by Basili et al., drawing general 

conclusions from empirical studies in software 

engineering is difficult because any process depends to 

a large degree on a potentially large number of relevant 

context variables.  For this reason we cannot assume 

that the results of a study generalize beyond the 

specific environment in which it was conducted [3]. 

 

6. Conclusions and Future Work 
 

Ours is the first study that associates concerns with 

defects and uses statistical analysis to correlate concern 

metrics with defects.  We examined the concerns of 

two medium-size projects and found that the more 

scattered the implementation of a concern is, the more 

likely it is to have defects.  All the measures we 

investigated were effective predictors of defects.  We 

also found that the size of the concern alone, in terms 

of lines of code, was the strongest predictor of defects. 

This evidence, although preliminary, is important 

for several reasons.  It adds credibility to the claims 

about the dangers of crosscutting made by the aspect-

oriented programming and programming language 

communities.  By establishing a relationship between 

concern metrics and an external quality indicator, we 

provide a stronger form of validation for these metrics 

than previous empirical studies (e.g., [19] [16]).   

It is important to realize that the novelty of our 

experiment and the subjectivity inherent in our 

methodology, severely limit the applicability of our 

results.  Further studies are needed before we can 

attempt to draw generalizable conclusions about the 

relationship between scattering and defects. 

Several questions remain.  Can we reduce the 

likelihood of defects by reducing crosscutting, or is the 

likelihood constant regardless of how the concern is 

implemented?  What is the relationship between code 

churn and scattering?  If a relationship exists, we can 

use code churn to help identify crosscutting concerns 

[7] and as a cost-effective surrogate for measuring 

scattering.  When code churn levels are dangerously 

high, concern analysis may provide an explanation and 

an actionable plan for reducing churn (i.e., modularize 

the underlying crosscutting concerns). 

All the data for the case studies is available at 

http://www.cs.columbia.edu/~eaddy/mylar_study. 
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