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Abstract 
 
We present a demonstrated and commercially viable 

self-tracker, using robust software that fuses data from 
inertial and vision sensors. Compared to infrastructure-
based trackers, self-trackers have the advantage that 
objects can be tracked over an extremely wide area, 
without the prohibitive cost of an extensive network of 
sensors or emitters to track them. So far most AR research 
has focused on the long-term goal of a purely vision-based 
tracker that can operate in arbitrary unprepared 
environments, even outdoors. We instead chose to start 
with artificial fiducials, in order to quickly develop the 
first self-tracker which is small enough to wear on a belt, 
low cost, easy to install and self-calibrate, and low enough 
latency to achieve AR registration. We also present a 
roadmap for how we plan to migrate from artificial 
fiducials to natural ones. By designing to the requirements 
of AR, our system can easily handle the less challenging 
applications of wearable VR systems and robot navigation.  

1. Introduction 

When you think about computer graphics applications 
that require motion tracking today, you probably think first 
of VR games or character animation driven by full-body 
motion capture. However, in the future computer graphics 
is likely to make an impact on some industries less 
glamorous than entertainment, but larger and more 
indispensable, such as manufacturing, maintenance, 
construction, transportation, medicine, and the military. 
One technology that seems poised to make radical 
improvements in efficiency of operations for all of these 
industries is augmented reality (AR). It is widely 
recognized that the motion tracking requirements for AR 
are more challenging than for VR: the tracking needs to be 
faster and more accurate, and for large-scale applications 
like aircraft manufacturing and maintenance or battlefield 
AR, it needs to work over very large areas. Researchers 
have been trying to develop a tracking solution that can 
meet these difficult requirements, with dozens of papers 
appearing in such conferences as ISAR, ISMR, and IEEE 
VR. In order to provide tracking over wide areas or 
outdoors, many of these papers have described various 
approaches to self-tracking.  

The concept of a “self-tracker” has a long and 
distinguished history, introduced to the CG world by Gary 
Bishop’s 1984 dissertation [3], but practiced even earlier 
by ancient mariners who navigated the seas using a sextant 
to measure the bearing angles to celestial landmarks. Most 
researchers have pursued the lofty goal of a self-tracker 
that works with absolutely no infrastructure by observing 
natural features, even outdoors. While we agree that there 
is a burning need for a self-tracker that can work in an 
unstructured dynamic outdoor environment, the practical 
and robust implementation of such a tracker are years 
away due to the computer vision challenges of finding 
suitable natural features to track under such diverse 
conditions. In the meantime, there are still significant 
applications for a tracker to be used in and around 
buildings and vehicles, where one can assist the tracker by 
installing  “fiducial” marks that can be extracted quickly 
and reliably using today’s machine vision hardware.  In 
Section 5 we present a roadmap for weaning our system 
away from reliance on these artificial fiducials. Part of this 
strategy is to capitalize on the work others are now doing 
on natural feature recognition, which we can rapidly 
integrate into our system due to its open architectural 
framework summarized briefly in Section 2.  

Indeed many researchers have worked on self-tracking 
systems using printed paper landmarks or fiducials [e.g. 
2,5,8,9], but they are still not robust, because when the 
camera moves quickly, the image processor has to search 
the whole image to find candidate fiducial marks, and this 
is too slow and unreliable. The system easily becomes 
disoriented and takes a long time to recover. In order to 
build a robust and fast self-tracker, there is growing 
consensus that you need to combine inertial and computer 
vision technologies using sophisticated sensor fusion 
algorithms [e.g. 1,6,10,11,12]. This paper describes the 
first implementation of such a system which has all of the 
attributes required to be commercially viable: 
• It is small, lightweight, and low power, so the 

processor can be comfortably worn on a belt while the 
sensor combination is attached to an HMD or 
handheld device. 

• It is reproducibly manufacturable using just three low-
cost off-the-shelf components, and automatic self-
calibration software. 
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• It is self-installing, in the sense that after sticking 
some paper fiducials to the ceiling or walls where 
tracking is needed, one can auto-map the locations of 
these fiducials by walking through the area with the 
tracker itself, and no other surveying is needed. 

• It is robust in the face of difficult lighting conditions, 
fast motions, occlusions, and has very low latency. 

• It uses a novel 2-D barcode system to recognize a 
large number of unique fiducial codes so as to 
initialize its location over a wide area.  
In our search for solutions to the AR problem we 

turned to the robotics and inertial navigation fields, from 
which we learned much about computer vision, 
simultaneous tracking and map-building, and inertial 
sensors and their modeling, but we had to meet much more 
difficult accuracy and size requirements than most robots 
impose. Now that we have met them, we have a device 
which is smaller and more capable than most 
commercially-available technology for robots and 
automatic guided vehicles (AGVs).  Compared to laser 
scanners which are gaining popularity for AGVs, our 
solution offers full 6-DOF tracking instead of 2-DOF, 
quicker installation through auto-mapping, many uniquely 
coded fiducials so it can self-initialize anywhere, reduced 
reliance on line-of-sight, and no moving parts or lasers. 
This may turn out to be the near-term application for the 
device until wearable AR and VR software applications 
are developed and improved HMDs are available.  

2. System architecture 

The following figure shows the basic architecture of the 
system. Each self-tracker consists of an inertial 
measurement unit (IMU), a sensor fusion core (SFC), and 
one or more “smart cameras”. 
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Figure 1: Basic self-tracking system architecture. 
In the implementation described below, the smart camera 
is a CCD with an attached DSP that extracts the centroids 
of artificial fiducials in the image. However, at the 
architectural level, the smart cameras are very general 
sensors, and may even include lasers, sonars or radar units. 
Self-tracking or navigation systems designed for use on 
mining machines or undersea vehicles may require very 
different types of sensors than head trackers used in an 
office building, and the architecture is modular enough to 
allow substitution. Also, note that Figure 1 is a logical, not 

physical, diagram of the architecture. The image 
processing algorithms that make the smart camera smart 
may be implemented as hardware inside the smart camera 
package, or as software running on the same CPU as the 
SFC, and the SFC may have a dedicated processor or run 
as a driver on the host. However, the interfaces will be 
standardized to allow easy switching between these very 
different implementations. 

The sensor fusion core (SFC) has three major 
functions: 

1. Tracking: During tracking, the SFC uses optimal 
Kalman filtering algorithms to fuse together the 
high-rate integration of the IMU with the low-rate 
absolute environment-referenced measurements 
of the smart cameras when available. This hybrid 
approach to tracking is one of the greatest 
strengths of the system, combining the 
robustness, low jitter, low latency, interference 
immunity and predictive capabilities of an inertial 
tracking system with the absolute registration 
accuracy of an optical tracker. 

2. Auto-Calibration: During factory calibration (or 
user re-calibration after customizing the sensor  
arrangement) the SFC performs identification 
algorithms to estimate, and thereafter compensate, 
all the sensor instrinsic parameters (such as lens 
focal length and distortion) and extrinsic 
parameters (position and orientation of each 
camera relative to the IMU). These auto-
calibration algorithms are a major factor in 
getting high accuracy from combinations of low-
cost sensors, without expensive calibration 
equipment. 

3. Auto-Mapping: Before using the system for 
tracking in a new space (and after installing 
artificial targets if they are needed), the user 
walks through the space with the tracker and it 
simultaneously tracks itself relative to the 
fiducials it already has in its map, acquires new 
fiducials, adds them to the map, and successively 
refines their position estimates as new 
measurements are made. Because the auto-
mapping algorithm is based on an augmented 
Kalman filter formulation for simultaneous 
localization and map-building, it is not necessary 
to turn it off to enter the tracking mode, but doing 
so can speed the update rate. 

 
Figure 2 shows more detail of the sensor fusion core. 

It shows three complementary Kalman filter blocks, which 
perform the three functions described above, and a fusion 
filter that allows them to be used individually or in any 
combination, based on a novel distributed Kalman filtering 
algorithm described in [4]. The measurement management 
unit (MMU) is responsible for acquiring pose and 
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initializing the dynamics reference unit (DRU), which 
carries out the high-rate dead-reckoning integration of the 
inertial sensors and continuously updates the pose output 
between vision measurements.  The DRU also provides 
time-varying linearized process-model matrices to the 
three complementary Kalman filter blocks, so that they can 
be designed generically, and any changes in the 
interoceptive sensors (inertial or encoder-based dead-
reckoning) can be encapsulated in the DRU. During 
tracking, the MMU is responsible for scheduling 
measurements, performing data association on returned 
results, and feeding the measurement innovations with 
their associated linearized measurement model matrices to 
the complementary filter bank. To do this it receives 
information about the current pose from the DRU, the 
sensor and target configurations from the vehicle and 
environment map managers, and status and characteristics 
of various sensors from the sensor/target meta-driver. 
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Figure 2: Block diagram of the sensor fusion core (SFC).  
The key to the extensibility is the standardized interface 
between the sensor/target meta-driver and the measurement 
management unit. By hooking up a new type of sensor and 
placing a driver in a certain directory, the meta-driver will 
automatically allow the MMU to schedule and process it. 

Much more detail about this highly generalized sensor 
fusion architecture and the distributed Kalman filtering 
algorithms that make it possible can be found in [4].  

3. Implementation 

We have built an initial prototype of a self-tracking 
system based on this architecture. A major focus while 
building the prototype was to use off-the-shelf hardware. 
However, in selecting the hardware we were careful to 
keep the size and power small enough for use on wearable 
AR systems and mobile robots. As a result, the system can 

be brought to market extremely quickly (because all three 
hardware components are already in volume production), 
and can be further miniaturized or tailored to meet 
customer needs by swapping COTS hardware subsystems. 

Figure 3 shows a physical block diagram of the 
implemented system.  It corresponds quite closely to 
Figure 1, with a Smart Camera comprised of the CCD and 
lens and a dedicated image processor board, plus a 
software driver running on the main CPU board to 
compensate for lens distortion. 
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Figure 3: Prototype implementation block diagram. 

3.1. IMU 
For an IMU, we used the InertiaCube2, shown in 

Figure 4. This new InterSense product replaces the IS-300 
with a smaller sensor assembly and no base processor unit. 
Because it is the world’s smallest IMU, runs on just 0.5W 
of power, and has an rs-232 output, this was a natural 
choice for easy integration in the system of Figure 3. This 
MEMS-based device measures three axes of angular rate, 
linear acceleration, and magnetic field (not used in this 
product) in a package less than 1 inch tall.  

  
Figure 4: InertiaCube2 inertial measurement unit contains 3 
gyros, 3 accelerometers, and 3 magnetometers in a 1 cubic 
inch package. 

3.2.  Smart camera 
For the smart camera, we use an image processing 

board based on the ADSP 2185 chip, and a board camera 
based on a Sony 640x480 progressive-scan black & white 
CCD with a micro-video lens having 108° diagonal field of 
view.  This 16-bit DSP board was found to be inexpensive, 
low power, and sufficiently fast to find our artificial 



IEEE VR2003, March 22-26, Los Angeles 

fiducials once we developed a clever and efficient set of 
image processing stages. At 70mm X 120 mm, it is an 
acceptable size, and a new version measuring just 25 mm 
X 50 mm is in development. Because the inertial sensor 
predicts within several pixels where each fiducial will 
show up in the image, the image processor only needs to 
process a sub-area of the image a little bigger than the 
expected size of the fiducial, typically under 40 x 40 
pixels. This is about 200 times faster than processing a 640 
x 480 frame, and even a modest DSP chip can do the job in 
a few milliseconds (see Section 3.4 for more details). 

We programmed the camera to perform three main 
functions in response to serial port commands from the 
SFC. The first command, acquisition, causes the camera to 
search the entire image for objects that might be fiducials, 
and then attempt to read the barcodes of each candidate 
and report the centroid locations and barcodes of the best-
positioned 4 targets that were successfully read, with 
which the SFC performs a pose-recovery algorithm to 
establish its initial position. The second function, tracking, 
is called about 20 times per second after the SFC initializes 
pose and starts the inertial integrators running. The 
command includes a search box area within which the SFC 
predicts that there is a fiducial. The smart camera only 
processes this sub-image, and returns the centroid of the 
found fiducial as quickly as possible, without the need to 
even read the barcode since the SFC already knows which 
fiducial it is expecting. The third command, 
“tracquisition”, is a hybrid of these two used during 
automapping. It is sent a few times per second during 
tracking mode, and only a small area is searched so as not 
to produce enough delay to throw off the tracking process. 
However, the goal is to discover new fiducials to add to 
the map, so within the search box, the camera performs 
essentially the same operations as acquisition mode, and 
returns the location and barcode of a fiducial if one is 
found. All three commands as well as the fiducial design 
and image processing steps are explicitly described in [7]. 

3.3. Sensor fusion core 
We have chosen to implement the SFC software using 

the Mathworks’ Simulink and DSP Blockset, and then 
convert it to C automatically with Real Time Workshop 
(RTW). The DSP Blockset provides a very high-level 
language for rapidly constructing advanced signal 
processing applications that involve intensive use of matrix 
operations, linear algebra, and filtering. The greatest time 
savings were realized by using RTW to automatically 
convert the Simulink models into production-quality C-
code, which saved months of coding and even more 
months of debugging. Another advantage is that because 
RTW was designed for developing real-time embedded 
firmware, it provides us with a greater level of control over 
the timing and execution order of our subsystems than we 
could achieve by hand-coding in C, which is critical for a 

tracking system which needs to have minimal and 
precisely deterministic latency. A third advantage is 
portability. The system can be quickly re-targeted to 
various microprocessors and real-time operating systems 
using customized or off-the-shelf target description files. 

For hardware, we currently use a 100 X 150 mm 
embedded PC board with a 667 MHz Transmeta Crusoe 
processor, running Windows NT Embedded off a Compact 
Flash card. At 9W, it is considerably more efficient than a 
comparably fast Pentium, and smaller and less expensive 
than a packaged wearable computer or mini-laptop. 
 

 
Figure 5: Photograph of prototype self-tracking system. 

 Figure 5 shows a photograph of our complete prototype 
system, including the head-mounted sensor assembly of 
camera and InertiaCube, and the belt-mounted electronics 
unit that houses the CPU board and image processor board. 
The electronics unit is about 110 x 150 x 50 mm, and 
weighs 580 g. It consumes 13 W of power, which adds 
about 100 g of Lithium-ion batteries per hour of desired 
battery life. The sensor head is about 50 mm tall and 
weighs 70 g. The embedded operating system has been 
configured to auto-login on power up and run the SFC 
program, which communicates with the InertiaCube and 
Smart Camera, and broadcasts its cooked position and 
orientation data as UDP packets out the built-in Ethernet 
port of the CPU board. 

3.4. Timing and latency mitigation 
Figure 6 shows the timing of communication between 

the SFC and the InertiaCube and smart camera in tracking 
mode. The inertial data are received every 8.3ms (although 
each data packet represents a pre-integrated batch of 
samples internally taken in the IMU at a 1920 Hz rate). 
Integrated 6-DOF pose data is sent to the external 
computer/graphical processor every 16.6 ms to support the 
60Hz rates of graphics typically required for AR/VR. 
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Figure 6: System timing diagram. 
In Figure 6 one can see a 41.7 ms camera cycle, or 24 

frames/sec rate. This frame rate cannot be increased any 
further because the CCD needs about 8 ms for exposure, 
plus about 33 ms for image transfer. We tried a CMOS 
image sensor, which reduces the image transfer time by 
downloading only the areas of interest which will be 
processed, but it’s light sensitivity was not good enough to 
track in dark rooms. Our next version of the smart camera 
will use a CCD with 18 ms image transfer and ~40 fps. 

After taking a picture, it is simultaneously transferred 
to a frame buffer while leftover fiducials from the previous 
frame (in memory) are processed. Once part of the current 
frame has been transferred, the DSP may begin processing 
fiducials from the current image, if they are located in the 
top part of the image, which has already been transferred. 
As Figure 6 shows, this mixed strategy results in the SFC 
receiving vision measurements having varying latencies 
from about 20 ms for fiducials near the top of the image to 
>50 ms for those at the bottom. However, these optical 
measurement latencies do not directly affect the tracking 
system latency, which is calculated as the time to get an 
inertial data record from the IMU, integrate it, and transmit 
the 6 DOF pose record out the Ethernet. This tracking 
system latency works out to a steady 4 ms, and prediction 
based on the inertially-measured motion derivatives can be 
used to compensate for this as well as subsequent 
rendering delays. If incorporated by the Kalman filter 
when received, the delayed measurements would drag the 
pose estimate back towards the pose when the images were 
captured. To prevent this, we retroactively incorporate the 
vision measurements into the Kalman filter at the point in 
the past when the vision measurement was fresh, using the 
stored recent history of the filter states and matrices. Thus 
after the measurement is received, we make corrections to 
the state and covariance equal to the corrections that would 
have been made if the measurement had been incorporated 
when the picture was taken plus an adjustment to 
compensate for their evolution since that time. 

4. Demonstrations & results 

A previous version of the system running on a laptop 
was first publicly demonstrated at the International 
Symposium on Augmented Reality (New York, Oct. 
2001). To demonstrate the AR capability, we interfaced it 
into the backpack-based Battlefield Augmented Reality 
System (BARS) developed at the Naval Research Lab. The 
coordinates of the major corners of the room were 
surveyed along with the tracker fiducials, and used by the 
BARS software to overlay lines on the room edges. 
Attendees wore the backpack and wandered around the 
room looking through a Sony Glasstron optical see-
through display that refreshed the wireframe overlays at a 
60 Hz update rate. Unfortunately, we did not have means 
to capture any through-the-lens video of the demo, or 
collect any data at the conference, but our subjective 
impression was that the lines seemed to be registered to the 
actual room edges within about a centimeter most of the 
time, even as the person was walking or turning. We do 
not know if this is primarily tracking error, HMD 
calibration error, or both. 

 

 

Figure 7: Floor plan showing dimensions of lobby and 
adjoining tracked corridor in meters. Circles represent 
fiducials and crosses are certain architectural corner points 
we surveyed for future testing. The faint wiggly line is the 
path of the walk-through described below. 

In order to get some further experience with the 
system, we installed a constellation of 103 fiducials in the 
lobby and adjoining corridors of our building.  The tracked 
area includes a large open space, and at one end there is a 
curved divider that hides a narrow hallway going back to 
the bathrooms. The space provided an opportunity to test 
the system with a wide variety of lighting conditions, from 
bright sun at the front of the lobby to near darkness in the 
rear corridor with the lights off, and a mixture of many 
different ceiling heights and wide open spaces as well as 
narrow maze-like corridors which are impossible to track 
with other technologies. Figure 7 shows the layout of the 
space, and the surveyed fiducial positions. A pole with a 
flat disc on the end was used for putting up the fiducials 
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with double-sided tape on the high ceiling with no ladder 
in about 90 minutes. 90% of the fiducials are on the 
ceiling, because we are tracking with an upward-looking 
camera, but we added a few on the walls to demonstrate 
that their arrangement is flexible and up to the discretion 
of the user. 

Figure 8 shows a person wearing the VIS-Tracker on an 
HMD and walking around the lobby test area with 
fiducials installed. As can be seen, we typically tend to 
place most of the fiducials on the ceiling when the goal is 
to allow a user to walk around throughout a large facility 
with continuous tracking, but they could also be placed 
exclusively on the walls, with the head-mounted camera 
facing forwards, or for the ultimate performance, one 
could have a mixture of wall- and ceiling-mounted 
fiducials, and a system which incorporates two cameras 
facing up and forwards. 

 

 
 

Figure 8: Using VIS-Tracker in lobby test area. 
The main results of interest from this demo are shown 

in an accompanying videotape1 captured from the image 
processing board which shows what the upward-looking 
tracking camera sees, overlaid with graphics that show the 
search box in which it searches for a fiducial on each 
frame, and a cross showing the location and size of the 
fiducial it actually found, if any. Unfortunately, the stills 
included here simply can’t convey how the system works, 
because they only overlay one fiducial per frame, so please 
see the video for a better understanding of this section. 

4.1. Tracking experiment 1: wide-area walk-
through 
Once the fiducials were installed and surveyed, we 

turned on the tracker and walked all around the large 
multi-room space observing performance. Figure 8 shows 
one of us partaking in this novel experience, and the 
squiggly line in Figure 7 shows the path he followed, as 
                                                           
1 www.isense.com/support/downloads/vistracker.zip 

logged by the tracker. Subjectively, we found excellent 
coverage with no trouble spots. While all the “mobile” AR 
demos we’ve seen before involved donning large backpack 
contraptions, this one was so light you could forget about it 
and run around freely through the space. If you were to 
add a virtual environment application to run on the 
Transmeta CPU board (or on a separate wearable 
computer), there would be almost no limit to the number of 
players who could co-habitate the virtual space, since the 
tracking infrastructure is entirely passive. We have not yet 
integrated a 3-D graphics application in our system, but 
plan to shortly. For now, the HMD is used to mount the 
tracker on the subject’s head, and to display output of the 
smart camera, which shows how the tracker is working. 

If you watch the video of this experiment, you will see 
that the person started running laps around the lobby, 
sometimes going behind the frosted glass screen where 
there are only a small number of fiducials that could be 
surveyed, and yet the tracking continued to operate. Most 
computer vision systems need to track the fiducials from 
one frame to the next, which is impossible if they move all 
the way across the frame or even leave it. In our hybrid 
system, we instead track the 6-DOF pose of the camera 
using inertial sensors, and then predict the locations where 
fiducials will show up in the new frame, their size (based 
on distance), and the uncertainty in the 2-D image location 
as a function of the uncertainties in 6-DOF pose states 
maintained by the Kalman filters in the SFC. Based on 
these factors, the smart camera driver computes a search 
box which is just big enough to contain the expected 
fiducial. In the video, you can see the search boxes 
growing and shrinking as the camera moves closer and 
further from the fiducials, and growing to accommodate 
greater prediction uncertainty after a very active maneuver, 
but shrinking quickly after the maneuver stops and several 
measurements are made. There is no lower limit on the 
image size of a fiducial for it to be used in tracking, but it 
must be at least 20 x 20 pixels to read the barcode during 
acquisition. Figure 9 shows some video stills taken from 
floor level to 3 meters high, to illustrate how the size of the 
search box adapts to the expected size of the fiducial. 

 
 

  

  
Figure 9: Stills from the video: Tracking at different heights. 
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During the walk-through, the tracker logged data about 
position, orientation, estimation uncertainties, angular 
rates, linear accelerations, and fiducial prediction errors. 
The AR registration accuracy for the system would be 
about 1-2 pixels r.m.s. when the person is walking and a 
little more once they start running. This statement assumes 
a video see-through AR system with the overlays added to 
the same camera that does the tracking.  

4.2. Tracking experiment 2: varied lighting 
conditions 

 

 

 

 

  
Figure 10: Stills from the video: Different lighting conditions.  

A great deal of our development effort was invested in 
making sure the image processing algorithms for the smart 
camera are robust to a wide range of lighting conditions 
that one might encounter in practical applications [7]. To 
test the system’s robustness, we did an experiment where 
we walked through the space with the lights switching on 
and off, and made a point to aim the camera towards the 
sunny glass wall in the front of the lobby, and then to go 
into the back corridor with the lights off, which was very 
dark. It kept on tracking through this entire procedure. 
Figure 10 shows a few stills from this experiment. The 
final still illustrates that even when the image captured by 
the CCD is so dark that a human can’t see anything but 
black, the local image processing can still find and 
accurately report the centroid of the fiducial. 

4.3. Tracking experiment 3: occlusions 
Because of the hybrid design, the tracker is relatively 

robust to line-of-sight occlusions. Figure 11 shows some 
stills from a video segment which demonstrates that if you 
block most but not all of the fiducials, it will continue to 
try all the potential fiducials, and use measurements from 
any that are not blocked.  

When it looks for a fiducial that is partially occluded, 
as in the second still, it recognizes that the fiducial is not 
whole, so it does not report a potentially corrupted value 
that could de-stabilize the tracking. As long as there are at 
least two fiducials not blocked, it can keep tracking 
indefinitely, and with just one it can last a few minutes. 

Even when the entire lens is covered, as in the third still, it 
can keep tracking using the inertial sensor for about 5 
seconds, although the position drifts during that time. 

 
 

  

  
Figure 11: Stills from the video: Tracking during occlusion. 

4.4. Tracking experiment 4: rapid camera motions 
To evaluate the robustness of the tracker, we made 

another video featuring several quick rotations and 
translations with the sensor held in the hand, which are 
even more abrupt than with it mounted on an HMD. Data 
logged during the experiment shows that the tracking can 
continue through peak rotation rates over 1000 deg/s and 
peak translational accelerations over 25 m/s2. 

4.5. Auto-mapping experiment 
We demonstrated the auto-mapping process running in 

real-time on the above described hardware at the 
International Conference on Robotics and Automation 
(ICRA 2002, Washington, D.C, May,2002). We are 
currently limited to N=100 fiducials at a time, because this 
adds 3*N beacon position states to the simultaneous 
tracking and environment mapping filter, which is about 
all the CPU can process in real time. The procedure is to 
start with a seed constellation of four known fiducials and 
begin tracking by pointing the camera towards this seed 
area. Once it starts tracking, the operator then points the 
central region of the camera towards other fiducials that 
are not yet in the map (you can tell because they don’t 
flash overlays). After about a second, you will see the new 
fiducial gets highlighted and decoded, then automatically 
enters the map with an initial position estimate which is 
calculated based on the u and v bearing angles from the 
camera and a crude estimated distance based on size. 
Thereafter, it gets scheduled and used like all the other 
fiducials in the map, and the Kalman filter rapidly 
improves on its initial rough position estimate each time a 
new measurement is made. We are working on further 
automating this process so that the operator does not need 
to point the camera at the new fiducials, and on developing 
distributed data fusion algorithms to accommodate large 
map sizes consistently and seamlessly. 
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5. Discussion 

We have described a unique hybrid vision/inertial 
self-tracking system that is nearing readiness for 
productization. Compared to vision-only trackers such as 
the popular AR Toolkit [2], it has several important 
distinctions. First, it tracks its pose relative to a unified 
world coordinate system, fusing together measurements 
from all the fiducials that are visible (AR Toolkit 
separately determines the camera pose relative to each 
visible fiducial). Second, it performs real-time auto-
mapping of the fiducial constellation while it tracks. Third, 
it provides 120 pose updates per second (or 180 using a 
faster CPU), genlocked to the video rendering rate, with 
guaranteed constant latency and inertial-quality prediction. 
Fourth, it uses a novel fiducial design and image 
processing strategy [7] which allows it to quickly decode 
over 30,000 different markers under more varied lighting 
conditions and with higher centroid accuracy.  Fifth, it 
relies primarily on inertial tracking, so it can handle rapid 
camera motions and occlusions much more robustly. 

There are two avenues for improvement under 
consideration. The first concerns further miniaturization 
and accuracy improvement. The system as implemented 
with a single smart camera can overlay objects within the 
field of view of that camera within a few pixels, but if it 
were used to generate overlays in an HMD or television 
camera pointing in a different direction from the tracking 
camera, the errors would be larger. We can make some 
improvements by better compensating the single lens, but 
we expect much higher absolute pose accuracy to be 
obtained by using two smart cameras pointed in orthogonal 
directions. Fortunately, we think we can do this and also 
reduce the size of both the sensor head and the belt unit by 
using a much smaller smart camera now in development. 

The second project is reducing the reliance on 
artificial fiducials.  Figure 7 shows a very high density of 
fiducials – about 1.7 per square meter. The only reason we 
used so many is so that at any location the system can find 
and read 4 barcodes and re-acquire. For tracking purposes, 
far fewer would be sufficient.  As a first step, we are trying 
to get the system to acquire from one fiducial, so that we 
can install a much sparser constellation.   

As a second step, we are planning to make the system 
use naturally occurring corners, which are plentiful in 
buildings, as fiducials during tracking. Then it will only be 
necessary to put one fiducial per location where the system 
needs to be able to initialize. If the tracking almost never 
gets lost, this might be as few as one per large room.  

In the long run, we hope to eliminate the artificial 
fiducials altogether. This poses relatively minor difficulties 
for tracking (mainly data association algorithms to handle 
clusters of natural features that are closely spaced in the 
image), but adds considerable complexity to the initial 
acquisition process. After processing two images taken 

from different locations to find all the corners in the frame, 
labeled with any size, type or color characteristics that can 
be measured, the software would establish point 
correspondences between the two images, triangulate the 
two rays to each point to determine all the 3-D point 
locations relative to the second camera pose, then search 
through the entire feature database looking for the best 
match of this 3-D point cloud to a subset of points from the 
database, using an iterative closest point (ICP) algorithm.  

To facilitate natural feature tracking outdoors and in 
other specialized environments, we are developing an open 
sensor driver API to allow researchers to interface their 
own computer vision hardware and image processing 
algorithms into the sensor fusion core. 
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