Realization of Integrated Mobility Management Protocol for Ad-Hoc Networks

Ashutosh Dutta, James Burns, K. Daniel Wong, Ravi Jain, Anthony McAuley, Ken Young
Telcordia Technologies, 445 South Street, Morristown, NJ 07960

Henning Schulzrinne
Computer Science Department, Columbia University, New York, NY 10027

Abstract—A multi-layer mobility management architecture has been designed to take care of real-time and non-real-time traffic for intra-domain and inter-domain mobility in a survivable network. It consists of three components based on functionality. SIP based mobility management is used for real-time communication, and MIP-LR is used for non-real-time communication when nodes move between two different domains while MMP takes care of movement within a domain. A testbed has been implemented using the features of each mobility management approach in an integrated manner. In this paper we present our implementation and integration experience of these three mobility management protocols and evaluate their performance under simulated military environment while interacting with Dynamic DNS, DRCP/DCDP and coordinating among themselves based on the application type and domain being served.

I. INTRODUCTION

In a military environment nodes are highly mobile under dynamic network conditions. Thus in this environment mobility management is needed to ensure that nodes can be located quickly and packet delivery operates properly in the presence of mobility of nodes, networks and multimedia session does not get affected.

There are many mobility management scheme defined to support real-time and non-real-time application in the terrestrial Internet, both for inter-domain and intra-domain mobility [1], [4], [5] while providing support for personal, terminal and session mobility. There are significant challenges however with regard to the robustness, management overhead requirements and latency of some of these existing approaches and hence none of these traditional mobility management scheme alone can provide adequate support with respect to survivability, robustness, redundancy for adhoc type network in a military environment. Triangular routing and encapsulation associated with traditional Mobile IP scheme do not make it suitable in wireless scenario since it adds to network delay and wastage of bandwidth. Although there are other approaches such as Mobile IP with Route Optimization to take care of triangular routing problem, it still needs to have a modified version of kernel’s TCP/IP stack. SIP based mobility management [3], [8] although suitable for real-time application it alone cannot take care of non-real-time application in its current form, however there are extensions proposed [9]. Although a new transport protocol called SCTP [12], can be used with SIP to take care of traffic due to mobility when IP address changes.

Thus military environment requires a new comprehensive and integrated mobility management scheme which would take care of precise handoff delay, latency and bandwidth requirement while providing the needs for a survivable network. This approach consists of mobility management at several layers, such as application layer based on SIP, network layer approach based on Mobile IP with location register, and local mobility management protocol for Intradomain mobility.

Figure 1 shows where each of the mobility management component fits in the multimedia protocol stack.

This paper is organized as follows. Section II touches upon the individual mobility component of the integrated approach involved here and their performance with respect to Mobile IP from simulation and experiments. Section III briefly describes the mobility management architecture for a typical military environment and how these mobility protocols fit together. Section IV cites some related work, and section V concludes the paper with some open issues.

II. MOBILITY COMPONENTS

The sections below provide some simulation and experimental results carried out for each of these mobility management techniques. In each case, results were compared with that of traditional Mobile IP approach. A new architecture has
been designed, where all three mobility management components can function simultaneously on the same terminal while taking care of its own individual function. MMP takes care of movement of the clients within a micro-mobility domain, SIP takes care of real-time communication such as RTP/UDP, and MIP-LR takes care of non-real-time communication such as TCP based application for inter-domain mobility. In an integrated demonstration it has been shown that, MMP, SIPMM and MIP-LR can co-exist without affecting each other.

A. Application Layer Component - SIP based approach

Application layer mobility management is based on Session Initiation Protocol which has been proposed standard as an RFC 2543 in IETF [14]. [3] provides a good background about the application layer mobility management using SIP.

SIP provides application layer mobility solution in three different ways: pre-session mobility often known as personal mobility, mid-session mobility often known as terminal mobility, session mobility where it keeps the same service while mobile [17] and irrespective of the network attached. Since most of the networks currently do not support mobile IP, besides Mobile IP has triangular routing and other overhead problems, and basic kernel stack has to be modified on the end-points, it is not suitable for deployment in a typical military environment which is so much delay sensitive. On the other hand SIP is gaining momentum as the signaling protocol for real-time multimedia calls. So it is proposed to use SIP to take care of mobility management because of its server based approach. Both personal mobility and terminal mobility can be achieved by SIP for real-time communication. SIP’s application layer approach along with its interaction with DNS servers and LDAP database makes it a good alternative for managing the real-time traffic. There have also been many ways of propagating the registration information using some techniques mentioned in [15]. Multiple SIP servers can be provisioned during the boot time and by using DNS’s “SRV” record, SIP proxy servers for a particular domain can be discovered. Thus in case of a failure one SIP server, a secondary SIP server can be used. SIP’s session timer feature can be used to choose between alternate servers. Figure 2 shows use of SIP mobility in a distributed environment where some of the nodes may be airborne.

B. SIP Performance

Using SIP for mobility management of real-time traffic provides better throughput and performance compared to standard mobile IP. By using SIP instead of Mobile IP without route optimization one can expect to have 50 percentage latency improvement in real-time (RTP/UDP) traffic (reduction in latency from baseline of 27 ms to 16 ms for large packets) and 35 percentage utilization increase (60 bytes packet size compared with baseline of 80 bytes packet size with IP-in-IP encapsulation in Mobile IP). The curves in figure 3 show the relative performance difference between SIP and Mobile IP under different network conditions. Experiments were carried out in the laboratory comparing both the approaches using controlled traffic. Some of the analysis tools such as netperf, tcpdump and rtpdump were used to measure the performance details. Comparison was made for SIP based mobility with Stanford’s MosquitoNet mobile IP.

![Fig. 2. SIP Mobility for a Survivable Network](image)

![Fig. 3. SIP/MIP Signaling and Transport Overhead](image)
Subsequent de-registration and re-registration messages were of 372 and 425 bytes respectively followed by OK messages which were of size 510 and 410 bytes. A typical Re-Invite after subnet change and respective OK messages were 450 and 380 UDP bytes respectively. It takes about 100 msec for the processing time on Linux based MH between consecutive messages (e.g., between receiving an OK and sending the ACK which is strongly OS dependent). It took about 5 msec to forward the INVITE packet to traverse between MH and CH when MH is at home. As the MH moves away to a foreign network with more network routers in between, Re-INVITE takes about 70 msec because of the queuing delay at the routers enroute. The SIP registrar was placed in the middle of the network between the two domains, it took about 150 msec to complete the whole re-registration process, however it takes more processing time to delete the old registration than updating a new one at the registrar. These figures would vary depending upon the operating system, and network topology. It would be desirable to reduce the Re-Invite time, re-registration time in a wireless roaming environment for faster handoff and avoiding loss of data.

C. Network Layer component- MIP-LR approach

MIP-LR (Mobile IP with Location Register) [2] provides a network layer mobility solution but with placement of additional location registers. MIP-LR takes care of many of the issues associated with a survivable network such as location of the home agent, home agent vulnerability, triangular routing and tunneling associated with Mobile IP.

MIP-LR addresses the following four limitations of basic MIP:

1. Home Agent Location: The mobile’s Home Agent must be located in its home network.
2. Home Agent Vulnerability: There is no scheme to allow multiple, geographically distributed Home Agents located outside the Home Network to serve the user.
3. Triangle Routing: All packets destined to the mobile host must traverse its home network.
4. Tunneling: Packets destined to the mobile must be tunneled (typically by being encapsulated inside another IP packet) enroute.

MIP-LR provides an efficient approach compared to MIP by taking care of forwarding, profile replication, local anchoring, hierarchical organization. The first two limitations inhibit survivability, particularly in a military scenario where the mobile’s home network may be in a vulnerable forward area. The second two limitations imply a performance penalty and also inhibit interoperability with other protocols like RSVP which rely on inspecting the original IP packet header. In MIP-LR we eliminate the tunneling function by using Linux’s new li-bipq and iptables utility. In addition, the database mapping of the mobile host’s IP address to its COA is maintained by an entity called the Home Location Register (HLR), by analogy with cellular systems, since it is queried in a manner analogous to how the HLR is queried in cellular systems to determine the mobile host’s location. Unlike the Home Agent, it need not necessarily be located in the home network.

When a mobile host moves from one subnet to another, it registers its current COA with a database called a Home Location Register (HLR). When a correspondent host has a packet to send, it first queries the HLR to obtain the mobile host’s COA, and then sends packets directly to the mobile host. The mapping from the mobile host’s permanent IP address to its COA is done by the IP layer at the correspondent host and is transparent to higher-layer protocols; the reverse mapping is done at the mobile. The correspondent host caches the mobile host’s COA to avoid querying the HLR for every subsequent packet destined for the mobile host. The mobile host maintains a list of correspondent hosts with which it is in active communication and informs them if it moves to a different subnet (as is done in Mobile IP for IPv6). MIP-LR is especially suited to military environment as compared to Mobile IP as it provides better performance, less delay and network load on ground and elsewhere. It provides better survivability by allowing multiple replicated LRs along the battlefield, and LRs placed outside the vulnerable area within the domain.

Figure 4 shows the use of MIP-LR in an adhoc networking environment where some of the nodes may be actually airborne.

D. MIP-LR performance

While MIP-LR provides survivability and redundancy, it also offers better performance compared to traditional Mobile IP. Using MIP-LR instead of Mobile IP one can expect to achieve a goal of 50 percentage reduction in management overhead (latency of 10.5 ms vs. baseline of 18.5 ms in MIP case for a packet size of 1Kbyte in a small campus environment). Figure 5 provides an analytical and experimental comparison between MIP and MIP-LR.

MIP-LR registration request is about 52 bytes, where as registration reply is about 50 bytes UDP packets. MIP-LR query made by CH is about 24 bytes. LR notifies the CH about the MH location using a 28 byte response packet. As the MH gets
a new address it notifies the CH and LR using a binding update message which is about 28 byte. An additional 28 byte header (20 byte IP and 8 byte UDP).

E. Micro Mobility Management Component - MMP

MMP is a derivative of the Cellular IP/HAWAII family of micro-mobility schemes [5], [4]. Cellular IP is one of the first micro-mobility schemes proposed. It was proposed as a response to perceived short-comings of Mobile IP (RFC 2002) for handling mobility in some cases. In particular, Mobile IP is designed such that a new registration is required to be sent to the Home Agent, with a new care-of-address, every time a mobile node moves to a new subnet. The registration process may introduce unnecessary latency, which is alright in the original scenarios for which it was designed - where the rate of movement between subnets is low. In addition, if there are lots of idle mobile nodes, these will all be performing Mobile IP registrations whenever they move, causing a lot of signaling overhead. This signaling overhead is not localized, but goes over the global Internet.

MMP is designed as a micro-mobility protocol to handle intra-domain mobility. Domain in this case does not have to be DNS domain but consists of few subnetworks. MMP is designed to work with SIP and MIP-LR, where SIP and MIP-LR handle macro-mobility. MMP shares certain benefits of forwarding-cache-based local/micro-mobility schemes like Cellular IP and HAWAII, exploiting hierarchical structures of military networks, etc. The extended MMP uses multiple paths, and possibly multiple gateways, for robustness and reliability.

In basic MMP, gateway beacon messages are sent down by the gateway periodically so the MMP nodes can refresh their cache mappings of the uplink interface. The hierarchical nature of forwarding-cached based protocols like MMP makes a good fit for military networks like the Tactical Internet. Figure 6 shows an abstraction of MMP, in particular, of two MMP domains (each with a gateway).

The gateway is the dividing point between macro-mobility and micro-mobility. Below it is one MMP domain. The nodes in the tree beneath it are MMP nodes which may be routers or even “layer-2 switches” since they do host based routing and do not need IP routing protocols like RIP, OSPF etc. Micro-mobility is handled by special host-based routing. This host-based routing is integrated with location management as described below.

Uplink (base stations to gateway) routing: Gateway sends beacons downlink so MMP nodes can route uplink. The interface through which the first copy of a particular beacon (beacons may use sequence numbers) arrives, is recorded, and is used as the next-hop for routing of any packet to the gateway.

Advertisement for network detection is passed along from access points (base stations), with gateway’s address. When a node first arrives in an MMP domain, it performs autoconfiguration and obtains a COA. The registration message is a paging update from mobile node to gateway, moves hop-by-hop up to gateway, updating routing caches; the entry for a particular mobile node will point to the interface through which the registration packet arrived from the mobile node, allowing downlink routing; gateway takes care of Mobile IP registration, if necessary (acts as FA). Routing to mobile node is done by tunneling data to gateway from HA, decapsulated, and forwarded to mobile node by routing caches Routing from mobile node is forwarded to gateway and then into Internet. Paging caches have usually longer expiry than routing caches and are used only when no valid routing cache entry exists.

Figure 7 shows both simulation and experimental results obtained from the testbed.

III. INTEGRATED MOBILITY MANAGEMENT TESTBED

Main objective of this architecture is to provide mobility support for both real-time and non-real-time applications while providing survivability and redundancy features in a military network. This is achieved by means of distributed servers, location registers and proxies which provide fall back features, and forward caching technique within a domain.

Proposed mobility management architecture mostly relies on server based approach. Figure 8 shows the mobility ar-
architecture taking into account all three mobility management approaches. This mobility architecture assumes that the end hosts are smart and IP addressable, and the routers can also provide application layer signaling functionality. Some of the intermediary and gateway nodes can act like routers and can have the server functionality such as DNS, HTTP, and location register functionality, thus providing redundancy support in case of router/server failure on the ground. In this particular figure, each footprint may belong to a different MMP domain, although each footprint may be an autonomous system belonging to the same domain.

As described in the earlier sections these three mobility management can work together to provide a reliable operation. Each mobility management approach would become active depending on if the client is communicating via real-time traffic (RTP/UDP), non-real-time traffic (TCP/IP) and whether the client is moving between domains or within a domain.

MMP is used for intra-domain mobility; SIP based mobility scheme and MIP-LR are used for inter-domain mobility based on the type of application being supported by the end user terminal (i.e., Real-time or Non-real-time respectively). SIP based personal mobility feature would provide a means for pre-session mobility.

In this case Mobile Node obtains a new IP address once it moves to a new domain, and it does not obtain any new IP address as long as it remains within this domain, mobility is taken care of by MMP scheme within this domain. When MN moves to a new domain for the first time, it obtains a new IP address, registers with the SIP server or ground VLR which gets propagated to other SIP servers or HLRs spread across the network. Thus CH becomes aware of the new URI or new IP address from the Re-direct server or HLRs. In case of real-time communication if the MH moves between the domains, then a Re-INVITE is sent to the CH to keep the session active, similarly UPDATE message is sent to CH in case of MIP-LR. But any subsequent move within the new domain Re-INVITE or update messages are not sent, since MMP takes care of routing the packets properly within that domain. As shown in figure 9 as the mobile node moves between the domains it would use SIP or MIP-LR depending upon the type of application being supported. But while roaming within a domain mobility management is taken care of by MMP, where the gateway would act like a FA in case of a MIP-LR and would provide the new contact address in case of SIP based mobility management.

Figure 9 shows the testbed where the Integrated Mobility Management prototypes have been experimented and results were taken. Although the goal was to operate all three mobility management techniques at the same time on the single terminal while each doing its own function each mobility management prototype was tested pairwise also such as SIP and MMP, SIP and MIP-LR. Figures 10, 11 and 12 provide protocol flows of how each pair of protocols interact with each other.

IV. RELATED WORK

There have been some related work to support mobility in military environment [16]. Most of these approaches are lim-
ited to intra-domain case, and does not offer an application specific integrated mobility management approach for a military type environment. This integrated approach provides survivability solution while saving the extra overhead and added delay because of triangular routing and take care of both real-time (e.g., audio, video streaming traffic and non-real-time traffic (e.g., ftp, telnet).

V. CONCLUSION AND OPEN ISSUES

This paper illustrates a novel mobility management architecture suitable for a mobile military environment, discussion of each of the mobility component of the architecture, some performance results of each method and describes how these can work together in a military environment. A testbed implementation shows that these three mobility management protocols can co-exist on the same terminal operating at the same time while interacting with DRCP/DCDP, My-SQL based configuration database, and dynamic DNS. Intra-domain and Inter-domain mobility management is achieved for both real-time and Non-real-time application. Integration with quality of service and self managed virtual networks are the next steps which are being investigated.

REFERENCES