
IEEE VR2003, March 22-26, Los Angeles

VIS-Tracker: A Wearable Vision-Inertial Self-Tracker

Eric Foxlin & Leonid Naimark
InterSense Inc.

 {ericf/leonidn}@isense.com

Abstract

We present a demonstrated and commercially viable

self-tracker, using robust software that fuses data from
inertial and vision sensors. Compared to infrastructure-
based trackers, self-trackers have the advantage that
objects can be tracked over an extremely wide area,
without the prohibitive cost of an extensive network of
sensors or emitters to track them. So far most AR research
has focused on the long-term goal of a purely vision-based
tracker that can operate in arbitrary unprepared
environments, even outdoors. We instead chose to start
with artificial fiducials, in order to quickly develop the
first self-tracker which is small enough to wear on a belt,
low cost, easy to install and self-calibrate, and low enough
latency to achieve AR registration. We also present a
roadmap for how we plan to migrate from artificial
fiducials to natural ones. By designing to the requirements
of AR, our system can easily handle the less challenging
applications of wearable VR systems and robot navigation.

1. Introduction

When you think about computer graphics applications
that require motion tracking today, you probably think first
of VR games or character animation driven by full-body
motion capture. However, in the future computer graphics
is likely to make an impact on some industries less
glamorous than entertainment, but larger and more
indispensable, such as manufacturing, maintenance,
construction, transportation, medicine, and the military.
One technology that seems poised to make radical
improvements in efficiency of operations for all of these
industries is augmented reality (AR). It is widely
recognized that the motion tracking requirements for AR
are more challenging than for VR: the tracking needs to be
faster and more accurate, and for large-scale applications
like aircraft manufacturing and maintenance or battlefield
AR, it needs to work over very large areas. Researchers
have been trying to develop a tracking solution that can
meet these difficult requirements, with dozens of papers
appearing in such conferences as ISAR, ISMR, and IEEE
VR. In order to provide tracking over wide areas or
outdoors, many of these papers have described various
approaches to self-tracking.

The concept of a “self-tracker” has a long and
distinguished history, introduced to the CG world by Gary
Bishop’s 1984 dissertation [3], but practiced even earlier
by ancient mariners who navigated the seas using a sextant
to measure the bearing angles to celestial landmarks. Most
researchers have pursued the lofty goal of a self-tracker
that works with absolutely no infrastructure by observing
natural features, even outdoors. While we agree that there
is a burning need for a self-tracker that can work in an
unstructured dynamic outdoor environment, the practical
and robust implementation of such a tracker are years
away due to the computer vision challenges of finding
suitable natural features to track under such diverse
conditions. In the meantime, there are still significant
applications for a tracker to be used in and around
buildings and vehicles, where one can assist the tracker by
installing “fiducial” marks that can be extracted quickly
and reliably using today’s machine vision hardware. In
Section 5 we present a roadmap for weaning our system
away from reliance on these artificial fiducials. Part of this
strategy is to capitalize on the work others are now doing
on natural feature recognition, which we can rapidly
integrate into our system due to its open architectural
framework summarized briefly in Section 2.

Indeed many researchers have worked on self-tracking
systems using printed paper landmarks or fiducials [e.g.
2,5,8,9], but they are still not robust, because when the
camera moves quickly, the image processor has to search
the whole image to find candidate fiducial marks, and this
is too slow and unreliable. The system easily becomes
disoriented and takes a long time to recover. In order to
build a robust and fast self-tracker, there is growing
consensus that you need to combine inertial and computer
vision technologies using sophisticated sensor fusion
algorithms [e.g. 1,6,10,11,12]. This paper describes the
first implementation of such a system which has all of the
attributes required to be commercially viable:
• It is small, lightweight, and low power, so the

processor can be comfortably worn on a belt while the
sensor combination is attached to an HMD or
handheld device.

• It is reproducibly manufacturable using just three low-
cost off-the-shelf components, and automatic self-
calibration software.

IEEE VR2003, March 22-26, Los Angeles

• It is self-installing, in the sense that after sticking
some paper fiducials to the ceiling or walls where
tracking is needed, one can auto-map the locations of
these fiducials by walking through the area with the
tracker itself, and no other surveying is needed.

• It is robust in the face of difficult lighting conditions,
fast motions, occlusions, and has very low latency.

• It uses a novel 2-D barcode system to recognize a
large number of unique fiducial codes so as to
initialize its location over a wide area.
In our search for solutions to the AR problem we

turned to the robotics and inertial navigation fields, from
which we learned much about computer vision,
simultaneous tracking and map-building, and inertial
sensors and their modeling, but we had to meet much more
difficult accuracy and size requirements than most robots
impose. Now that we have met them, we have a device
which is smaller and more capable than most
commercially-available technology for robots and
automatic guided vehicles (AGVs). Compared to laser
scanners which are gaining popularity for AGVs, our
solution offers full 6-DOF tracking instead of 2-DOF,
quicker installation through auto-mapping, many uniquely
coded fiducials so it can self-initialize anywhere, reduced
reliance on line-of-sight, and no moving parts or lasers.
This may turn out to be the near-term application for the
device until wearable AR and VR software applications
are developed and improved HMDs are available.

2. System architecture

The following figure shows the basic architecture of the
system. Each self-tracker consists of an inertial
measurement unit (IMU), a sensor fusion core (SFC), and
one or more “smart cameras”.

Smart Camera pose updates to
robot or AR system

Smart Camera

Smart Camera

IMU

Sensor
Fusion
Core

(SFC)
.
 .
 .

Figure 1: Basic self-tracking system architecture.
In the implementation described below, the smart camera
is a CCD with an attached DSP that extracts the centroids
of artificial fiducials in the image. However, at the
architectural level, the smart cameras are very general
sensors, and may even include lasers, sonars or radar units.
Self-tracking or navigation systems designed for use on
mining machines or undersea vehicles may require very
different types of sensors than head trackers used in an
office building, and the architecture is modular enough to
allow substitution. Also, note that Figure 1 is a logical, not

physical, diagram of the architecture. The image
processing algorithms that make the smart camera smart
may be implemented as hardware inside the smart camera
package, or as software running on the same CPU as the
SFC, and the SFC may have a dedicated processor or run
as a driver on the host. However, the interfaces will be
standardized to allow easy switching between these very
different implementations.

The sensor fusion core (SFC) has three major
functions:

1. Tracking: During tracking, the SFC uses optimal
Kalman filtering algorithms to fuse together the
high-rate integration of the IMU with the low-rate
absolute environment-referenced measurements
of the smart cameras when available. This hybrid
approach to tracking is one of the greatest
strengths of the system, combining the
robustness, low jitter, low latency, interference
immunity and predictive capabilities of an inertial
tracking system with the absolute registration
accuracy of an optical tracker.

2. Auto-Calibration: During factory calibration (or
user re-calibration after customizing the sensor
arrangement) the SFC performs identification
algorithms to estimate, and thereafter compensate,
all the sensor instrinsic parameters (such as lens
focal length and distortion) and extrinsic
parameters (position and orientation of each
camera relative to the IMU). These auto-
calibration algorithms are a major factor in
getting high accuracy from combinations of low-
cost sensors, without expensive calibration
equipment.

3. Auto-Mapping: Before using the system for
tracking in a new space (and after installing
artificial targets if they are needed), the user
walks through the space with the tracker and it
simultaneously tracks itself relative to the
fiducials it already has in its map, acquires new
fiducials, adds them to the map, and successively
refines their position estimates as new
measurements are made. Because the auto-
mapping algorithm is based on an augmented
Kalman filter formulation for simultaneous
localization and map-building, it is not necessary
to turn it off to enter the tracking mode, but doing
so can speed the update rate.

Figure 2 shows more detail of the sensor fusion core.

It shows three complementary Kalman filter blocks, which
perform the three functions described above, and a fusion
filter that allows them to be used individually or in any
combination, based on a novel distributed Kalman filtering
algorithm described in [4]. The measurement management
unit (MMU) is responsible for acquiring pose and

IEEE VR2003, March 22-26, Los Angeles

initializing the dynamics reference unit (DRU), which
carries out the high-rate dead-reckoning integration of the
inertial sensors and continuously updates the pose output
between vision measurements. The DRU also provides
time-varying linearized process-model matrices to the
three complementary Kalman filter blocks, so that they can
be designed generically, and any changes in the
interoceptive sensors (inertial or encoder-based dead-
reckoning) can be encapsulated in the DRU. During
tracking, the MMU is responsible for scheduling
measurements, performing data association on returned
results, and feeding the measurement innovations with
their associated linearized measurement model matrices to
the complementary filter bank. To do this it receives
information about the current pose from the DRU, the
sensor and target configurations from the vehicle and
environment map managers, and status and characteristics
of various sensors from the sensor/target meta-driver.

 exteroceptive
 sensor/target
 meta-driver

interoceptive
sensor
driver dynamics reference unit (DRU)

[handles inertial sensor integration]

measurement
management
unit
(MMU)

vehic le
map
manager

environment
map
manager

simul. tracking &
environment
mapping filter
 tracking only filter
simul. tracking &
auto-calibration
filter

fusion
filter

 pose output

Figure 2: Block diagram of the sensor fusion core (SFC).
The key to the extensibility is the standardized interface
between the sensor/target meta-driver and the measurement
management unit. By hooking up a new type of sensor and
placing a driver in a certain directory, the meta-driver will
automatically allow the MMU to schedule and process it.

Much more detail about this highly generalized sensor
fusion architecture and the distributed Kalman filtering
algorithms that make it possible can be found in [4].

3. Implementation

We have built an initial prototype of a self-tracking
system based on this architecture. A major focus while
building the prototype was to use off-the-shelf hardware.
However, in selecting the hardware we were careful to
keep the size and power small enough for use on wearable
AR systems and mobile robots. As a result, the system can

be brought to market extremely quickly (because all three
hardware components are already in volume production),
and can be further miniaturized or tailored to meet
customer needs by swapping COTS hardware subsystems.

Figure 3 shows a physical block diagram of the
implemented system. It corresponds quite closely to
Figure 1, with a Smart Camera comprised of the CCD and
lens and a dedicated image processor board, plus a
software driver running on the main CPU board to
compensate for lens distortion.

Transmeta CPU board
running SFC software IMU

 CCD
image processor
DSP board

VGA video image
w/graphic overlay
for demonstrations

rs-232
ethernet

rs-232

180 Hz vehicle pose
updates to robot or
AR system CPU

Figure 3: Prototype implementation block diagram.

3.1. IMU
For an IMU, we used the InertiaCube2, shown in

Figure 4. This new InterSense product replaces the IS-300
with a smaller sensor assembly and no base processor unit.
Because it is the world’s smallest IMU, runs on just 0.5W
of power, and has an rs-232 output, this was a natural
choice for easy integration in the system of Figure 3. This
MEMS-based device measures three axes of angular rate,
linear acceleration, and magnetic field (not used in this
product) in a package less than 1 inch tall.

Figure 4: InertiaCube2 inertial measurement unit contains 3
gyros, 3 accelerometers, and 3 magnetometers in a 1 cubic
inch package.

3.2. Smart camera
For the smart camera, we use an image processing

board based on the ADSP 2185 chip, and a board camera
based on a Sony 640x480 progressive-scan black & white
CCD with a micro-video lens having 108° diagonal field of
view. This 16-bit DSP board was found to be inexpensive,
low power, and sufficiently fast to find our artificial

IEEE VR2003, March 22-26, Los Angeles

fiducials once we developed a clever and efficient set of
image processing stages. At 70mm X 120 mm, it is an
acceptable size, and a new version measuring just 25 mm
X 50 mm is in development. Because the inertial sensor
predicts within several pixels where each fiducial will
show up in the image, the image processor only needs to
process a sub-area of the image a little bigger than the
expected size of the fiducial, typically under 40 x 40
pixels. This is about 200 times faster than processing a 640
x 480 frame, and even a modest DSP chip can do the job in
a few milliseconds (see Section 3.4 for more details).

We programmed the camera to perform three main
functions in response to serial port commands from the
SFC. The first command, acquisition, causes the camera to
search the entire image for objects that might be fiducials,
and then attempt to read the barcodes of each candidate
and report the centroid locations and barcodes of the best-
positioned 4 targets that were successfully read, with
which the SFC performs a pose-recovery algorithm to
establish its initial position. The second function, tracking,
is called about 20 times per second after the SFC initializes
pose and starts the inertial integrators running. The
command includes a search box area within which the SFC
predicts that there is a fiducial. The smart camera only
processes this sub-image, and returns the centroid of the
found fiducial as quickly as possible, without the need to
even read the barcode since the SFC already knows which
fiducial it is expecting. The third command,
“tracquisition”, is a hybrid of these two used during
automapping. It is sent a few times per second during
tracking mode, and only a small area is searched so as not
to produce enough delay to throw off the tracking process.
However, the goal is to discover new fiducials to add to
the map, so within the search box, the camera performs
essentially the same operations as acquisition mode, and
returns the location and barcode of a fiducial if one is
found. All three commands as well as the fiducial design
and image processing steps are explicitly described in [7].

3.3. Sensor fusion core
We have chosen to implement the SFC software using

the Mathworks’ Simulink and DSP Blockset, and then
convert it to C automatically with Real Time Workshop
(RTW). The DSP Blockset provides a very high-level
language for rapidly constructing advanced signal
processing applications that involve intensive use of matrix
operations, linear algebra, and filtering. The greatest time
savings were realized by using RTW to automatically
convert the Simulink models into production-quality C-
code, which saved months of coding and even more
months of debugging. Another advantage is that because
RTW was designed for developing real-time embedded
firmware, it provides us with a greater level of control over
the timing and execution order of our subsystems than we
could achieve by hand-coding in C, which is critical for a

tracking system which needs to have minimal and
precisely deterministic latency. A third advantage is
portability. The system can be quickly re-targeted to
various microprocessors and real-time operating systems
using customized or off-the-shelf target description files.

For hardware, we currently use a 100 X 150 mm
embedded PC board with a 667 MHz Transmeta Crusoe
processor, running Windows NT Embedded off a Compact
Flash card. At 9W, it is considerably more efficient than a
comparably fast Pentium, and smaller and less expensive
than a packaged wearable computer or mini-laptop.

Figure 5: Photograph of prototype self-tracking system.

 Figure 5 shows a photograph of our complete prototype
system, including the head-mounted sensor assembly of
camera and InertiaCube, and the belt-mounted electronics
unit that houses the CPU board and image processor board.
The electronics unit is about 110 x 150 x 50 mm, and
weighs 580 g. It consumes 13 W of power, which adds
about 100 g of Lithium-ion batteries per hour of desired
battery life. The sensor head is about 50 mm tall and
weighs 70 g. The embedded operating system has been
configured to auto-login on power up and run the SFC
program, which communicates with the InertiaCube and
Smart Camera, and broadcasts its cooked position and
orientation data as UDP packets out the built-in Ethernet
port of the CPU board.

3.4. Timing and latency mitigation
Figure 6 shows the timing of communication between

the SFC and the InertiaCube and smart camera in tracking
mode. The inertial data are received every 8.3ms (although
each data packet represents a pre-integrated batch of
samples internally taken in the IMU at a 1920 Hz rate).
Integrated 6-DOF pose data is sent to the external
computer/graphical processor every 16.6 ms to support the
60Hz rates of graphics typically required for AR/VR.

IEEE VR2003, March 22-26, Los Angeles

 Output
6DOF data

SFC:

expose CCD
frame n transfer image n to DSP frame buffer

process
frame n-1/fid 3

0 ms 16.7 ms
8.3 ms 25.0 ms

33.3 ms
41.7 ms

50.0 ms

Sample IMU

expose CCD
frame n+1

process
frame n-1/fid 4

process
frame n/fid 1

process
frame n/fid 2

process
frame n/fid 3

update
n-1/3

update
n-1/4

update
n/1

update
n/2

update
n-1/2

Integrate
IMU

DSP:

CCD:

Figure 6: System timing diagram.
In Figure 6 one can see a 41.7 ms camera cycle, or 24

frames/sec rate. This frame rate cannot be increased any
further because the CCD needs about 8 ms for exposure,
plus about 33 ms for image transfer. We tried a CMOS
image sensor, which reduces the image transfer time by
downloading only the areas of interest which will be
processed, but it’s light sensitivity was not good enough to
track in dark rooms. Our next version of the smart camera
will use a CCD with 18 ms image transfer and ~40 fps.

After taking a picture, it is simultaneously transferred
to a frame buffer while leftover fiducials from the previous
frame (in memory) are processed. Once part of the current
frame has been transferred, the DSP may begin processing
fiducials from the current image, if they are located in the
top part of the image, which has already been transferred.
As Figure 6 shows, this mixed strategy results in the SFC
receiving vision measurements having varying latencies
from about 20 ms for fiducials near the top of the image to
>50 ms for those at the bottom. However, these optical
measurement latencies do not directly affect the tracking
system latency, which is calculated as the time to get an
inertial data record from the IMU, integrate it, and transmit
the 6 DOF pose record out the Ethernet. This tracking
system latency works out to a steady 4 ms, and prediction
based on the inertially-measured motion derivatives can be
used to compensate for this as well as subsequent
rendering delays. If incorporated by the Kalman filter
when received, the delayed measurements would drag the
pose estimate back towards the pose when the images were
captured. To prevent this, we retroactively incorporate the
vision measurements into the Kalman filter at the point in
the past when the vision measurement was fresh, using the
stored recent history of the filter states and matrices. Thus
after the measurement is received, we make corrections to
the state and covariance equal to the corrections that would
have been made if the measurement had been incorporated
when the picture was taken plus an adjustment to
compensate for their evolution since that time.

4. Demonstrations & results

A previous version of the system running on a laptop
was first publicly demonstrated at the International
Symposium on Augmented Reality (New York, Oct.
2001). To demonstrate the AR capability, we interfaced it
into the backpack-based Battlefield Augmented Reality
System (BARS) developed at the Naval Research Lab. The
coordinates of the major corners of the room were
surveyed along with the tracker fiducials, and used by the
BARS software to overlay lines on the room edges.
Attendees wore the backpack and wandered around the
room looking through a Sony Glasstron optical see-
through display that refreshed the wireframe overlays at a
60 Hz update rate. Unfortunately, we did not have means
to capture any through-the-lens video of the demo, or
collect any data at the conference, but our subjective
impression was that the lines seemed to be registered to the
actual room edges within about a centimeter most of the
time, even as the person was walking or turning. We do
not know if this is primarily tracking error, HMD
calibration error, or both.

Figure 7: Floor plan showing dimensions of lobby and
adjoining tracked corridor in meters. Circles represent
fiducials and crosses are certain architectural corner points
we surveyed for future testing. The faint wiggly line is the
path of the walk-through described below.

In order to get some further experience with the
system, we installed a constellation of 103 fiducials in the
lobby and adjoining corridors of our building. The tracked
area includes a large open space, and at one end there is a
curved divider that hides a narrow hallway going back to
the bathrooms. The space provided an opportunity to test
the system with a wide variety of lighting conditions, from
bright sun at the front of the lobby to near darkness in the
rear corridor with the lights off, and a mixture of many
different ceiling heights and wide open spaces as well as
narrow maze-like corridors which are impossible to track
with other technologies. Figure 7 shows the layout of the
space, and the surveyed fiducial positions. A pole with a
flat disc on the end was used for putting up the fiducials

IEEE VR2003, March 22-26, Los Angeles

with double-sided tape on the high ceiling with no ladder
in about 90 minutes. 90% of the fiducials are on the
ceiling, because we are tracking with an upward-looking
camera, but we added a few on the walls to demonstrate
that their arrangement is flexible and up to the discretion
of the user.

Figure 8 shows a person wearing the VIS-Tracker on an
HMD and walking around the lobby test area with
fiducials installed. As can be seen, we typically tend to
place most of the fiducials on the ceiling when the goal is
to allow a user to walk around throughout a large facility
with continuous tracking, but they could also be placed
exclusively on the walls, with the head-mounted camera
facing forwards, or for the ultimate performance, one
could have a mixture of wall- and ceiling-mounted
fiducials, and a system which incorporates two cameras
facing up and forwards.

Figure 8: Using VIS-Tracker in lobby test area.
The main results of interest from this demo are shown

in an accompanying videotape1 captured from the image
processing board which shows what the upward-looking
tracking camera sees, overlaid with graphics that show the
search box in which it searches for a fiducial on each
frame, and a cross showing the location and size of the
fiducial it actually found, if any. Unfortunately, the stills
included here simply can’t convey how the system works,
because they only overlay one fiducial per frame, so please
see the video for a better understanding of this section.

4.1. Tracking experiment 1: wide-area walk-
through
Once the fiducials were installed and surveyed, we

turned on the tracker and walked all around the large
multi-room space observing performance. Figure 8 shows
one of us partaking in this novel experience, and the
squiggly line in Figure 7 shows the path he followed, as

1 www.isense.com/support/downloads/vistracker.zip

logged by the tracker. Subjectively, we found excellent
coverage with no trouble spots. While all the “mobile” AR
demos we’ve seen before involved donning large backpack
contraptions, this one was so light you could forget about it
and run around freely through the space. If you were to
add a virtual environment application to run on the
Transmeta CPU board (or on a separate wearable
computer), there would be almost no limit to the number of
players who could co-habitate the virtual space, since the
tracking infrastructure is entirely passive. We have not yet
integrated a 3-D graphics application in our system, but
plan to shortly. For now, the HMD is used to mount the
tracker on the subject’s head, and to display output of the
smart camera, which shows how the tracker is working.

If you watch the video of this experiment, you will see
that the person started running laps around the lobby,
sometimes going behind the frosted glass screen where
there are only a small number of fiducials that could be
surveyed, and yet the tracking continued to operate. Most
computer vision systems need to track the fiducials from
one frame to the next, which is impossible if they move all
the way across the frame or even leave it. In our hybrid
system, we instead track the 6-DOF pose of the camera
using inertial sensors, and then predict the locations where
fiducials will show up in the new frame, their size (based
on distance), and the uncertainty in the 2-D image location
as a function of the uncertainties in 6-DOF pose states
maintained by the Kalman filters in the SFC. Based on
these factors, the smart camera driver computes a search
box which is just big enough to contain the expected
fiducial. In the video, you can see the search boxes
growing and shrinking as the camera moves closer and
further from the fiducials, and growing to accommodate
greater prediction uncertainty after a very active maneuver,
but shrinking quickly after the maneuver stops and several
measurements are made. There is no lower limit on the
image size of a fiducial for it to be used in tracking, but it
must be at least 20 x 20 pixels to read the barcode during
acquisition. Figure 9 shows some video stills taken from
floor level to 3 meters high, to illustrate how the size of the
search box adapts to the expected size of the fiducial.

Figure 9: Stills from the video: Tracking at different heights.

IEEE VR2003, March 22-26, Los Angeles

During the walk-through, the tracker logged data about
position, orientation, estimation uncertainties, angular
rates, linear accelerations, and fiducial prediction errors.
The AR registration accuracy for the system would be
about 1-2 pixels r.m.s. when the person is walking and a
little more once they start running. This statement assumes
a video see-through AR system with the overlays added to
the same camera that does the tracking.

4.2. Tracking experiment 2: varied lighting
conditions

Figure 10: Stills from the video: Different lighting conditions.

A great deal of our development effort was invested in
making sure the image processing algorithms for the smart
camera are robust to a wide range of lighting conditions
that one might encounter in practical applications [7]. To
test the system’s robustness, we did an experiment where
we walked through the space with the lights switching on
and off, and made a point to aim the camera towards the
sunny glass wall in the front of the lobby, and then to go
into the back corridor with the lights off, which was very
dark. It kept on tracking through this entire procedure.
Figure 10 shows a few stills from this experiment. The
final still illustrates that even when the image captured by
the CCD is so dark that a human can’t see anything but
black, the local image processing can still find and
accurately report the centroid of the fiducial.

4.3. Tracking experiment 3: occlusions
Because of the hybrid design, the tracker is relatively

robust to line-of-sight occlusions. Figure 11 shows some
stills from a video segment which demonstrates that if you
block most but not all of the fiducials, it will continue to
try all the potential fiducials, and use measurements from
any that are not blocked.

When it looks for a fiducial that is partially occluded,
as in the second still, it recognizes that the fiducial is not
whole, so it does not report a potentially corrupted value
that could de-stabilize the tracking. As long as there are at
least two fiducials not blocked, it can keep tracking
indefinitely, and with just one it can last a few minutes.

Even when the entire lens is covered, as in the third still, it
can keep tracking using the inertial sensor for about 5
seconds, although the position drifts during that time.

Figure 11: Stills from the video: Tracking during occlusion.

4.4. Tracking experiment 4: rapid camera motions
To evaluate the robustness of the tracker, we made

another video featuring several quick rotations and
translations with the sensor held in the hand, which are
even more abrupt than with it mounted on an HMD. Data
logged during the experiment shows that the tracking can
continue through peak rotation rates over 1000 deg/s and
peak translational accelerations over 25 m/s2.

4.5. Auto-mapping experiment
We demonstrated the auto-mapping process running in

real-time on the above described hardware at the
International Conference on Robotics and Automation
(ICRA 2002, Washington, D.C, May,2002). We are
currently limited to N=100 fiducials at a time, because this
adds 3*N beacon position states to the simultaneous
tracking and environment mapping filter, which is about
all the CPU can process in real time. The procedure is to
start with a seed constellation of four known fiducials and
begin tracking by pointing the camera towards this seed
area. Once it starts tracking, the operator then points the
central region of the camera towards other fiducials that
are not yet in the map (you can tell because they don’t
flash overlays). After about a second, you will see the new
fiducial gets highlighted and decoded, then automatically
enters the map with an initial position estimate which is
calculated based on the u and v bearing angles from the
camera and a crude estimated distance based on size.
Thereafter, it gets scheduled and used like all the other
fiducials in the map, and the Kalman filter rapidly
improves on its initial rough position estimate each time a
new measurement is made. We are working on further
automating this process so that the operator does not need
to point the camera at the new fiducials, and on developing
distributed data fusion algorithms to accommodate large
map sizes consistently and seamlessly.

IEEE VR2003, March 22-26, Los Angeles

5. Discussion

We have described a unique hybrid vision/inertial
self-tracking system that is nearing readiness for
productization. Compared to vision-only trackers such as
the popular AR Toolkit [2], it has several important
distinctions. First, it tracks its pose relative to a unified
world coordinate system, fusing together measurements
from all the fiducials that are visible (AR Toolkit
separately determines the camera pose relative to each
visible fiducial). Second, it performs real-time auto-
mapping of the fiducial constellation while it tracks. Third,
it provides 120 pose updates per second (or 180 using a
faster CPU), genlocked to the video rendering rate, with
guaranteed constant latency and inertial-quality prediction.
Fourth, it uses a novel fiducial design and image
processing strategy [7] which allows it to quickly decode
over 30,000 different markers under more varied lighting
conditions and with higher centroid accuracy. Fifth, it
relies primarily on inertial tracking, so it can handle rapid
camera motions and occlusions much more robustly.

There are two avenues for improvement under
consideration. The first concerns further miniaturization
and accuracy improvement. The system as implemented
with a single smart camera can overlay objects within the
field of view of that camera within a few pixels, but if it
were used to generate overlays in an HMD or television
camera pointing in a different direction from the tracking
camera, the errors would be larger. We can make some
improvements by better compensating the single lens, but
we expect much higher absolute pose accuracy to be
obtained by using two smart cameras pointed in orthogonal
directions. Fortunately, we think we can do this and also
reduce the size of both the sensor head and the belt unit by
using a much smaller smart camera now in development.

The second project is reducing the reliance on
artificial fiducials. Figure 7 shows a very high density of
fiducials – about 1.7 per square meter. The only reason we
used so many is so that at any location the system can find
and read 4 barcodes and re-acquire. For tracking purposes,
far fewer would be sufficient. As a first step, we are trying
to get the system to acquire from one fiducial, so that we
can install a much sparser constellation.

As a second step, we are planning to make the system
use naturally occurring corners, which are plentiful in
buildings, as fiducials during tracking. Then it will only be
necessary to put one fiducial per location where the system
needs to be able to initialize. If the tracking almost never
gets lost, this might be as few as one per large room.

In the long run, we hope to eliminate the artificial
fiducials altogether. This poses relatively minor difficulties
for tracking (mainly data association algorithms to handle
clusters of natural features that are closely spaced in the
image), but adds considerable complexity to the initial
acquisition process. After processing two images taken

from different locations to find all the corners in the frame,
labeled with any size, type or color characteristics that can
be measured, the software would establish point
correspondences between the two images, triangulate the
two rays to each point to determine all the 3-D point
locations relative to the second camera pose, then search
through the entire feature database looking for the best
match of this 3-D point cloud to a subset of points from the
database, using an iterative closest point (ICP) algorithm.

To facilitate natural feature tracking outdoors and in
other specialized environments, we are developing an open
sensor driver API to allow researchers to interface their
own computer vision hardware and image processing
algorithms into the sensor fusion core.

6. Bibliography

[1] Azuma, R., Hoff, B., Neely, H. and Sarfaty, R. (1999). A
Motion Stabilized Outdoor Augmented Reality System. Proc. of
IEEE VR-1999, pp. 252-259.

[2] Billinghurst, M. and Kato, H. (1999). Collaborative Mixed
Reality. Proc. of ISMR-1999, pp. 261-284.

[3] Bishop, G. (1984). Self-Tracker: A Smart Sensor on Silicon.
Unpublished PhD. Dissertation, Dept. of C.S., UNC-Chapel Hill.

[4] Foxlin, E. (2002). Generalized Architecture for Simultaneous
Localization, Auto-Calibration, and Map-building. Proc. of
IEEE/RSJ Intl. Conf. On Intelligent Robots and Systems (IROS
2002), Lausanne, Switzerland.

[5] Hoff, W., Nguyen, K. and Lyon, T. (1996). Computer Vision-
Based Registration Techniques for Augmented Reality. Proc. of
IRCV, SPIE Vol. 2904, pp. 538-548.

[6] Kanbara, M., Fujii H., Takemura, H. and Yokoya, N. (2000).
A Stereo Vision-Based Augmented Reality System with Inertial
Sensor. Proc. of ISAR-2000, pp 97-100.

[7] Naimark, L. and Foxlin, E. (2002). Circular Data Matrix
Fiducial System and Robust Image Processing for a Wearable
Vision-Inertial Self-Tracker. Proc. of Intl. Symposium on Mixed
and Augmented Reality (ISMAR-2002), Darmstadt, Germany.

[8] Neumann, U. and Cho, Y. (1996). A Self-Tracking
Augmented Reality System. Proc. of ACM VRST 96.

[9] Stricker, D., Klinker, G. and Reiners, D. (1998). A fast and
robust line-based optical tracker for augmented reality
applications. Proc. of IWAR-1998.

[10] Welch, G. (1995). Hybrid Self-Tracker: An Inertial/Optical
Hybrid Three-Dimensional Tracking System, UNC- Chapel Hill,
Dept. of C. S., NC, USA TR95-048, 1995.

[11] Yokokohji, Y., Eto, D. and Yoshikawa, T. (2001). It’s
Really Sticking! –Dynamically Accurate Image Overlay Through
Hybrid Vision/Inertial Tracking, Proc. of ISMR-2001, pp. 196-
197.

[12] You, S. and Neumann, U. (2001). Fusion of Vision and Gyro
Tracking for Robust Augmented Reality Applications. Proc. of
IEEE VR2001, pp. 71-78.

