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Abstract

Empirical  studies indicate that crosscutting
concerns negatively impact internal quality indicators
(e.g., cause increased coupling). However, empirical
evidence indicating that crosscutting negatively
impacts external quality indicators is lacking. To
address this, we present the results of an experiment to
determine if concerns whose implementations are
scattered are more likely to have defects. Our results
provide preliminary evidence that scattering is
strongly correlated with defects at statistically
significant levels.

1. Introduction

It is hard to write reliable software. Defects creep
in at every stage of the development process, avoid
detection during testing, and eventually escape to the
customer. Enormous effort goes into safe development
techniques, program analysis, and prerelease testing to
reduce the number of defects in a delivered software
system. To better direct these efforts, we need a way
to estimate where defects are likely to occur.

We consider the possibility that crosscutting
concerns are a likely source of defects. A crosscutting
concern is a concern of the program (e.g., feature,
requirement) whose implementation is scattered across
the program and often tangled with the source code
related to other concerns.' Several empirical studies
[19] [16] [28] [36] [38] argue that crosscutting
concerns degrade code quality because they negatively
impact internal quality metrics (i.e., measures derived
from the program itself [25]), such as program size,
coupling, and separation of concerns.

! For this study, we consider a crosscutting concern to
be synonymous with a scattered concern, agreeing with
the definition in [17].

Draft paper submission. Do not distribute.

Nachiappan Nagappan
Microsoft Research
Redmond, Washington
nachin@microsoft.com

Kaitlin Duck Sherwood
University of British Columbia

Vancouver, British Columbia
ducky@webfoot.com

But do these negative impacts on internal quality
metrics also result in negative impacts on external
quality? Internal metrics are of little value unless there
is convincing evidence that they are related to
important externally visible quality attributes [22],
such as maintenance effort, field reliability, and
observed defects [13].

We argue in this paper that crosscutting concerns
might negatively impact at least one external quality
attribute—defects. Our theoretical basis is that a
crosscutting concern is harder to implement and
change consistently because multiple locations in the
code (that may not be explicitly related) have to be
updated simultaneously.  Furthermore, crosscutting
concerns may be harder to understand because
developers must reason about code that is distributed
across the program, and must mentally untangle the
code from the code related to other concerns.

Some controlled experiments on program
comprehension suggest our theory is valid. Letovsky
and Soloway use the term delocalized plan to refer to a
concern whose implementation is “realized by lines
scattered in different parts of the program.” They
observed that  programmers had  difficulty
understanding delocalized plans, and this resulted in
several kinds of incorrect modifications [27].
Robillard, Coelho, and Murphy observed that
programmers made incorrect modifications when they
failed to account for the scattered nature of the concern
they were modifying:

“Unsuccessful subjects made all of their code

modifications in one place even if they should

have been scattered to better align with the

existing design.” [33]

Other studies (e.g., [20] [8]) indicate that programmers
make mistakes when modifying classes whose
implementations are scattered due to inheritance.

Finally, enhancements or bug fixes applied to a
crosscutting concern may induce changes in multiple



source files, leading to increased code churn.
Nagappan and Ball showed that code churn is a good
predictor of system defect density [30], and we
propose that changes to crosscutting concerns may be
the root cause.

A strong relationship between crosscutting and
defects, if it exists, indicates the need for further
studies to determine the root cause of the relationship:
Are changes to crosscutting concerns more likely to be
applied inconsistently? Are crosscutting concerns
inherently more difficult to understand?

This paper is organized in the classic way. After
discussing the state of the art for assessing the impact
of crosscutting concerns on code quality (Section 2),
we describe the design of our study (Section 3). Our
results are reported in Section 4. In Section 5 we
discuss threats to validity. Section 6 concludes.

2. Background and Related Work

Several researchers have studied the impact of
crosscutting concerns on code quality. Most of the
effort has concentrated on developing new internal
metrics, or adapting existing ones, for quantifying
crosscutting, and assessing the impact of modularizing
crosscutting concerns using techniques such as aspect-
oriented programming.

2.1. Concern Metrics

Several researchers (e.g., [38], [26], and [32]) have
created concern metrics that measure scattering in
absolute terms (e.g., number of classes that contribute
to the implementation of the concern). For example,
Garcia and colleagues used their concern diffusion
metrics in several studies (e.g., [19] [16]) to show that,
in general, modularizing crosscutting concerns using
aspect-oriented programming improves separation of
concerns.

In Section 3.6, we describe our degree of scattering
metrics, which we believe complement the concern
diffusion metrics by providing a more fine-grained
measurement of scattering. We include both sets of
metrics in our correlation results for comparison and to
determine which metric is most strongly correlated
with defects.

We know of one study besides our own that
correlates  aspect-/concern- related metrics with
external quality attributes. Bartsch and Harrison
examined change history data for a set of aspects and
found a statistically significant correlation between
aspect coupling and maintenance effort [2]. Their
metrics were different from ours (aspect coupling
versus concern scattering), and their external quality
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indicator was different (effort versus defects).
Whereas we investigated the impact of a crosscutting
concern on code quality prior to refactoring using
aspects, they looked at the impact affer refactoring. A
benefit of our scattering metrics is that they may help
identify the crosscutting concerns that would benefit
the most from refactoring.

2.2. Correlating Metrics with Defects

Several researchers have attempted to find a
relationship between defects and internal product
metrics, such as code churn [30], size metrics [14] [9]
[21], object-oriented metrics (e.g., the CK metrics [10])
[9] [21], and design metrics [9]. We add to this body
of research by examining the relationship between
concern metrics and defects.

2.3. Mining Software Repositories

In recent years, researchers have learned to exploit
the vast amount of data that is contained in software
repositories such as version and bug databases [29]
[30] [31] [39]. The key idea is that one can map
problems (in the bug database) to fixes (in the version
database) and thus to those locations in the code that
caused the problem [11] [18] [35]. In Section 3.4, we
describe how we use these techniques to systematically
map defects to methods and fields.

3. Study Design

The goal of our study was to answer the questions:
Are crosscutting concerns defect prone?  Which
scattering metric is the best at predicting defects?
Which scattering level (e.g., class level, method level)
is the most appropriate for predicting defects? Finally,
which is more important for predicting defects: the size
of the concern implementation (in terms of lines of
code), i.e., concern size, or how much that
implementation is scattered?

3.1. Research Hypotheses

We formalize these questions to form our research
hypotheses:

Hypothesis

H; | The more scattered a concern’s implementation
is, the more likely it is to have defects.

H, | Our degree of scattering measures are more
strongly correlated with defect count than direct
(absolute) scattering measures.
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Figure 1. Our methodology for associating defects with concerns in Mylar-Bugzilla
H; | Scattering at the method level is more strongly We selected these projects in part because they had

correlated with defect count than at the class
level.

H, | Scattering is a better predictor of defects than

the concern size.

3.2. Our Case Studies

For our experiment we looked at two open source
projects: Mylar and dbviz. Mylar® is a commercial-
grade plug-in for the Eclipse’ integrated development
environment that enables a task-focused development
methodology [24]. It was developed by a team of
experienced Ph.D. students and professional
developers in conjunction with one of the authors of
this paper. Version 1.0.1 consists of 168,457 lines of
Java code (LOCs); however, we limited our analysis to
two components: bugzilla.core and bugzilla.ui, totaling
56 classes, 427 methods, 457 fields, 13,649 lines of
Java code. From here on, we refer to this subset as
Mylar-Bugzilla.

Dbviz' is a database schema visualization program
developed by students for a software engineering class
at University of Illinois at Urbana-Champaign.
Version 0.5 consists of 77 classes, 458 methods, 391
fields, and 12,744 lines of Java code.

? http://www.eclipse.org/mylar
? http://www.eclipse.org
* http://jdbv.sourceforge.net/dbviz
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a source code version archive (CVS), a bug database
(Bugzilla® for Mylar-Bugzilla, SourceForge® for
dbviz), were well documented, and were of modest
size. This last criterion was important because of our
manual concern and bug assignment methodology.

Figure 1 depicts our operational methodology for
assigning defects to concerns. The following sections
describe the methodology in detail.

3.3. Concern Identification Methodology

Our first step was to identify the concerns for each
program. To reduce inconsistency during concern
assignment, it is important that the concerns be well
defined [12]. We also want the concerns to cover most
of the source code (or subset, in the case of Mylar-
Bugzilla) so that we can capture most of the defects.

We relied on the project documentation and our
familiarity with the projects to help us specify the
concerns. The requirements for the Mylar-Bugzilla
component were reverse engineered based on the “New
and Noteworthy” section of the Mylar web site and
personal experience with the development and usage of
the component. For dbviz, the requirements were
organized as a set of use case documents.

> http://www.bugzilla.org
® http://www.sourceforge.net



We used 28 of Mylar-Bugzilla’s functional and
nonfunctional requirements related to the bugzilla.core
and bugzillaui components (i.e., requirement
concerns), and dbviz’s 13 use cases (i.e., use-case
concerns).

Ideally, the project selection criteria would have
included the requirement that all projects have the
same concern domain (e.g., requirements, use cases).
However, we had difficulty finding projects that met
all of these criteria.

3.4. Mapping Concerns to Source Code

We used the ConcernMapper [34] plug-in for
Eclipse to manually assign methods and fields in the
source code to one or more concerns. We extended
ConcernMapper to store mapping data in a database
and to calculate the concern metrics.

To determine if a method or field was related to a
concern, we required (1) that the method be executed
or the field read/written during the execution of a
hypothetical test case for the concern [37], and (2) that
the element would need to be removed or changed if
we wanted to completely remove the concern from the
program [12]. The first test associates the concern
with a large number of elements that are conceptually
unrelated (e.g., Main, String.append). The second test
is more subjective and attempts to prune the list of
nonessential elements (e.g., generic elements or
elements shared by many concerns). A side effect of
the second test is that it automatically excludes
libraries since the methods and fields contained therein
cannot be changed or removed (because we do not
have the source code).

Our assignment methodology results in some
classes, methods, and fields not being mapped because
they are not specific to any concern. In addition,
limitations of our tool prevented us from assigning
inner classes and enumeration types.  Table 1
summarizes the project and mapping statistics.

3.5 Mapping Defects to Concerns

Each project had a source code version archive
(CVS) for keeping track of source code changes and a
bug database (e.g,. Bugzilla) for keeping track of
defects”. Effort was made by the project teams to
avoid reporting duplicate defects.

We define the term defect as an error in the source
code, and the term failure to refer to an observable
error in the program behavior. In other words, every
failure can be traced back to some defect, but a defect

" We use the terms defect and bug interchangeably.
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need not result in a failure. The bug databases did not
distinguish between prerelease defects (e.g., defects
discovered during development and testing) and
postrelease defects (e.g., defects that cause failures
observed by a customer).

A defect fix is the set of lines in the source code
(which may span multiple files or even multiple
versions of the same file) added, removed, or modified
to fix a defect. Our underlying assumption is that it is
reasonable to associate a defect with a concern if the
source code that implements the concern must be
changed to fix the defect.

Unfortunately, although both projects had a version
archive, the amount of detail available in the change
logs for understanding the reason for a change varied
considerably. Because of this, we used two different
techniques for associating defects with concerns.

Mylar-Bugzilla. Every change in Mylar-Bugzilla is
automatically associated with an entry in the bug
database. This is because Mylar-Bugzilla was
developed using Mylar. When a developer begins
working on a bug fix, they use the Mylar Task List to
first indicate that the bug is active [24]. When they
check-in their changes, Mylar automatically creates a
commit message based on the bug that was active:

“RESOLVED - bug 149606: Some queries not

converted to tasks. https://bugs.eclipse.org/bugs/

show_bug.cgi?id=149606.”

We relied on change history data to assign defects
to program entities (e.g., methods and fields). We only
considered fixed defects (i.e., their resolution was
“fixed” and their severity was not “enhancement”).
This limitation was necessary for us to automatically
associate defects with bug fixes (i.e., we did not have
to figure out how to fix the bug ourselves). This filter
netted 1368 defects. We excluded defects that did not
require changes to bugzilla.core or bugzilla.ui, which
left us with 110 defects.

To determine which program entities were
associated with a defect fix, we manually inspected the
lines that were added, removed, or modified. We
ignored inconsequential changes to whitespace,
comments, and element names, and changes to

Table 1. Descriptive statistics for projects and mappings

Mpylar-Bugzilla dbviz
Entity All Mapped % | All  Mapped %
Classes 56 44 79 77 59 77
Methods | 427 253 59| 458 280 61
Fields 457 230 50| 391 204 52
Lines 13649 5914 43| 12744 4672 37
Defects 110 101 92 56 47 84




Table 2. Concern-based metrics

Lines of Code for Concern
(LOCC)

Number of lines of code that contribute to the implementation of a concern (i.e.,
number of lines of concern code).

Concern Diffusion over
Components (CDC)

Number of classes that contribute to the implementation of a concern and other
classes and aspects which access them [16].

Concern Diffusion over

Number of methods which contribute to a concern’s implementation plus the

Operations (CDO) number of other methods and advice accessing them [16].
Degree of Scattering over Degree to which the concern code is distributed across classes. When DOSC is 0
Classes (DOSC) all the code is in one class. When DOSC is 1 the code is equally divided among

all the classes. See the example in Figure 2. [12]

Degree of Scattering over
Members (DOSM)

Degree to which the concern code is distributed across methods and fields.
Varies from 0 to 1 similar to DOSC. [12]

methods and fields that were later removed (i.e., did
not exist in the latest version). (We discuss the
implications of this in Section 5.)

Using this process we were able to objectively map
all 110 defects to program entities. After both
mappings were complete®, we assigned bugs to
concerns if they shared a method or field in common.
In other words, a bug was assigned to a concern if the
bug fix was tangled (shared a program entity) with the
concern. However, we had to leave out 9 defects
because they mapped to program entities not associated
with any concern. This resulted in 101 defects mapped
to 28 requirements concerns.

Dbviz. For dbviz, commit messages were written by
the developer. Here is a typical example:

“Fixed a bug where adding a table via the

ConnectionList wasn't undoing properly.”

Although we could have used information retrieval
techniques to associate defect descriptions with change
log entries [35] and then with concerns, we instead
relied on our judgment to associate defects directly
with concerns. There were a few cases where defect
identifiers were used in the commit message, which
allowed us to validate some of our defect assignments;
however, they were not used consistently. Despite
these issues, we found the assignment to be
straightforward.

Since we were not able to automatically associate
defects with defect fixes, we included “open” and
“closed” defects, which totaled 56 defects. We ignored
1 defect that was a general refactoring request (“Move
action classes to dedicated package”) and 8 defects that
were associated with features not covered by any use
case.” This resulted in 47 defects mapped to 13 use-
case concerns.

¥ To eliminate bias, a different person performed the
mapping of concerns to program entities.

? For example, “zooming,” “about box,” and “logging,”
were not covered by any use case.
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3.6. Concern Metrics

A concern is scattered (i.e., crosscutting) if it is
implemented by multiple program elements [4] [12]
[15]. We investigated a concern-based size metric and
four different scattering metrics to determine which (if
any) had the strongest correlation with defects. Table
2 provides a description of the metrics.

The concern diffusion metrics, created by Garcia
and colleagues, measure scattering in absolute terms as
a count of the number of classes (CDC) or methods
(CDO) that implement the concern [16]."° Our degree
of scattering metrics (DOSC and DOSM) provide
more information by further considering how the
concern’s code is distributed among the elements [12].
Our scattering metrics build upon the concentration
metric (CONC) introduced by Wong et al. [37].

LOCs in component t
related to concern s

CONC(s,t) =
(s,0) LOCs related to concern s

where t is a class when measuring DOSC and a method
when measuring DOSM. Since we assigned concerns
at the method level, we counted the LOCs for the
method as relating to the concern.

Degree of scattering is a measure of the variance of
the concentration of a concern over all components
with respect to the worst case (i.e., when the concern is
equally scattered across all components):

2
171 Zeer (CONCEs,0) = 777)
=1

DOS(s) =1—

For DOSC, T is the set of classes in the program, and
for DOSM, the set of methods.

The difference between CDC and DOSC is
illustrated in Figure 2. The pie chart shows how the

' They can also measure constructs from aspect-
oriented programming such as aspects and advice.



code related to the concern is distributed among four
classes. In the first scenario, the implementation is
evenly divided among the four classes (the worst case).
The DOSC value is

(25— + (5= )+ (5= ) 4 (25- 1))

DOSC =1-
[4]-1

=1-0=1

In the second scenario, the DOSC value is

#((97-) "+ (012 +(o1- ) +(o1-2)’)

DOSC =1-—
l4]-1

=0.08

DOSC is close to 0, indicating the implementation in
the second scenario is almost completely localized (0
means completely localized). CDC cannot distinguish
the two implementations, as evident by the value of 4
for both. Our hypothesis (H,) is that degree of
scattering more accurately quantifies the modularity of
a concern, and so should be a better predictor of
defects than absolute scattering metrics such as CDC
and CDO.

4. Results and Discussion

In this section we discuss the results for the four
hypotheses. Each hypothesis is discussed in a separate
subsection.

4.1. Is Scattering Correlated with Defect
Count?

Table 3 presents our Spearman correlation results
for the Mylar project. For Mylar, all scattering metrics
(DOSC, DOSM, CDC, and CDQO) have positive
correlations with defects, and CDC and CDO are
strongly correlated (.569 and .609). All correlations
are statistically significant at the 5% level, that is, there
is a 95% probability that (for Mylar) a relationship
exists. As with all statistical analysis results, we
cannot assume this correlation will hold for other
projects or even for future versions of Mylar. Only
when more studies replicate our results can we become
confident that the relationship is real.

For dbviz (see Table 4), the small sample size—
only 13 wuse-case concerns—severely limited the
statistical significance of our results. For this project,
we were not able to learn anything about the
relationship between scattering and defects.

From both tables we observe that the scattering
metrics are strongly correlated with each other. This is
expected since CDC and CDO are coarser versions of
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Class

4 Class
Class __ e
CDC=4 CDC=4
DOSC=1.00 DOSC=0.08

Figure 2. Comparing CDC and DOSC for two different
implementations of the same concern

DOSC and DOSM. In addition, the member-level
metrics were strongly correlated with their class-level
counterparts. This is also expected since a class is only
associated with a concern if at least one of its members
is associated.

In summary, the Mylar case study showed a
positive statistically significant correlation between
scattering and defects, which supports our hypothesis
Hl:

Concern scattering is strongly correlated with
defects.

4.2. Which Scattering Metric has the Strongest
Correlation with Defect Count?

For Mylar, CDC and CDO were more strongly
correlated with defects than DOSC and DOSM. Thus,
we weakly reject our hypothesis H,.

Absolute scattering measures are more strongly
correlated with defects than degree of scattering
measures.

We were somewhat surprised by this result. We
expected DOSC and DOSM to decidedly outperform
CDC and CDO because we believe degree of scattering
more faithfully quantifies the scattered nature of a
concern.

It is possible that the way we chose concerns was a
factor. For Mylar, we created an initial list of
requirements and updated it as we did the mapping.
This can lead to a kind of concern identification bias
whereby the assignor may choose concerns based on
how well they align with the code." In contrast, for

" We have also witnessed this phenomenon in a
previous study [12].



Table 3. Correlation matrix for Mylar. Shows how the concern metrics correlate with each
other and with defects. Bold values indicate a statistically significant correlation. The sample

size N (number of concerns) is 28.

DOSC | DOSM CDC CDO LOCC | Defects
Correlation
DOSC Coefficient 1.000 .641 .844 .568 .375 .389
Sig. (2-tailed) (<.0005) | (<.0005) | (.002) (.049) (.041)
Correlation
DOSM Coefficient 1.000 77 .909 .626 .498
Sig. (2-tailed) (<.0005) | (<.0005) | (<.0005) | (.007)
Correlation 1000 | .779 653 569
cDC Coefficient
Sig. (2-tailed) (<.0005) | (<.0005) | (.002)
Correlation 1.000 706 609
CDO Coefficient ) : ’
Sig. (2-tailed) (<.0005) | (.001)
Correlation
LOCC Coefficient 1.000 c
Sig. (2-tailed) (<.0005)
Correlation
Defects | Coefficient oot
Sig. (2-tailed) \

dbviz we used existing use cases. The results bear out
our conjecture: the average DOSC (ADOSC) was
much higher in dbviz (.787) than Mylar (.362).
Clearly, the way concerns are defined significantly
impacts scattering measures.

Another factor is that we only analyzed a portion of
Mylar, i.e., Mylar-Bugzilla. It is likely that the
scattering measures for the concerns would change if
we took into account the entire Mylar codebase.
Moreover, only 110 of the 1368 (8%) fixed defects in
Mylar required changes to Mylar-Bugzilla. This begs
the question: which concerns are associated with the
remaining 1258 defects? It is likely that the defect
counts for the concerns would change significantly if
we took into account all of Mylar.

4.3. What Level of Scattering has the Strongest
Correlation with Defect Count?

Although the difference is slight, for Mylar,
method-level scattering was more strongly correlated
with defects than class-level scattering when
comparing DOSM (.498) versus DOSC (.389) and
CDO (.609) versus CDC (.569). Nevertheless, we
weakly accept our hypothesis Hj:

Scattering at the method level appears to be more
strongly correlated with defects than at the class
level.
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4.4. Is Concern Size A Better Predictor of
Defect Count than Scattering?

For Mylar, the size of the concern implementation
(LOCC) alone was the best predictor of defect count
(the correlation is .767 at a 1% significance level).
This is consistent with several other studies ([9], [21],
and [6]) that found a statistically significant
relationship between size metrics and defects. This
indicates that larger concerns have more defects.
However, this is not a foregone conclusion, since a
study conducted by Fenton and Ohlsson [14] found
that size metrics were not good predictors of fault-
prone modules.

Size is an important metric as it is often correlated
with other internal product metrics [13]. For example,
if a concern has a large number of classes involved in
its implementation (CDC), this usually implies a large
number of lines (LOCC). In fact, CDC and CDO
cannot increase without a simultaneous increase in
LOCC. Looking at Tables 3 and 4, we indeed see a
high correlation: for Mylar-Bugzilla, CDC-LOCC is
.653 and CDO-LOCC is .706, and for dbviz, CDO-
LOCC is .885.

The DOSC and DOSM equations are not directly
dependent on the number of lines associated with a
concern, but rather on how those lines are distributed
across classes and methods. Despite this, for Mylar-
Bugzilla DOSC and DOSM are correlated with LOCC,
although the correlation is not as strong as CDC and
CDO (.389 for DOSC and .498 for DOSM), and for



Table 4. Correlation matrix for dbviz. Shows how the concern metrics correlate with each
other and with defects. Bold values indicate a statistically significant correlation. The sample

size N (number of concerns) is 13.

DOSC | DOSM CDC CDO LOCC | Defects
Correlation
DOSC Coefficient 1.000 .588 .863 537 .289 .188
Sig. (2-tailed) (.035) | (<.0005) | (.058) (.338) | (.539)
Correlation
DOSM Coefficient 1.000 .694 .920 .878 419
Sig. (2-tailed) (.008) | (<.0005) | (<.0005) | (.154)
Correlation 1000 | .635 507 | 510
CcDC Coefficient
Sig. (2-tailed) (.020) (.077) | (.075)
Correlation 1.000 885 536
CDO Coefficient : ' ’
Sig. (2-tailed) (<.0005) | (.059)
Correlation
LOCC Coefficient 1.000 —
Sig. (2-tailed) (.064)
Correlation
Defects | Coefficient 1200
Sig. (2-tailed)

dbviz, DOSM is highly correlated with LOCC (.878).
This could mean that for Mylar-Bugzilla, it just so
happens that larger concerns are distributed more
uniformly.

If concern size has the highest correlation with
defects, why consider scattering at all? In fact, the
high correlations between scattering and size might
indicate that scattering is a surrogate for size, i.e.,
scattering and LOCC may be collinear. To evaluate
this possibility, we created four separate predictive
models:

1. Linear regression using only LOCC,

2. Multiple linear regression using only scattering

metrics (DOSC, DOSM, CDC, and CDO),

3. Multiple linear regression using ALL concern

metrics, and

4. Multiple linear regression using components

obtained via Principal Component Analysis [23].

R’ [5] is a measure for how well the model accounts
for the defect count given the dataset (e.g., the number
of defects associated with the concerns in Mylar-

Table 5. Regression fit for four predictive models

Model R’ Adjusted R> | Std. Error
LOCC only 730 720 3.88488
Scattering 7123 .675 4.18562
metrics

All metrics 799 753 3.64583
Principal 775 147 3.68906
components
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Bugzilla). It cannot be interpreted as the quality of the
dataset to make future predictions. Adjusted R’
accounts for any bias in the R* measure by taking into
account the degrees of freedom of the predictor
variables (e.g., DOSC) and the sample population.

The results in Table 5 indicate that a model built
using LOCC alone is a better predictor (Adj. R* is
.720) of defect count than a model built using all the
scattering metrics (Adj. R? is .675), although the
difference in predictive power is not very significant.
The most accurate model combined all metrics (Adj.
R is .753). Based on this data, we weakly reject our
hypothesis H,—more studies are needed before we can
make stronger conclusions:

Concern size is a slightly better predictor of defects
than scattering; however, the best predictor
combines size and scattering.

Although concern size is a better predictor of defect
count than scattering, scattering may be important to
consider for other reasons, e.g., for identifying
crosscutting concerns that weaken the modularity of
the program.

5. Threats to Validity

There are several factors that affect the validity of
our experiment.



5.1. Internal Validity

In the Mylar study, 9 of the 110 defects were
mapped to methods or fields not covered by any
concern. In most cases, this is not an issue since a
program element may be related to a concern from a
different  concern  domain  (e.g.,  “resource
deacquisition” is a programming concern rather than a
requirement or design concern). However, it may also
mean that some concerns were not accounted for,
which can skew the measurements.

Many of the Mylar defects were clearly
enhancements although they were not classified as
such. This can lead to inflated concern defect counts.
Although the change history indicated which defect
was fixed, in some cases unrelated modifications were
included with the defect fix [7], which can lead to false
positives where a defect is associated with the wrong
concern.

There were many code changes that involved
methods and fields that were not present in the latest
version because they were removed or renamed. This
can result in a false negative where a defect should
have been associated with a concern but was not. To
reduce these we would need a concern mapping for
every revision, not just the latest.

Finally, our measurement tool only counts the lines
of code associated with methods and fields. It does not
exclude comments or whitespace inside the methods,
nor does it count lines associated with inner class,
enumeration type, and namespace declarations, and
import statements. This explains the low code
coverage for Mylar (43%) and dbviz (37%) shown in
Table 1. This can result in higher LOCC counts that
can skew results, or lower counts that can produce
false negatives (i.e., a bug should have been mapped to
a concern but was not).

5.2. External Validity

Studies (e.g., [26] [32]) have shown that concern
identification and assignment is highly subjective,
which limits the repeatability of our results and their
applicability to other projects. Our future work is to
incorporate a more automated concern assignment
methodology (e.g., [1]).

As stated by Basili et al.,, drawing general
conclusions from empirical studies in software
engineering is difficult because any process depends to
a large degree on a potentially large number of relevant
context variables. For this reason we cannot assume
that the results of a study generalize beyond the
specific environment in which it was conducted [3].
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6. Conclusions and Future Work

Ours is the first study that associates concerns with
defects and uses statistical analysis to correlate concern
metrics with defects. We examined the concerns of
two medium-size projects and found that the more
scattered the implementation of a concern is, the more
likely it is to have defects. All the measures we
investigated were effective predictors of defects. We
also found that the size of the concern alone, in terms
of lines of code, was the strongest predictor of defects.

This evidence, although preliminary, is important
for several reasons. It adds credibility to the claims
about the dangers of crosscutting made by the aspect-
oriented programming and programming language
communities. By establishing a relationship between
concern metrics and an external quality indicator, we
provide a stronger form of validation for these metrics
than previous empirical studies (e.g., [19] [16]).

It is important to realize that the novelty of our
experiment and the subjectivity inherent in our
methodology, severely limit the applicability of our
results. Further studies are needed before we can
attempt to draw generalizable conclusions about the
relationship between scattering and defects.

Several questions remain. Can we reduce the
likelihood of defects by reducing crosscutting, or is the
likelihood constant regardless of how the concern is
implemented? What is the relationship between code
churn and scattering? If a relationship exists, we can
use code churn to help identify crosscutting concerns
[7] and as a cost-effective surrogate for measuring
scattering. When code churn levels are dangerously
high, concern analysis may provide an explanation and
an actionable plan for reducing churn (i.e., modularize
the underlying crosscutting concerns).

All the data for the case studies is available at
http://www.cs.columbia.edu/~eaddy/mylar_study.
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