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Abstract

Current virtual environment and teleoperator applica-
tions are hampered by the need for an accurate, quick-
responding head-tracking system with a large working
volume. Gyroscopic orientation sensors can overcome
problems with jitter, latency, interference, line-of-sight
obscurations, and limited range, but suffer from slow
drift. Gravimetric inclinometers can detect attitude
without drifting, but are slow and sensitive to transverse
accelerations. This paper describes the design of a
Kalman filter to integrate the data from these two types of
sensors in order to achieve the excellent dynamic
response of an inertial system without drift, and without
the acceleration sensitivity of inclinometers.

1. Introduction

One of the key technological challenges in virtual
environment, teleoperator, and augmented reality systems
is head-tracking. Noise and latency in the data output by
most current magnetic, acoustic, and optical head-
tracking systems cause the objects in the virtual world to
appear jittery and to swim about their correct stationary
positions during head movements. Range limitations
prohibit the use of VR for applications such as out-door
operations training or building walkthroughs. Interference
and distortions, particularly in magnetic systems, can
cause user disorientation [1-3].

In order to overcome problems of limited range, port-
ability, and line-of-sight restrictions, some kind of self-
contained sourceless tracking system would be highly
desirable. A purely inertial tracker would have the
additional advantages of nearly instantaneous measure-
ment, availability of motion derivatives for prediction,
superb resolution/negligible jitter, and immunity to all
forms of interference.

The operating principles for measuring orientation and
position of a moving body using only gyroscopes and
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accelerometers have been well established in the field of
Inertial Navigation Systemns(INS) [4-9]. The variant
called strapdown INS measures the orientation of a body
by integrating the angular rates from three orthogonal
rate gyros affixed to the body, starting from a known
initial orientation. This orientation subsystem is referred
to as an Attitude and Heading Reference System (AHRS).
To get position, 3 linear accelerometers, also affixed to
orthogonal axes of the moving body, measure the total
acceleration vector of the body relative to inertial space.
This acceleration vector can be converted from body
coordinates to earth coordinates using the known
instantaneous orientation of the body determined by the
AHRS. Position is then obtained by subtracting off the
effect of gravity from the measured acceleration and then
performing double integration starting from a known
initial position.

Drift in the determination of orientation by the AHRS
results from gyro biases, which lead to a linear drift rate
after single integration. If the startup bias can be meas-
ured and nulled, the worst case drift rate is determined by
the bias stability, which ranges from about 1°/second for
inexpensive silicon micromachined gyros to 0.001°/hour
for sophisticated inertial navigation gyros. The best gyros
of a practical size for head-tracking have a bias stability
on the order of Earth’s rotation rate of 15°/hour. Much
less expensive and smaller are miniature vibrating
element gyros with bias stabilities of several de-
grees/minute and worse. Drift in the measurement of
linear displacement is a far more difficult problem due to
the double integration of acceleration, and is not ad-
dressed in this paper.

An inertial head-tracker has been developed by the
author at MIT, concentrating first on the more tractable
problem of 3-DOF orientation tracking [10]. The first
prototype consisted of three orthogonal angular rate
sensors together with a two-axis fluid inclinometer for
drift compensation. The outputs of the angular rate
sensors were integrated to obtain orientation, and the
orientation was occasionally reset by the fluid inclinome-



Figure 1: MIT inertial tracker 2nd prototype

ter to correct for the slow drift of the gyros. Due to the
relatively high performance of the rate transducers used in
that prototype, even this simple sensor fusion algorithm
was able to achieve orientation tracking performance of
<1 ms latency, 0.008° r.m.s. noise, and 0.5° absolute
static and dynamic accuracy in pitch and roll [11]. At 1
1b., the prototype was still a little large for practical head-
tracking applications.

A second prototype of the MIT Inertial Tracker, shown
in Figure 1, has now been built which incorporates tiny
low-cost solid-state rate gyros, a two-axis fluid inclinome-
ter, and a two-axis fluxgate compass. It weighs only 3.5
ounces, can be comfortably worn on a head-mounted
display, and uses low-cost sensors so that it can be
developed into a competitive commercial head-tracking
product. However, the miniature low-cost rate gyros have
so much higher hysteresis, nonlinearity and bias instabil-
ity that the simple ad hoc drift correction algorithm used
in the previous prototype does not lead to sufficiently
accurate results. This paper concerns the design of a more
sophisticated sensor data fusion scheme, based on Kalman
filtering, which makes the best use of all the data
available from both types of sensors and thereby achieves
a lower mean squared orientation estimation error than
the ad hoc method. To be useful, the filter must be able to
run in real time on an inexpensive 486-class microproces-
sor, so considerable effort is invested in formulating a
minimum-order Kalman filter and implementing it
efficiently.

The main contributions of this paper are 1) an analysis
of the literature about related Kalman filter applications,
2) an exposition of the modeling decisions that were made
to formulate the filter, which will help others to frame the
questions necessary to apply Kalman filtering to similar
problems, 3) an example of the use of Friedland’s
separate-bias Kalman filter formulation, which has not
been previously applied in synthetic environment tracking
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work, and 4) a very effective adaptive algorithm for
adjusting the Kalman filter parameters to the instantane-
ous motion characteristics. This paper focuses more on
filter design and implementation than validation, and no
effort is made to formulate an optimal filter and compare
the performance of the reduced-order filter to the optimal
filter in simulation.

2. Kalman filtering

Consider a dynamic system which can be modeled by a
n-by-1 state vector x obeying a discrete-time (DT)
evolution equation

X, =Ax, +Bu, +w, 1
where A is an n-by-n state transition matrix, B is an n-by-
p matrix and u is a p-by-1 vector of known system inputs,
and w is an n-by-1 process noise vector with covariance
matrix Q. (Note that lower-case bold letters, Greek or
Roman, denote vectors, and upper-case bold letters denote
matrices.) Suppose there are indirect measurements of the
state vector available at each time k, and that they can be
expressed as an m-by-1 measurement vector

Y, =Cx, +v, 2
where C is an m-by-n system observation matrix, and v is
an m-by-1 measurement noise vector with covariance Ry.
A Kalman filter is a recursive algorithm for computing an
estimate X of state which is optimal in the sense of least
square error under certain circumstances. One form of the
DT Kalman filter, used in Section 4.5, is
%,,, =A%, +Bu, +K,, (v, ~CAR,) 3
where the Kalman gain matrix K is computed from the
estimation error covariance matrix, P, according to

K, =P,C[CP,CT+R,]" )
and P is updated according to the Ricatti equation:
P, =A[I-K,CIPA"+Q,,,. )

The Kalman filter is very useful for combining data
from several different indirect and noisy measurements to
try to estimate variables which are not directly measur-
able. Thus, while the gyroscopes measure orientation by
integrating angular rates, and the inclinometer and
compass provide a different noisy and sloshy but drift-free
measurement of orientation, the Kalman filter weights
the two sources of information appropriately to make the
best use of all the data from each. If the model in (1) and
(2) is a simplification of the actual physical system, the
resulting reduced-order Kalman filter (ROKF) will not be
optimal, but will often perform almost as well as the full-
order Kalman filter. This property is exploited in this
paper without any attempt to evaluate the performance of
the ROKF. If the system dynamics are nonlinear, it is
possible to linearize about a nominal or actual trajectory
and run a Kalman filter on the linearized system. This is



the basis of the extended Kalman filter (EKF) and the
complimentary Kalman filter developed in Section 4.2. A
discussion of Kalman filtering can be found in [12].

3. Literature analysis

In applying Kalman filtering to the inertial orientation
tracking problem there is considerable freedom in system
modeling - what physical variables to assign to the state
vector X, what measurements are in the measurement
vector y, and what matrices A, B, C, Q, and R most
accurately describe the system given those choices. A
literature search was conducted to see how other authors
have used Kalman filters to estimate orientation from the
outputs of 3 strapdown gyros. The 7 most relevant
references found are reviewed in this section. Two come
from vehicle navigation, two from robotics, and three
from virtual environments.

An early maritime navigation work by Bona and Smay
[13], summarized in [12], is of interest because it shows
how to reset gyro biases based on indirect measurements
(position errors that result from them) and provides a
now-comumon Markov model of gyro bias evolution. The
dynamic system model details how the position errors
evolve in response to the gyro biases, and how the gyro
bias Markov components evolve in response to the
process noise.

The most relevant reference found in the aeronautics
literature was Koifman and Merhav’s description of an
autonomously aided strapdown attitude reference system
[14]. Here, an autopilot is created with three low-cost rate
gyros with time-varying biases on the order of 0.1°/s. The
measurements fed into the Kalman filter are from the
three gyros, a magnetic compass, altimeter, and airspeed
sensor. The state vector contains 16 elements: 3 linear
velocities, 3 angular velocities, 3 orientation Euler angles,
altitude, 3 wind gust velocity components and 3 gyro
biases. The state transition matrix is obtained by lineariz-
ing the system differential equations which encompass
the aircraft equations of motion as well as the kinematic
Euler equations (6). In contrast to Bona and Smay, the
gyro biases are considered piecewise constant, and the
corresponding diagonal covariance elements are simply
reset whenever a change detection algorithm suspects that
the gyro biases may have changed. It is also instructive to
note that the full order 16-dimensional system could not
be run in real time, so they reduced the state to 11
elements and were then able to achieve about 20 updates
per second with minimal loss in accuracy. The measure-
ment vector consists of the three gyros and the airspeed
sensor.

Barshan and Durrant-Whyte [15] investigated the use
of a solid-state gyroscope for mobile robotics applications.
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They paid particular attention to the gyroscope error
model, and came up with an exponential curve to fit the
changes in bias as the gyroscope warms up. They then
implemented a Kalman filter for estimating a single
rotation  angle ®, with a state  vector

. . T
[(I) ® @ P g ed,] and a state transition matrix

that propagates the truth states @, ®,®,® and error states
£4,€;, completely independently. The only system
observation is the single rate gyro measurement, so the
system is not observable, and the angular position error
covariance grows unbounded. However, it is demonstrated
that the gyro drift error grows at a rate 5 times slower
when using the exponential gyro error model.

A paper on mobile robot attitude estimation by Vaga-
nay et al [16] provides the only example in the literature
in which gyroscope drift is compensated using two
accelerometers, and is therefore particularly germane to
this drift-free head-tracking application. The Kalman
filter model is very unusual and results in a state vector of
surprisingly low dimension. The integration of angular
rates is done outside of the Kalman filter, and is treated as
part of a measurement system that provides gyroscopically
determined measurements of pitch and roll, 0 and v, ,
which are complimented by gravimetric measurements of
0 and vy from the accelerometers. The state contains 8 and
y and the pitch and roll drift rates, and the transition
matrix used in the Kalman filter is just the identity. This
is the leanest Kalman filter conceivable, as even the
kinematics of Euler angle integration are not modeled, but
the performance reported is nearly comparable to the
other methods. No details are given about the determina-
tion of Q and R.

Azuma and Bishop developed a Kalman filter to use
inertial sensors together with an optical head-tracker to
predict head motion in HMD applications [17]. The
approach is different from the preceding papers, and also
from the application developed in this paper, because the
gyroscope rate signals are not integrated to obtain
orientation. Instead, the orientation is obtained from the
optical head-tracker, and the angular rates are fused with
this in the Kalman filter to yield improved predictions.
The state vector contains a quaternion specifying
orientation, the angular rates in body axes, and the
angular accelerations in body axes. The measurement
consists of the quaternion measured by the optical tracker,
and the angular rates measured by the gyros. The Q and
R matrices are determined off-line using Powell’s method
on prerecorded datasets to find the parameters that give
the best performance. Prediction was accomplished by
extrapolating forward in time, using the angular velocity
and acceleration estimates in the state vector.



Emura and Tachi likewise used gyros to augment the
dynamic performance of an existing head-tracker, but in
this case the tracker was magnetic instead of optical [18,
19]. The state vector contains orientation (Euler angles in
the first paper were replaced with a quaternion in the
second) and angular velocities. The measurement vector
measures all elements of the state, using a Polhemus
magnetic tracker to measure orientation and gyros to
measure the angular rates. A novel aspect of the Kalman
filter structure is the use of two different types of meas-
urement update step: a 3-dimensional measurement used
most of the time, when only gyro data is available, and a
6-dimensional measurement used when the Polhemus
data is available as well. Q and R were found empirically,
using a high-precision mechanical tracker as a reference
to measure remnant errors.

4. System modeling and filter design

4.1 State and measurement vectors

The first step in modeling is to decide what to put in
the state and measurement vectors. Since the basic
purpose of the Kalman filter is to estimate orientation, it
is a given that it will be included in the state vector.
Indeed, all the authors except [13] include it, although
they are split between quaternion and Euler angle
representations. In the interest of smaller state dimension
(i.e. faster computation), this implementation uses Euler
angles. The aeronautics convention is used, where ¢, 6,
and v, called yaw, pitch and roll respectively, represent
positive rotations about the z, y, and x body axes in turn,
with the positive x-axis pointing forward, positive y
pointing right, and positive z pointing down. There is a
singularity in the Euler angle representation at 8 = £90°,
but this was not found to produce any noticeable distur-
bances in practice.

All the remaining references except [16] also include
angular rates in the state vector and gyroscopic angular
rate measurements in the measurement vector. This is
very natural, as it allows the Euler angle integration
kinematics [20],

0(t) = W, (6(1)) o(t)

w(t) @ (t)
0= 60| . o@=|o, ®
(1) @, (7)
1 siny(f)tan6(z)  cosy/(¢)tan6(r)
w,(6())=|0 cos y(2) ~siny()

0 siny(t)/cosB(r) cosy(t)/cos(t)
to be incorporated into the system dynamics model, and
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allows the gyro measurements to be utilized in the
obvious way - as measurements. However, while it is
obvious from (6) how the derivatives of the orientation
state elements will be computed from the state, how shall
the derivatives of the angular velocity components depend
on state? Some authors [18, 19] simply assume zero
dependence, i.e. constant angular rates. Some process
noise is added to the angular accelerations to allow for
non-constant angular rates, but in reality the angular
accelerations would not be very much like white noises, so
this model cannot be very optimal. Other authors [15, 17]
augment the state vector with ®, which changes the
model to an assumption of constant angular acceleration.
The difference between the true ® and the assumed
® =0 is closer to white noise. Further derivatives, as in
[15], make the model even more accurate, but lead to an
unreasonably large state vector.

For most accurate estimation, the equations of motion
of the body being tracked should be included in the
system dynamics model (1). For example, in [14] the
angular accelerations of the aircraft depend precisely,
through well-known aircraft equations of motion, on
quantities in the state vector and aileron positions, which
are known inputs. Unfortunately, head accelerations are
driven by muscle forces - an unknown input - so head
dynamics are not modeled in the current system.

In inertial navigation applications, such as [13-15],
gyro bias terms are usually included in the state vector.
This is very important where the only aiding comes from
sparse or indirect sources such as occasional position
fixes. In this case, it is desired to milk as much accuracy
as possible out of the gyro integration algorithm, and
time-varying gyro biases are the largest source of error.
Our state vector is therefore augmented with the three
gyro bias terms Sy, 8wy, and 6w,

4.2 Complimentary Kalman filter

While most of the references above used a Kalman
filter to directly estimate the state variables of orientation
and it’s derivatives, it is common in inertial navigation
systems to instead use a complimentary Kalman filter
which operates only on the errors in those primary state
variables [12].

The direct Kalman filter block diagram in Figure 2 has
® measured by the gyros and 0 measured by the aiding
sensors all as measurement inputs. The Euler angle
integration of (6) is then accomplished as part of the
prediction step inside the Kalman filter block. The
complimentary Kalman filter is shown in Figure 3. Here,
the integration of the Euler angles is performed outside of
the Kalman filter, in the block labeled “attitude computa-
tion”’. One advantage of this structure is that it guaran-



Section 4.5 describes a complimentary
EKEF to operate on the errors of the attitude

&t computation with the computational
complexity of the EKF reduced by
O+50 N A applying  Friedland’s  separate  bias
Gyros Gyro Error P formulation.
S Compensation Kalman The continuous-time (CT) nonlinear
. (3} differential equation which the attitude
- Filter computer must integrate was given in (6).
Inclinometers O To derive the DT attitude computation
& Compass from it, it is useful to approximate the
evolution of 6(t) over a short time interval
by its  Taylor series expansion
. . A[Z
Figure 2: Direct Kalman filter for orientation O(z + Ar) = 6(¢) + 6(¢) Az + bO—+.. O
The number of terms which must
N _ . .

Attitude 6 be retained depends on the size of
Gyr os @50 gyro Errort = Com putation k4 At. For a first order integration
ompensation . algorithm (retaining only the first
S0 50 two terms), the error per step will
Incl A v L be mostly due to the third term,
nclinometers| +~ 6,-6 . , hich is of order w®Ar%/2
= CO——"——= Kalman Filter Error Estim - Wheh 15 oborder '

& Compass T Kalman Filter Error Estimator Therefore,

Figure 3: Complimentary Kalman filter for orientation

tees that the rapid dynamic response of the inertial system
will not be compromised by the Kalman filter. Another
advantage is that the gyro rates are not treated as
measurements, so it is unnecessary to include ® in the
state vector. Since the head dynamics are not being
modeled in this implementation, ® is excess baggage, and
by removing it from x the dimension is reduced from 9 to
6, with more than a three-fold computational savings. The
following sections, therefore, will strive to develop a
complimentary Kalman filter to estimate

o0 T
8x=[6m:’5[6w 8 & 6o, o, v, (7)
using
R a AT
8 =W st =V Ortrmrr =0 Duomps — ] (8)
as the measurements, where 80 represents the error in the

output of the attitude computer, and 8® represents the
gyro biases.

4.3 DT nonlinear attitude computation

A Kalman filter which operates on the errors of the
INS attitude computer must mimic the noise-free error
dynamics of the attitude computation. This section derives
the attitude integration algorithm, Section 4.4 linearizes
the attitude algorithm to obtain the error dynamics, and
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1
error rate = szAt.

For typical peak head velocities of

about 6 radians/sec and a timestep
of 0.003 sec, this yields an error rate of about .05 rad/s
(about 3°/s) which is unacceptable. Retaining the third
term, the error rate will be dominated by the fourth term,
or order w’At’ /6, so

1
error rate =~ ga)zAt2 )

For the same ® and At the error rate would be about
0.0003 rad/s, or about 1°/min. Since the low-cost gyros
are unlikely to have performance much better than this, a
second order integration algorithm was selected.

Differentiating (6) by the chain rule for partial deriva-
tives results in

60) =2 [W, (60) ()] 0()+
(10)

2w, (60) 00)] 60

Defining (with time indices suppressed for brevity)

V,(0.0)=-Z [W,(0)0]

cosysin@ sin y/sin 6 sin g cosy
0 — (] O AT 0, 0
cos 0 cos 9 cos 8 oos 8 (11)
—siny © —cosy @, 0 0
cosy siny siny/sin 6 cosysin@
— o - @, - + o,
cs® ' cosf cos 6 cos @



and approximating the derivative of Xt) by its first
difference,
() ~ m(t+A/i)—m(t) (12)
and substituting (11) and (12) intto (10) yields
6(r) = V, (8(2), (1)) W, (8(1)) ()
a(t+ At) - () (13)

W, (6(0) =

Plugging (6) and (13) into (9) and rearranging terms
slightly leads to
1)+ o(r+ At
0(r+ Ar) =0(r)+ W, 2()—0)(———)&
g (14)

2

+VBWB(1)(t)A;
which is the second order DT integration step formula
implemented in the attitude computer. Since At remains
as an explicit parameter in this formula, it is unnecessary
to have constant stepsize. This eliminates the difficulties
of an interrupt driven program structure that would be
necessary to have constant sampling rate data acquisition.

4.4 DT linearized error dynamics

Equation (14) defines a nonlinear state propagation

function £, for the system with state vector 6 and input o

0(t + Ar) =1£,,(6(r), @(z), (¢ + Ar), 1) (15)

For the sake of obtaining an extended Kalman filter

which can estimate both orientation errors and gyro

biases, consider augmenting the state vector with ® and
rewriting the system in the form

o(+AN] ~ ([6()
|:0)(t + At)} b [[(D(f)D o)
fmqemﬂ [fm(em,m(t)sm(ﬁM’A’)} 16)
()
0

(1)
u(r) = L)(t +Af) - m(t):l

where u(t) has been deviously chosen to make (t) evolve
in accordance with the input history of the previous
system. The system error dynamics can now be obtained

by linearizing about the nominal trajectory [B(t) ﬁ)(t)]T

to get
80(t + At) A B 80(r)
Sm(r + At)] { 0 I ]li&o(t)}

an

where
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o, (¢ 0 A
= % =1+ VAt +|:V82 +(——-VB)WB(1)]—2— .
X, (¢ P A
B= L((t)) = WBAt—i—liVBWB + (——VB)WBm}-—z—

and 0 and I are 3-by-3 zero and identity matrices. The
vector partial derivatives of Vg are too messy to write out
in full, but the computation is straightforward and can be
carried out as follows: 1) form a “row vector’” of the three
matrices obtained by differentiating Vg with respect to the
first, second and third elements of the vector in the
denominator of the partial derivative; 2) multiply each of
these three matrices by the r.h.s. vector Wg®. This results
in a “row vector of column vectors’’, i.e. a 3-by-3 matrix.
Equation (17) gives the state transition matrix for the
linearized error dynamics of the augmented system. The
angular velocity errors 8w are principally due to gyro
biases, and will be interpreted simply as gyro biases from
here on. The A and B submatrices can be interpreted as
describing the influence of the orientation error and gyro
biases at time ¢ on the orientation error at time ¢+At. The
effect of the matrix is fairly obvious; it basically mimics
the attitude computation of (14) except that the input
angular velocity is due to gyro biases and the output is
therefore an orientation error. The growth of orientation
error in the absence of angular rate errors is governed by
the A matrix. To first order A =I+V Ar. The identity

term maintains the previously accrued error, and Vg(0,m)
amplifies existing orientation errors in response to
motion.

4.5 Separate-bias Kalman filter formulation

The linear error propagation model of (17) provides
the basis for a complimentary Kalman filter to estimate
these errors. The model has been manipulated into a form
in which the gyro biases are assumed constant, thus
permitting the direct application of Friedland’s separate-
bias Kalman filtering results [21]. If the constant-bias
model turns out to fit the gyro performance poorly, the
restriction can later be ameliorated by use of an age-
weighting factor. If an exponential gyro warm-up model
as in [15] seems more appropriate, this can be accommo-
dated within Friedland’s formulation by replacing the
identity submatrix in the state transition matrix of (17).

Switching to Friedland’s notation, define an error state
vector x, =36(,) and a bias state vector b, =dw(z,)

where t, is the time at the k™ iteration of the algorithm.
An augmented state vector z, =[x, b,]" satisfies



I
z,,, = Fz, +[0]Wk

s ]
0 I

The additive white noise w, with variance Q,, only
effects x, since b is assumed constant. The measurement
equation is

(19)

Ve =Lz, +v,, (20)
where vy is white noise with variance Q.. In Friedland’s
paper, L, = [H X Ck], but in this application the
measurements from the inclinometers and compass only
measure X and not b, so C = 0 will be used throughout,
resulting in a great simplification from Friedland’s
derivation.

Applying Kalman filtering to this model, the optimal
estimate of z is

2lc+1 = Fkik +K(k+ 1)(Yk+1 - LFkik) (21)

K(k) = P(k)L'[LP())LT +R,]". 2)

The Ricatti equations for the recursive computation of the

estimation error covariance matrix P(k) needed in the

Kalman gain expression can be rolled together into the
single predictor-to-predictor covariance update equation:

P(k+1) = F,[1- K(k)L]P(k)F,” +B]QM[I 0].23)
Partitioning P(k) into 3-by-3 submatrices as
_| Pk)  Pu(k)
Pk = [Px,,‘-”(k) P,,(k)} ’

the expression for the Kalman gain, (22), may be
rewritten in partitioned form as

[ka)}: POH'HR (R 4R |
P, (OH[HP,(HH™ +R,]" |’

29

K, (k)

These separate gains are used in two essentially separate
Kalman filters, one for estimating x and one for b. To

compute the K, and K, gains in (25), covariance sub-
matrices P, and P,, are needed. These are updated by the
partitioned version of (23):

T o e o
P, P, 10 I |0 I| K,
[P, P,TA, B [Q 0
P, P, ][ 0 I ]+[ 0 oJ
_ A, -A,K H-B,K,H BkJX
i -K,H I
l: PxAkT +beBkT be:'+I:Qk 0]
P,”’A," +P,B,” P, 0 0
Thus, a plethora of 6-by-6 matrix multiplications and
one 6-by-6 inversion are replaced by a somewhat greater

number of 3-by-3 multiplications and one 3-by-3 inver-
sion.

(26)

5. Implementation

Figure 4 illustrates the configuration of the hardware
built to demonstrate the inertial head-attitude tracking
concept. The sensors are all embedded in a specially
machined 2" X 2" X 1.25" plastic block connected by a
thin 10’ cable to an analog signal conditioning circuit and
data acquisition card in a PC.

Software was written in “C’” to run on the PC and

implement the basic loop shown in Figure 5.

initialize

:('I?Iman save

er orientation
q‘l’. oral data to file,

acquire - iterate display on

sensor |Jreadtimer, | |kalman ) scrgerzl

data compute At |“Jfilter ]

T

Figure 5: Inertial orientation tracker main software loop.
The initialization block, executed once
at program start-up, sets the initial state
estimates and covariances as follows:

Xo: The inclinometer is read and used

2-axis fluid 2-axis fluxgate
inclinometer magnetometer
Intel 486dx33
computer
8-channel analog 8-channel,
scaling, shifting, 12-bit A/D
low-pass filtering converter card

X gyro

Figure 4: Orientation tracker hardware configuration.

191

to set y and 6. The compass, if used,
determines ¢; otherwise ¢=0.

by: The biases of all 3 gyros are meas-
ured during system calibration and stored
in a file. On initialization, the file is read
and S is initialized with the stored gyro
biases.

P,(0): The errors in the initial deter-
mination of the Euler angles may be
substantial, but they are assumed to be
uncorrelated with one another: P,(0) = 1.



P,(0): The gyro biases at start-up could differ substan-
tially from the prerecorded calibration values, but the
uncertainties are uncorrelated: P,,(0) = 0.1L

P.,(0): The initial uncertainties in orientation and gyro
bias are completely uncorrelated: Py,(0) = 0.

The data acquisition block scans all the A/D channels
in rapid succession. The new gyro readings are stored as
o(t+At) and the previous ones are moved back to axt).
The new inclinometer and compass readings are stored in
y(t+At). In the next block, a timestamp is obtained from
the 8253 timer/counter chip on the PC motherboard. This
counter is driven by a 1.19 MHz oscillator with a 65,536
divisor to generate 18.2 Hz timer ticks for BIOS and DOS
time-keeping. By reprogramming the divisor it was found
possible to obtain sub-microsecond timing resolution as
required for inertial integration. At is calculated as the
difference between the current timestamp and the
previous one.

Next, oXt), at+At) and At are fed into the Kalman
filter update block. Wy and Vg are computed and then
used in (14) to compute the predicted O(t+At). This
corresponds to the attitude computation block in. Since
the Euler angle estimates, 6 must be maintained anyway,
it is convenient to subsume 80 into them, and keep track
of total estimates only. This does not change the filter
framework developed in the previous section in any

important way; it just means that Sé(t) is always zero at
the beginning of each iteration of the Kalman filter. At
the end of the Kalman filter update cycle, 80(¢+Af) is

used to reset é(t+At) and then flushed back to zero
before the next cycle. Since the attitude error estimates
are propagated along with the attitude estimates through
the nonlinear propagation equation, the top three
elements of F,Z, in (21) are replaced with zeros. Since ®
is not included in the state, the running estimates of 8®
must still be kept track of in the Kalman filter. They are
propagated through the prediction step unchanged, as
governed by the bottom three rows of F.. The system,
then , can be thought of as a mixture of a purely compli-
mentary Kalman filter as described in the previous section
and an extended Kalman filter which keeps track of total
estimates of state.

The next stage in the computational loop is to incorpo-
rate the measurements and update the error estimates as
follows

89k+1 = 89k+l +Kx(k + 1)Vk+1

86) k+1 +Kh(k+l)vk+1
where vi4 is the innovations obtained by subtracting the
predicted orientation estimates from the new orientation
measurements. In order to calculate K, (k+1) and Ky(k+1)
with equation (25) it is necessary to first propagate the

27

(a1 = O
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covariance submatrices using (26). Since the inclinometer
and compass signals are pre-processed to give direct
measurements of the Euler angles, H=I, and (26) is
simplified to the following steps:

T, =A-AK,
T,=TP,
T, = BTZT
. (28)
P, =T, +BP,

P, =T, +BP,"

P*=P,'B"+T,+TPA"
where T; are simply temporary storage matrices used to
reduce the amount of redundant matrix multiplication. A
small subroutine library was written, following the pointer
conventions and numerical methods described in [22], to
perform the necessary matrix multiplication, transposi-
tion, addition and inversion operations to carry out these
steps.

5.1 The Q, and Ry Matrices

Ideally, Qy is supposed to reflect the magnitude of a
white noise sequence. If all error sources in the inertial
attitude system are taken care of (i.e. modeled in the state
propagation matrix), then wy in (19) should be entirely
due to the noise floors of the angular rate sensors. In this
case, it should be possible to calculate the optimal value of
Q. by measuring the noise covariance, Q, of the station-
ary gyros in advance, then at each time step compute
Q,=G,QG,", using G, = WB(G(tk)).

However, there are many nonwhite error sources be-
sides bias, such as nonlinearity, hysteresis, misalignment,
g-sensitivity, and scale factor temperature coefficient,
none of which are modeled in the current implementation.
The best procedure for designing a reduced-order Kalman
filter under these circumstances is to use a Schmidt-
Kalman filter, which eliminates the unmodeled states
from the state vector, but continues to propagate their
covariances in partitioned Ricatti equations and  Q and
R matrices. A simpler approach, which sometimes works
almost as well [12, p. 397], is to just ignore the unmod-
eled states, but “bump up’’ the Q and R matrices to
account for the noises in the states being discarded. This
approach is taken here, except the “bumping up’’ is done
in a very inexact way.

Without having a model of the gyro dynamics, the
following error sources in the process equation (19) are
assumed:

gyro noise: From an oscilloscope, for stationary gyros,
0=0.01 rad/s. Covariance per step (0.01A0)>

integration rule error: From the analysis in Section
4.3, o= At® rad/s. Covariance per step WAL,



scale factor error: This is a composite of nonlinearity
and temperature dependent scale factor variations.
Assuming scale factor accuracy of 1% of full scale,
0~0.01w rad/s. Covariance per step (0.01mAt)>
Assuming At=0.01sec, and that these error sources are
uncorrelated, the error covariances add up to approxi-
mately 10%(1+0™+10*w®). At each iteration of the
Kalman filter software, the following algorithm is used to
compute Q.
1. find @max = max (e, wy, o)
2. setow’ = 10°(1+0ma+10" 0ned)

c,” 0 0
3.setQ,=| 0 o2 0
0 0 ot

w
4.set Q, =W,QW,’

This algorithm is very crude and likely to overestimate
Qi because it uses Gy, to find the variance for all three
diagonal elements of Q.

Ry is modeled in an equally sloppy manner. The meas-
urement noise is extremely nonwhite. The major source of
measurement noise for the fluid inclinometers is “slosh’’
caused by transverse linear accelerations. Linear motion
is not included in the state vector, and therefore, this error
cannot be modeled in the measurement matrix. Further-
more, the magnitude of the low-frequency “slosh’ errors
are sometimes extremely large: up to 1 radian. Slosh-
induced inclination errors cause similarly large heading
errors in the compass system. On the other hand, when
the head is still, there is no slosh and the attitude angles
measured by the inclinometer are very accurate. The
algorithm for Ry is therefore designed in a heuristic way
to force the Kalman filter to take good advantage of the
measurements when they are likely to be meaningful, and
to ignore them when they are likely to be erroneous. The
basic principle is that o, should approach 1 when slosh is
likely, and approach the static accuracy of the inclinome-
ter/compass measurements, about 0.01 radians, when
slosh is very unlikely. In the absence of a model for
human head motion, it is assumed that a person cannot
sustain a constant linear acceleration of the head very
long with no rotation. Therefore, the longer the period of
time that the head has had 1) zero angular velocity, and
2) unchanging inclinometer outputs, the higher the
probability that the head is still. Based on this intuition,
the algorithm used to set Ry is:

1. compute “stilltime’’, 1, since last non-zero gyro
reading OR last change in inclinometer reading.

2. set o, =1/(1+4001)

3. if o, <001,set ¢, =0.01

o 0 0
4. setR,={ 0 o2 0
0 0 o

According to this algorithm, the measurement error
covariances for the inclinometer roll and pitch range from
1, during periods of likely slosh, down to 10 during
periods of likely stillness. The covariance of the compass
yaw error only comes down to 0.01, corresponding to ¢ ~
6°, because even with good inclinometer information,
magnetic distortions in the room make the compass this
inaccurate.

6. Results

Using the Qy and Ry matrices described above, it was
found that the Kalman filter diverged within a few
seconds when the sensor was still. An age weighting
multiplier did not help. After much experimentation, it
was found that the only way to prevent divergence is to
never let the diagonal elements of Ry be less than 1. The
algorithm for Ry was adjusted so that 64 ranges from 10,
when 1=0, to 1, when 7>0.2. The base level of Qy was also
boosted from 10°® to 10 so that the filter would still make
use of the measurements with the larger measurement
noise covariance. With these modifications, the filter
remains stable indefinitely and succeeds in eliminating
long term drift without compromising the rapid dynamic
response of the inertial tracking technique. The filter can
run at approximately 200 iterations/second. This is a five-
fold slowdown as compared to the raw attitude computa-
tion with the Kalman filtering steps commented out.
However, it is still reasonably fast and the delay can be
compensated for by prediction if necessary.

1.4k -

-

roll angle {radians)

10

time (sze(::onds)
Figure 6: Test run without complimentary Kalman filter.
To demonstrate the behavior of the filter, two datasets
were collected. In the first dataset, the complimentary
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Kaiman filter block is disabled by setting Ky and Ky equal
to zero. During the test period of approximately 35
seconds, the sensor block was repeatedly turned through
+90° about the roll axis and left to rest on its right side,
then returned to rest in its horizontal orientation on the
table. The roll Euler angle is plotted against time in
Figure 6, which demonstrates the problem with unaided
inertial integration: the accumulated drift error by the end
of the run is about 15°. The second dataset is created by a
similar motion sequence, but the Kalman filter is in
effect. As Figure 7 shows, the filter incorporates the drift-
free but noisy measurements from the inclinometers, and
effectively compensates the drift of the inertial system.
Due to the time-varying Ry strategy which shuts out the
measurements during motion, a certain amount of error
accumulates each time the sensor is rolled over and back,
and the Kalman filter corrects it once the sensor returns to
a stationary pose. The graph clearly shows the time-

course of this corrective action.
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Figure 7: Test run with complimentary Kalman filter.
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Plate 8: Gaze-Directed... —pg. 103; Figs.: Adaptively Rendered Images Using Two Gaze Directions

Plate 9: Inertial Head-Tracker... - pg. 185; Fig. 1: MIT Inertial Tracker 2 Prototype



