Combining Kernels for Classification

Darrin P. Lewis

Submitted in partial fulfillment of the
requirements for the degree
of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2006

(©2006
Darrin P. Lewis

All Rights Reserved

ABSTRACT
Combining Kernels for Classification
Darrin P. Lewis

Drawing inferences from large, heterogeneous data sets requires a theoretical frame-
work that is capable of representing, for example, DNA and protein sequences, pro-
tein structures, microarray expression data, various types of interaction networks, etc.
Recently, a class of algorithms known as kernel methods has emerged as a powerful
framework for combining diverse types of data.

The power and current popularity of kernel methods stem in part from their
ability to handle diverse forms of structured inputs, including vectors, graphs, and
strings. The support vector machine (SVM) algorithm is the most popular kernel
method, due to its theoretical underpinnings and strong empirical performance on
a wide variety of classification tasks. Recently, several methods have been proposed
for combining kernels from heterogeneous data sources. Specifically, several recently
described extensions allow the SVM to assign relative weights to various data sets,
depending upon their utilities in performing a given classification task. However, all
of these methods produce stationary combinations; i.e., the relative weights of the
various kernels do not vary among input examples.

In this work, we describe, implement and validate a method for combining multi-
ple kernels in a nonstationary fashion, where the kernel function combination varies
depending on the input. The approach uses a large-margin latent-variable generative
probabilistic model within the maximum entropy discrimination (MED) framework.
In this method, parameter estimation is rendered tractable by variational bounding

and an iterative optimization procedure. Here, we propose an MED Hilbert space

Gaussian mixture model, in which each component is implicitly mapped via a Mer-
cer kernel function, and we show that the support vector machine is a special case
of this model. The mixture model allows us to combine a given set of kernels in a
nonlinear and nonstationary manner, while avoiding overfitting by regularization. We
also derive an efficient sequential minimal optimization algorithm for discriminative
parameter estimation.

We empirically investigate the performance of the SVM and its variants on numer-
ous multi-kernel learning tasks, ranging from illustrative synthetic data sets, to com-
monly used benchmark data sets, to the real-world computational biology problem
of protein function annotation. In the majority of cases, and without any particular

tuning of the algorithm, our new technique outperforms existing methods.

Contents

1 Introduction

1.1 Motivation oL
1.2 Contribution o
1.3 Prior Work
1.4 Organization of Thesis
2 Stationary Kernel Combination
2.1 Introduction L L
2.2 Algorithms.
2.2.1 Support vector machines oL
2.2.2 Kernel methodso o000
2.2.3 Combining kernels 0oL
2.3 Methods L
2.3.1 Gene Ontology classes
232 Kernels
2.3.3 Experimental framework
24 Results.
2.4.1 Experiment 1: Comparison of kernel combination methods . .
2.4.2 Experiment 2: Varying relative kernel weight
2.4.3 Experiment 3: Multiple noisy kernels
2.4.4 Experiment 4: Kernels with missing examples

2.5 Discussion

2.6 Supplementary Results

Nonstationary Kernel Combination

3.1 Maximum Entropy Discrimination.

3.2 Discriminative Gaussian Ratio Classifiers

3.3 Latent Maximum Entropy Discrimination.

3.4 Discriminative Kernelized Gaussian Mixtures

3.5 Sequential Minimal Optimization
3.5.1 Imter-class
3.5.2 Intra-class
3.5.3 Newton Step
3.5.4 Implementation

3.6 Nonstationary Kernel Combination

Nonstationary Kernel Combination Empirical Results

4.1 Syntheticdatasets Lo
4.1.1 Eight-Gaussians dataset
4.1.2 Linear-quadraticdataset.

4.2 Benchmark datasets 0L
4.2.1 Wisconsin breast cancer L.
4.2.2 S0nar e e e e
423 Hearto

4.3 Yeast protein functional classification

44 SMO TIMINE . . o o v oo et e e e

Conclusion

5.1 Summary of contribution o o000

i

41
41
45
47
ol
95
o8
99
61
61
64

68
68
69
69
71
74
74
76
76
82

83

5.2 Future Directions

Bibliography

Appendices

A MaLT User Guide

Al
A2
A3
A4
A5

summarizeResultso

signedRank Lo oo

B MaLT Reference

Bl Gram. e
B.1.1 Gram (constructor)
B1.2 get
B.13 diag
B.1.4 mnormalize oo
B.1.5 combineo o

B.2 Kernel L
B.21 Kernel
B.2.2 PolynomialKernel

B.2.2.1 PolynomialKernel (constructor)
B.2.22 computeo
B.2.3 RadialKernel 00000
B.2.3.1 RadialKernel (constructor)
B.2.3.2 compute Lo

il

87

98

98
99
99
104
105
106

B.3 Labels 114

B.3.1 Labels (constructor) 114
B3l @b o o o e 115

B4 Learned 116
B.4.1 Learned 116
B.4.2 MedmixLearnedo oo oo 116
B.4.2.1 MedmixLearned (constructor) 116
B422 get 116
B.42.3 classify oo 117

B.4.3 MlmixLearnedo oo L 117
B.4.3.1 MlmixLearned (constructor) 118
Bi43.2 get 118
B.4.3.3 classifyo 118

B.4.4 SdpLearned 119
B.4.4.1 SdpLearned (constructor) 119
B4.42 get 119
B.44.3 classify oo 120

B.b Learner e 120
B.51 Learner oo 120
B.5.2 MedmixLearner00 120
B.5.2.1 MedmixLearner (constructor) 121
B.b.2.2 get 122
B.5.2.3 train 122

B.5.3 MlmixLearnero 123
B.5.3.1 MlmixLearner (constructor) 123
Bb532 get 124
B.533 traino oo 125

v

B.5.4

B.6 Result
B.6.1

B.6.2

SdpLearner
B.5.4.1 SdpLearner (constructor)

Result
B.6.1.1 Result (constructor)
B6.1.2 get
CvResulto
B.6.2.1 CvResult (constructor)

List of Figures

1.1

1.2

1.3

Example of Gaussian data with an unintended variable. This
figure shows an illustrative example that emphasizes the need for dis-
criminative parameter estimation for classification with mixtures. The
data contains an “unintended” variable.. 0.
Example of an ML Gaussian mixture with an unintended
variable. This figure continues the illustrative example that empha-
sizes the need for discriminative parameter estimation for classification
with mixtures. We see two two-component Gaussian mixture models
trained independently with maximum likelihood. Classification with
these models will be poor.o
Example of an MED Gaussian mixture with an unintended
variable. This figure continues the illustrative example that empha-
sizes the need for discriminative parameter estimation for classification
with mixtures. We see two two-component Gaussian mixture models
trained discriminatively with MED. Classification with these models

will be correct. L.

vi

2.1

2.2

2.3

24

Combining kernels: cumulative comparison across 56 GO
terms. The figure plots the number of GO terms (y-axis) for which
a given SVM classifier achieves a specified mean ROC score (x-axis).
Each series corresponds to an SVM that uses sequence alone, structure
alone, or combinations of kernels using an unweighted average or using
SDP. . e
Varying relative kernel weight. The figure plots mean ROC score
as a function of the log,(uq/pr), where u, and p, are the weights as-
signed to the sequence and structure kernels, respectively. Each series

corresponds to one of the GO terms in Table 2.1. On each series, the

large green circle indicates the log ratio of the weights selected by SDP. 29

Learning in the presence of noisy kernels. The figure plots, for
each GO term, the ROC score achieved by the SDP SVM as a function
of the ROC score achieved by the unweighted sum of kernels. Different
point types correspond to training using zero, one or two noise kernels,
as described in the text. oL oL
Combining kernels with missing data. Each figure plots, for a
single GO term, the mean ROC score as a function of the percentage
of missing data in the structure kernel. The first six series correspond
to the AVE and SDP methods, with missing data affinity coded as
“None,” “Selt” or “All.” The final series is from an SVM trained from

the structure kernel alone.

vii

3.1

4.1

4.2

4.3

SMO code optimization. This figure shows the progression from
the initial correct C++ implementation of the SMO algorithm, to the
optimized version. (a-e) compare elapsed time for SMO and MATLAB
quadprog. (f) compares elapsed time for SMO and MOSEK commer-

cial optimization software.

Latent MED Gaussian mixture. This figure shows the ability of
latent MED to learn a large margin classifier, even in an extreme case of
model mismatch. The classifier is the ratio of two Gaussian mixtures,
each with two components. Maximum likelihood (a) classifies poorly,
achieving 50% accuracy because it ignores discriminative performance.
Latent MED (b) achieves perfect classification accuracy.
Kernel combination on synthetic data. The figure illustrates the
binary decision surface between examples taken from a function that is
linear and quadratic. Panel (a) shows the ML mixture decision bound-
ary; panel (b) shows the SDP decision boundary. Neither technique
correctly classifies thedata.
Nonstationary kernel combination on synthetic data. The fig-
ure illustrates the binary decision surface between examples taken from
a function that is piecewise linear and quadratic. Panel (a) shows the
NSKC decision boundary; NSKC correctly separates the data. Panel
(b) shows the NSKC kernel weight over the input space; darker shades

correspond to the quadratic kernel. Note the smoothness of the solu-

viil

63

70

72

4.4

4.5

Al

Nonstationary kernel combination for yeast protein function
annotation. The figure shows, for each functional class and each
classification method the mean AUC from five times three-fold cross-
validation.o
Running time comparison of SMO and quadprog. The figure
plots running time as a function of the number of examples for our
SMO implementation and MATLAB’s quadprog on the toy data set
described in Section 4.1.2. o000 L oo

The experiment script for an example three-times replicated, five-
fold, cross-validation experiment over C' = 1, C' = 10, and C' = 100.
The script sets up parameters and invokes the MaLL'T experiment driver

program (malted) to do the real work.

X

List of Tables

2.1

2.2

2.3

Predicting GO terms from sequence or from structure. Each
row in the table lists a GO term and description, the ontology from
which it comes (MF = molecular function, CC = cellular compartment
and BP = biological process), the number of positive examples associ-
ated with the term, the mean and standard error ROC scores for 3x5cv
SVM training using (1) the structure kernel, (2) the sequence kernel,
(3) the unweighted sum of both kernels, and (4) the weighted sum of
the kernel. In the table, terms are sorted by the difference in ROC
between “Structure” and “Sequence.” From the entire set of 56 terms
that we considered, the table lists only the top 10 and the bottom 5.

Predicting GO terms from sequence or from structure. Results
for the 41 remaining GO terms not shown in Table 2.1.
Signed rank comparisons for Experiment 1. The table lists un-
corrected p-values from a Wilcoxon signed-rank test comparison of the
results of Experiment 1. A significant p-value in the table indicates that
method along the row performs significantly better than the method

along the column.

26

38

24

2.5

4.1

4.2

Signed rank comparisons for Experiment 3. The table lists un-
corrected p-values from a Wilcoxon signed-rank test comparison of the
results from Experiment 3. A significant p-value in the table indi-
cates that method along the row performs significantly better than the
method along the column. 00000
Signed rank comparisons for Experiment 4. Each table lists, for
a given percent missing, uncorrected p-values from a Wilcoxon signed-
rank test comparison of the six classification methods in Experiment
4. A significant p-value in the table indicates that method along the

row performs significantly better than the method along the column.

Comparison on Wisconsin breast cancer data. The table lists,
for the UCI Wisconsin breast cancer data set and six classification
methods, the mean and standard deviation of test set accuracy across
fifteen cross-validations (three-fold CV repeated five times). The first
three methods are SVMs trained with single kernels, followed by the
SDP approach of [Lanckriet et al., 2002], a maximum likelihood mix-
ture of Gaussians classifier, and the NSKC method. The maximal
mean value is indicated in boldface.
Comparison on sonar data. The table lists, for the UCI sonar
data set and six classification methods, the mean and standard devia-
tion of test set accuracy across fifteen cross-validations (three-fold CV
repeated five times). The first three methods are SVMs trained with
single kernels, followed by the SDP approach of [Lanckriet et al., 2002],
a maximum likelihood mixture of Gaussians classifier, and the NSKC

method. The maximal mean value is indicated in boldface.

xi

40

4.3

4.4

4.5

4.6

Comparison on heart data. The table lists, for the UCI heart
data set and six classification methods, the mean and standard devia-
tion of test set accuracy across fifteen cross-validations (three-fold CV
repeated five times). The first three methods are SVMs trained with
single kernels, followed by the SDP approach of [Lanckriet et al., 2002],
a maximum likelihood mixture of Gaussians classifier, and the NSKC
method. The maximal mean value is indicated in boldface.
Comparison of yeast protein function annotation methods.
The table lists, for each functional class (row) and each classifica-
tion method (column) the mean AUC from five times three-fold cross-
validation. The first three columns correspond to SVMs trained on
single kernels (gene expression, protein domain content and sequence
similarity, respectively). The final two columns contain results for the
SDP and nonstationary kernel combination methods. For all methods,
standard errors (not shown) are generally on the order of 0.02, except
for classes 2 (0.04) and 9 (0.05).
Standard error for yeast mean AUC scores. The table lists, for
each functional class (row) and each classification method (column)
the standard errors associated with the corresponding means from Ta-
ble 4.4. . . .
Comparison of yeast protein function annotation methods us-
ing sequence and structure. The table lists, for each GO term
(row) and each classification method (column) the mean AUC from
three times five-fold cross-validation. The first column corresponds to
a kernel average, the second to SDP, and the third to nonstationary

kernel combination. Lo

xii

7

79

80

ACKNOWLEDGEMENTS

I would like to thank my advisor William Stafford Noble, who stood by me through
his transition to the University of Washington and my advisor Tony Jebara, who took
me into his group as a full fledged member, and to both for their direction, support,
and guidance during my doctoral education. The complementary experience to which
they have exposed me has been invaluable.

I would also like to thank the members of both labs, from whom I have got-
ten advice, friendship, and an open exchange of ideas during my relatively solitary
research.

Finally, I would like to thank my family, especially my wife, who have supported
me in the rather unusual lifestyle of a student and encouraged me to continue through
the most difficult times. I look forward to seeing them again.

The text for Chapter 2 is a reprint of the material as it was submitted to Bioin-
formatics [Lewis, Jebara, and Noble, 2006c]. The thesis author is primary author for
the work and the co-authors directed and supervised the research for this chapter.

The text for Chapter 3 is a reprint of the material as it was submitted to the
Journal of Machine Learning Research [Lewis, Jebara, and Noble, 2006a]. The thesis
author is primary author for the work and the co-authors directed and supervised the
research for this chapter.

The text for Chapter 4 is largely a reprint of the material as it was accepted
to the International Conference on Machine Learning [Lewis, Jebara, and Noble,
2006b]. The thesis author is primary author for the work and the co-authors directed

and supervised the research for this chapter.

xiii

To my wife, Susanne.

xiv

Chapter 1

Introduction

1.1 Motivation

Amongst practitioners, there is a vital need to learn from heterogeneous data sets.
This need is fueled by the increasing amount of data being generated by different
processes, that potentially inform different aspects of a learning problem. As an
example, consider the computational biology problem of protein function annotation.
Numerous wet lab experiments have provided a wide variety of data pertaining to
the same finite set of proteins. Each type of measurement, e.g., DNA sequence, three
dimensional structure, subcellular location, protein domains, interaction networks,
etc., offers a different set of discriminative features for classification. The practitioner
should have the freedom to use all of these data to inform a classifier and should
expect the learning algorithm to use the data in a sensible way.

Kernel methods [Scholkopf et al., 1999], by providing a sort of canonical form
for data sets, provide a large step toward the goal of learning from heterogeneous
data. In kernel methods, the kernel function is the sole interface between the learning

algorithm and the data. The kernel isolates the learning algorithm from the details of

the data representation and from the distance metric. Kernels have allowed machine
learning algorithms to be modularized, but they have other important advantages
such as providing a compact, implicit mapping to high- and even infinite-dimensional
feature spaces and permitting linear classifiers to operate in these non-linear spaces.

In this thesis, we consider the combination of kernel functions for the task of clas-
sification. Previous applications in this area [Pavlidis et al., 2001, 2002, Joachims
et al., 2001, Lanckriet et al., 2004a,b] have shown that combining kernels can—and
often does—improve classifier performance. We propose a new, more powerful tech-
nique for combining kernels and evaluate its performance in several empirical studies
[Lewis et al., 2006b,a].

As pictorial motivation, we present the basic scenario in the following illustration
(Figures 1.1-1.3). Consider a data set that consists of height and weight measurements
taken at two laboratories. The measurements are taken from a sample of male and
female subjects at birth and maturity. Though this is a fabricated example, we expect
four roughly Gaussian clusters corresponding to female birth, male birth, female adult,
male adult. In our example, however, an “unintended” variable has been introduced.
One of the laboratories has a miscalibrated scale that was used for all measurements.

Now let us assume that we wish to learn to classify male and female examples
given only height and weight measurements. We choose to classify with a log ratio of
likelihoods from two Gaussian mixture models (one for male, one for female). Using
prior knowledge, we choose two Gaussians per model, for birth and adult. We do not
know about the miscalibrated scale.

Figure 1.1 shows the 2-dimensional data. Figure 1.2 illustrates the result we can
expect if we train the Gaussian mixture models independently, using maximum like-
lihood parameter estimation. The log ratio classifier would be confounded by the
irrelevant weight scale miscalibration and would yield poor discrimination. This oc-
curs because the measurement is so far off as to make the adult-child grouping more

likely under the Gaussians, than the gender groupings. Maximum likelihood estima-

Male/Female Height vs. Weight Measurements from Two Labs
o o
(@] (@]
© O
[] []
- []
5 o °
o]
T
o O O
© (@] O
O o o
@ Femae
i * [] ¢ O
Male
i []
Weight

Figure 1.1: Example of Gaussian data with an unintended variable. This fig-
ure shows an illustrative example that emphasizes the need for discriminative param-

eter estimation for classification with mixtures. The data contains an “unintended”

variable.

Male/Female Height vs. Weight Measurements from Two Labs

.00 ¢

Height

Weight

Figure 1.2: Example of an ML Gaussian mixture with an unintended vari-
able. This figure continues the illustrative example that emphasizes the need for
discriminative parameter estimation for classification with mixtures. We see two

two-component Gaussian mixture models trained independently with maximum like-

lihood. Classification with these models will be poor.

Male/Female Height vs. Weight Measurements from Two Labs
‘.'O‘.. ..‘O'.
0 O
© o
E
[=))
o]
T
e
o
e o
@ Femae
O Mae
Weight

Figure 1.3: Example of an MED Gaussian mixture with an unintended
variable. This figure continues the illustrative example that emphasizes the need
for discriminative parameter estimation for classification with mixtures. We see two

two-component Gaussian mixture models trained discriminatively with MED. Clas-

sification with these models will be correct.

tion of the male and female models ignores the fact that the classes are not separated
properly. In contrast, the latent MED Gaussian mixture we propose would be trained
discriminatively, using maximum entropy parameter estimation. The classifier would
learn to ignore the weight variable, because given the model, it is not as discriminative
as the height. The learned Gaussians would appear as in Figure 1.3 and classifica-
tion would thus be successful. In fact, this illustrative example forms the basis for a
synthetic data experiment in Chapter 4.

This is an artificial example. However, it highlights a real issue in machine learn-
ing. It is almost always the case that a probabilistic model is a simplification of the
true distribution being modeled. When model mismatch arises, at least in a discrim-
inative learning scenario, it is clear that optimizing the parameter estimation for the
discriminative objective rather than the generative one is a viable option. In the
extreme case, the support vector machine (SVM) [Vapnik, 1998] abandons the goal of
modeling the input distribution altogether, and only maximizes a measure of discrim-
inative performance. This has proven a simple and successful strategy. However, we
believe that modeling can be judiciously reintroduced to exploit structure in a data
set. To address this problem, we offer latent MED. We further propose using kernel-
ized latent MED to permit a Gaussian mixture model in which each Gaussian resides
in a different feature space. This results in a nonstationary kernel combination, with

novel benefits as we shall describe.

1.2 Contribution

The principal contribution of this thesis is nonstationary kernel combination (NSKC).
NSKC gives the ability to exploit prior knowledge through the a priori choice of
several kernels and a structured generative model. The model allows us to combine
kernels in a more flexible manner than simple linear combination. The proposed

nonstationary combination permits the kernel weight to vary over the input space, as

a posterior distribution over a mixture model. Each kernel has greatest influence
over the classifier where it is most relevant to the input distribution. This is a
generalization over existing techniques, as will be shown.

To achieve NSKC, we combine large margin discrimination with generative mod-
eling in a probabilistic framework and apply the resulting classifiers to multi-kernel
learning problems. We use the formalism of maximum entropy discrimination
[Jaakkola, Meila, and Jebara, 1999b] to generalize upon support vector machines
[Boser et al., 1992, Cortes and Vapnik, 1995, Vapnik, 1998].

The current research improves the state-of-the-art in several important ways.
Though multi-kernel learning, large margin classification, and indeed maximum en-
tropy discrimination are existing techniques, through this research, we have extended
and applied them in an interesting new way. The prior work is discussed in Sec-
tion 1.3 and our contributions are detailed in the following chapters. Here, we briefly
highlight some of the key contributions of the research to set the stage for the later
sections.

In Jaakkola, Meila, and Jebara [1999b] the ideas of maximum entropy discrimi-
nation (MED) were explicated in detail. That paper proposes the extension of MED
for use with latent variable models, though specifics are omitted. Jebara [2004a] fur-
ther explores latent MED and provides more detail. In this thesis, we propose a new
latent MED variational bounding technique that provides a true bounded solution
and a clearer understanding of the latent MED parameter estimation as a minimax
problem. Our approach is principled and our derivations are presented in full. The
new bounding technique provides a guarantee of convergence to a locally optimal
solution.

Jebara [2004a] also offers the suggestion of a more efficient optimization technique
for a latent MED mixture of Gaussians. The intent was to provide a starting point
for further work, which was indeed required. We completely re-derived the update

equations for a sequential minimal optimization (SMO) [Platt, 1999] algorithm for the

latent MED mixture of Gaussians using a more elegant formulation of the problem.
We also discover and explicate several cases that were omitted from Jebara [2004a], so
we cover the entire feasible space. We discovered that a standard SMO algorithm can
fail to reach an optima in reasonable time, due to non-smoothness of the latent MED
objective, and we provide a solution for that problem. As a result of these advances,
we are able to provide the first implementation of SMO for latent MED problems.
The software is written in C++ and is invoked from our MATLAB software using
the MEX interface.

We introduced the technique of nonstationary kernel combination, using a latent
MED mixture of Gaussians. Kernel combination techniques have, thus far, been linear
combinations of kernels [Pavlidis et al., 2001, 2002, Lanckriet et al., 2002, Tsuda et al.,
2005, Ong et al., 2005] or their eigenvectors [Cristianini et al., 2002, Ong et al., 2005].
The combination weights have been independent of the input to be classified, and thus
are stationary. We introduce dependence of the combination weights on the input
space, creating a nonstationary combination of kernels [Lewis, Jebara, and Noble,
2006b]. This new technique is interesting because it is capable of solving problems
that existing techniques cannot solve, as illustrated in synthetic data experiments.
Thus far, empirical results with NSKC on common benchmarks and real problems
have usually been better than existing techniques, without the need for particular
tuning of the algorithm.

We conducted several empirical studies using kernel combination, including one
set of experiments [Lewis, Jebara, and Noble, 2006¢| that illustrates that learning
kernel combination weights via optimization is not always superior to using a simple
unweighted combination. This study is particularly relevant to practitioners due to
the time required to to compute the combination weights for large data sets and
due to the current lack of freely available software to perform the optimization. In
our experiments, the unweighted combination was often as good as an optimized

combination. We discuss some cases in which we observed an advantage for the

optimization. This research also examined the effect of missing data with kernel
combination. We found that the simple unweighted combination was quite robust
to missing data. This study may encourage experimentalists to try simple kernel
combination techniques when optimization is either inefficient or unavailable.

We have created a complete MATLAB/C++ software implementation that we

will make publicly available for academic use.

1.3 Prior Work

We build upon a great wealth of recent work in the areas of kernel methods [Schélkopf
et al., 1999, Schélkopf and Smola, 2002], large margin classification [Vapnik, 1998],
probabilistic modeling and inference [Pearl, 1998, Jordan et al., 1999], and optimiza-
tion [Boyd and Vandenberghe, 2003, Platt, 1999]. There has been explosive progress,
of late, in all of the above areas. This makes machine learning and its application
an exciting field, but also makes it difficult to stay ahead of the wave of theoreti-
cal and empirical results and the flood of data. The field has responded in several
ways. One is to develop faster and more accessible software to address the needs of
practitioners to evaluate ever-growing data repositories [Platt, 1999, Joachims, 1998].
Another is to increase the complexity of our techniques to learn more from existing
data [Jaakkola and Haussler, 1998, Jaakkola et al., 1999a,c, Taskar et al., 2003, Altun
et al., 2003, Tsochantaridis et al., 2004, Jebara, 2004a]. Some approaches facilitate
both of these goals, to make tractable approximate algorithms that solve complex
problems [Dempster et al., 1977, Jordan et al., 1999, Jebara, 2004a].

Much of the current enthusiasm stems from a great recent triumph in machine
learning, the support vector machine (SVM) [Boser et al., 1992, Cortes and Vapnik,
1995, Vapnik, 1998, Cristianini and Shawe-Taylor, 2000]. To understand the signif-
icance of the SVM, we should take a brief look at the field prior to its discovery.

Artificial intelligence (AI), of which machine learning is an offspring, had suffered a

10

varied past, due to cycles of irrational exuberance followed by overcorrection.

The field of AI had promised great results, which never seemed to materialize. The
late 1950’s saw the advent of the perceptron algorithm [Rosenblatt, 1959], which was
a simplified model of the neuron. The perceptron was seen as having great potential
until Minsky and Papert [1967, 1969] showed its theoretical limitations. Decades
later, the research community responded with (artificial) neural networks (ANNs),
essentially perceptrons cascaded into multilayer networks. Progress was slow until
feed-forward networks and the backpropagation training algorithm [Werbos, 1974]
were discovered. These techniques were popularized in the early 1980’s [Rumelhart
et al., 1986]. ANNs still suffered several problems, even with backpropagation. The
primary problems were data representation, choice of network topology, non-convex
(non-global) optimization, and overfitting. Though neural networks are still in use,
the solutions to their problems came largely through another class of algorithms.

The support vector machine (SVM) [Vapnik, 1998] has had enormous success with
classification problems drawn from many fields, such as biology [see Noble, 2004], text
mining [Dumais, 1998], image recognition [Osuna et al., 1997], and others. This suc-
cess can be attributed to the empirical performance of the algorithm, the accessibility
of quality software [Pavlidis et al., 2004, Joachims, 1998], the flexibility imparted by
kernel methods [Scholkopf et al., 1999], and the sound theoretical underpinnings of
the technique [Vapnik, 1998]. Much of the appeal of the SVM comes from its rel-
atively simple convex optimization [Boyd and Vandenberghe, 2003], which balances
the empirical loss of the classifier with its expected generalization.

Rallied by the popularity of the SVM, researchers have sought to extend its domain
to include a greater variety of problems. These extensions include the ability to per-
form regression [Drucker et al., 1997, Schélkopf et al., 1999], multi-class classification
[Weston and Watkins, 1998], feature selection [Weston et al., 2001], and transduction
[Gammerman et al., 1998, Joachims, 1999, Collobert et al., 2005], within the SVM
optimization. Others have extended SVMs to structured data directly [Taskar et al.,

11

2003, Altun et al., 2003, Tsochantaridis et al., 2004] and through kernel functions
[Jaakkola and Haussler, 1998, Leslie et al., 2002, 2003]. Still others extend SVMs
to much larger problems by making scalable algorithms and implementations [Platt,
1999, Joachims, 1998], both in terms of time and storage. The availability of fast,
free SVM implementations has accelerated its acceptance. The SVM has become so
mainstream that classification services are offered for free on the web [Pavlidis et al.,
2004].

Another active area of machine learning research has been generative probabilistic
modeling and graphical models [Pearl, 1998, Jordan and Bishop|. Latent variable
models are typically handled by expectation maximization [Dempster et al., 1977] or
variational methods [Jordan et al., 1999] (of which EM is an example).

Recently, there have been various attempts to merge discriminative and gener-
ative techniques [Jaakkola and Haussler, 1998, Jaakkola et al., 1999a, 2000, Jebara
and Pentland, 1998, Jebara, 2004a, Taskar et al., 2003, Altun et al., 2003]. This
trend reflects the desire to exploit prior knowledge of the input distribution, and the
tendency toward a unified generative-discriminative learning paradigm.

Due to the proliferation of numerous data sets pertaining to the same sets of
entities, e.g., proteins, kernel combination techniques [Pavlidis et al., 2001, 2002,
Cristianini et al., 2002, Lanckriet et al., 2002, Ong et al., 2005, Tsuda et al., 2005,
Sonnenburg et al., 2006a] are becoming popular. Due to their abstraction from learn-
ing algorithms and their mathematical properties, combining kernels is a reasonable
approach to learning from heterogeneous data. We should make a distinction be-
tween combining kernels and problem of “learning” the kernel. What many refer to
as learning the kernel is actually learning some combination of kernels given a priori.
Often, even the kernel combination techniques work with kernel matrices (Gram ma-
trices), so they combine kernel evaluations, rather than kernel functions. However,
some combination function is usually learned, so the combined kernel can be evalu-

ated for test examples taken from the same individual kernel functions, given their

12

values. The SDP approach [Lanckriet et al., 2002] is transductive, so it can benefit

from knowing the test examples during training.

1.4 Organization of Thesis

The remainder of the thesis is organized into three chapters drawn from our published
and submitted work on combining kernels and a fourth chapter that concludes the
thesis and discusses future work.

Chapter 2 is an empirical study of learning with heterogeneous data. The paper
deals with conic combinations of kernels containing data from yeast protein sequence
and structure. We call this stationary kernel combination because the combination
weights do not vary across the input space. Existing techniques available to biol-
ogy researchers fall into this category. This study is important because practitioners
may not have access to the more complicated SDP software and would not be in a
position to perform a comparative evaluation of the techniques. The lack of freely
available software and the time complexity of optimization may be slowing the adop-
tion of multi-kernel learning techniques, but our results indicate that need not be
the case. In this set of experiments, in all but the most perverse cases, the simplest
technique performs very well. This result should spark some interest in the applied
community. We also show some conditions under which the more complicated SDP
technique shows its strength. In addition, we present a result that should encourage
practitioners to use additional partial information when it is of good quality. Such
is the case regarding protein structure data, which is in relatively short supply. The
SVM was able to make use of an additional kernel matrix with as much as half of the
data missing.

Chapter 3 describes maximum entropy discrimination in detail and derives our
nonstationary kernel combination. We also present derivations for a sequential min-

imal optimization procedure for our latent MED Gaussian mixture, and share expe-

13

riences regarding the implementation.

Chapter 4 presents our novel nonstationary kernel combination technique in a
comparative study with state-of-the-art techniques. The empirical results are taken
over illustrative synthetic data sets, common benchmark data sets, and a real-world
bioinformatics data set. This research is the first published work on nonstationary
kernel combination and opens the way for further research in the direction of “adap-
tive” or input-dependent kernel combinations. Under roughly three fourths of the
experimental conditions, the nonstationary combination outperformed existing tech-
niques. The chapter contains the results accepted for publication and an additional
as yet unpublished result.

Chapter 5 concludes the thesis by summarizing our contribution and reviewing

our results. We also present some possible future directions for the work.

14

Chapter 2

Stationary Kernel Combination

In this chapter, we present a comparison of some existing techniques for combining
kernels. These techniques use a conic combination of kernel matrices. They do not
employ nonstationarity, i.e., the combination weights do not vary over the input space.
Nonetheless, the SDP technique [Lanckriet et al., 2002] is the current state-of-the-
art. The primary drawbacks of using SDP are the time required for the optimization
and the lack of a freely available implementation. For practitioners in computational
biology, in which large data sets and multiple kernels are common, these drawbacks
of SDP cannot be ignored.

The following empirical study was submitted to the journal Bioinformatics [Lewis,
Jebara, and Noble, 2006¢]. We believe that this pragmatic comparison of SDP to the

extremely simple unweighted combination will be of value to the applied community.

2.1 Introduction

It is by now a truism to point out that biological data is being produced at a rapid
rate. Less obvious, but equally daunting, is the large variety of types of biological
data being produced. Traditional statistical methods that assume Gaussian distribu-

tions, or engineering methods that assume vector or matrix input do not obviously

15

generalize to data sets comprised of variable-length strings, vectors of real numbers,
trees and networks. Consequently, much recent work has focused on the development
of statistical and computational methods that are capable of drawing inferences from
large, heterogeneous biological data sets.

Kernel methods [Schélkopf et al., 1999] provide a principled means to represent
and hence draw inferences from diverse types of data. A kernel method represents
a collection of arbitrarily complex data objects by using a so-called kernel function
that defines the similarity between any given pair of objects. In practice, this means
that a collection of N objects can be sufficiently represented via an N-by-N matrix
of pairwise kernel values. This kernel matrix, hence, provides a sort of normal form:
as long as a valid kernel function can be defined on a given data type, then any such
data set can be represented as a kernel matrix. Kernel methods are algorithms that
operate on kernel matrices, rather than on the raw data objects themselves.

By far the best-known kernel method is the support vector machine (SVM) al-
gorithm [Boser et al., 1992, Vapnik, 1998, Cristianini and Shawe-Taylor, 2000]. The
SVM is a supervised classification algorithm that learns by example to discriminate
among two or more given classes of data. Within computational biology, SVMs have
been applied to an increasing variety of problems, including remote protein homol-
ogy detection, various types of gene expression analyses, splice site and alternative
splicing detection, tandem mass spectrometry analysis, etc. [Noble, 2004].

In order to apply an SVM to a heterogeneous data set, kernels must be defined for
each data type, and the kernel matrices must be combined algebraically. For example,
Pavlidis et al. used this approach to combine microarray gene expression data and
phylogenetic profiles in an unweighted fashion, applying mathematical operators to
focus the SVM on within-data-set correlations among features while ignoring correla-
tions between data sets [Pavlidis et al., 2001, 2002]. An unweighted sum of kernels has
also been used successfully in the prediction of protein-protein interactions [Ben-Hur

and Noble, 2005].

16

Recently, several research groups have proposed multiple kernel learning (MKL)
methods that combine kernels within the SVM algorithm itself [Lanckriet et al., 2002,
Bach et al., 2004, Ong et al., 2005, Sonnenburg et al., 2006a, Jebara, 2004b]. These
methods formulate a single optimization procedure that simultaneously finds the
SVM classification solution as well as weights on the individual data types in the
heterogeneous set. Lanckriet et al. [2002] formulate the problem using semidefinite
programming, whereas [Ong et al., 2005] formulate the problem using semi-infinite
linear programming. These approaches have been successful in various bioinformatics
tasks, including yeast protein functional classification [Lanckriet et al., 2004b,a], pro-
tein structure classification [Borgwardt et al., 2005], protein subcellular localization
[Zien and Ong, 2006] and alternative splicing recognition [Sonnenburg et al., 2006b].

In general, MKL methods that assign weights to individual data types have some
practical disadvantages. The SDP approach of Lanckriet et al. requires large amounts
of memory. This problem was essentially solved by Bach et al. [2004], but the resulting
algorithm is still quite slow. Other MKL methods are also slow. Furthermore, all of
these algorithms are more complicated to program than a simple SVM.

The current work aims to answer the question: are MKL methods worth the
additional effort, relative to using an unweighted sum of kernels? Furthermore, if
MKL methods are useful, then we would like to be able to characterize the situations
in which they should be used.

To answer this question, we focus on a particular task: predicting Gene Ontol-
ogy (GO) terms using a combination of amino acid sequence and protein structural
information. This task has intrinsic interest: considering the amount of effort cur-
rently being expended on inferring protein structures, it is interesting to quantify
the extent to which protein structure improves upon our ability to draw inferences
about proteins, relative to inferences drawn from sequence alone. Furthermore, the
problem has two characteristics that are useful in the context of this study. First, by

restricting ourselves to two kernels, it is possible to explore systematically the space

17

of possible linear combinations. Second, since we know that structure is generally
more informative than sequence, we can expect reasonably consistent behavior of our
kernel combinations across a wide variety of classification tasks.

Our experiments show, first, that protein structure is more informative, i.e., more
predictive of function, than protein sequence. This is an expected, but comforting
result. The structure kernel that we employ uses MAMMOTH [Ortiz et al., 2002],
which is a structural alignment algorithm that considers only the protein backbone,
ignoring the side chains that differ among amino acids. Hence, this kernel, by its
design, is fairly independent of the sequence kernel. Nonetheless, even without side
chain information, the structure kernel provides better recognition performance than
the sequence kernel on all 56 GO terms that we consider. These terms come from all
three GO hierarchies—molecular function, biological process and cellular compart-
ment.

Perhaps more surprisingly, we find that, for this two-kernel task, the unweighted
average of kernels performs slightly better than a more sophisticated method that
assigns weights to the kernels. Indeed, by systematically considering various relative
weights, we are able to demonstrate that, for this particular task, no kernel-weighting
scheme can perform much better than the simple unweighted sum of kernels.

On the other hand, in a follow-up experiment, we demonstrate that MKL is indeed
helpful in some circumstances. Specifically, we consider the case in which additional,
noisy kernels are added to the sequence and structure kernels. As we add more noise
to the system, the performance of the unweighted average deteriorates. In contrast,
the weighted kernel approach learns to down-weight the noise kernels, and hence
continues to work well.

Finally, in a separate experiment, we investigate the performance of both kernel
combination methods in the presence of missing data. In practice, we have sequence
information for many more proteins than we have structure information. Such miss-

ing data is common in genome-wide data sets, and the probability that any one gene

18

or protein will have missing data increases as we include more data types in a single
classification experiment. Hence, it is interesting to ask how well an SVM performs
when one of the kernels in the combination contains missing data. In general, how-
ever, SVMs do not provide a mechanism for handling missing data. We consider three
simple techniques for representing missing examples in a kernel matrix. Our experi-
ments do not definitely show that one of these three techniques is best; however, we
do demonstrate that, using any of the three proposed methods for handling missing
data and using either a weighted or unweighted kernel combination, the SVM per-
formance degrades fairly gradually as the percentage of missing data in the structure
kernel increases.

This empirical study aims to provide guidance to users of SVM classifiers, as well
as to suggest avenues for further research. Perhaps our most important practical con-
clusion is that the simple, unweighted sum of kernels can provide remarkably robust
classification performance. Only when we used a relatively large collection of data
types, with some data that were less relevant to the task at hand, did a weighted
kernel combination method add value. The primary benefit of the optimizing the
weights was to eliminate a kernel completely. This suggests that some experimenta-
tion with individual kernels may reduce reliance on optimization software. Once a
set of relevant kernels is selected, unweighted combination may be sufficient. Given
the low computational cost of this approach, it seems warranted. Our results also
suggest caution in interpreting the specific weights assigned to each data type by a
weighted kernel approach, since the SVM performance does not vary dramatically as

the kernel weights change.

2.2 Algorithms

We provide here a brief, non-technical overview of the SVM, followed by descriptions

of the two methods for handling heterogeneous data. More detail on SVMs and kernel

19

methods can be found in, e.g., Cristianini and Shawe-Taylor [2000], Schélkopf et al.
[1999].

2.2.1 Support vector machines

Applying an SVM to a classification problem consists of two phases: training and
prediction. During training, the SVM takes as input a data set in which each example
is a fixed-length vector. Furthermore, each example must have an associated binary
label. We use “+1” to denote the positive class and “-1” to denote the negative
class. If each vector contains m values, then we say that the data resides in an
m-~dimensional space called the input space.

The SVM training algorithm searches for a plane (or, when m > 3 a hyperplane)
in the input space that separates the positive from the negative examples. Learning
theory suggests that, when many such hyperplanes exist, an optimal procedure selects
the hyperplane that is farthest from any training example. This particular hyperplane
is known as the mazimum margin hyperplane. The problem of selecting, for a given
data set, the maximum margin hyperplane can be formulated and solved efficiently
using quadratic programming. This optimization constitutes the SVM training phase.

Having identified this separating hyperplane, the prediction phase takes as input a
second data set of length-m vectors. The goal of this phase is to predict the associated
+1/-1 label for each of the test examples. Prediction is accomplished by simply asking
on which side of the separating hyperplane each test example falls.

This description of the SVM algorithm leaves out many details, but should be
sufficient for our subsequent discussion. Most notably, we have not described how the
SVM works when no separating hyperplane exists. Briefly, this situation is handled
in two ways. The first solution involves introducing a so-called “soft margin,” which
allows a subset of the training data to fall on the “wrong” side of the hyperplane; e.g.,
a few examples labeled “4+1” might lie on the “-1” side of the hyperplane, and vice

versa. The second solution involves introducing a kernel function, which we describe

20

next.

2.2.2 Kernel methods

Generically, a kernel function is simply a function that defines the similarity between
a given pair of objects. Denoted K(z,y), a large value indicates that z and y are
similar, and a small value indicates that they are dissimilar. In the context of kernel
methods in machine learning, the kernel function must have certain mathematical
properties; namely, for all possible data sets, the matrix of all-vs-all kernel values
must have non-negative, real eigenvalues, which ensures that the kernel is a valid
metric.

The fundamental idea of a kernel method is simple but somewhat subtle. Say
that you have a collection of n vectors, each of length m. This data can be written
as an m-by-n matrix. Given a kernel function K(-,-), we can compute the similarity
between all pairs of vectors in the data set. These kernel values can then be written as
an n-by-n matrix, called the kernel matrix. For an algorithm to be a kernel method,
it must be possible to show that the kernel matrix is a sufficient representation of the
data. In other words, if an algorithm is a kernel method, then it should be possible
to discard the original data matrix and still run the algorithm, using only the kernel
matrix.

The canonical kernel function is the scalar product (a.k.a. the dot product or
vector product) K(z,y) = >, z;y;- Thus, a kernel method is an algorithm that can
be written down in such a way that all data vectors appear within a scalar product
operation. To “kernelize” the algorithm, we then simply replace the scalar product
operation with the kernel function K.

Substituting the kernel function for the scalar product operation is useful because
it is mathematically equivalent to projecting the data set into a different space. Say
that the input space has m dimensions, but we use a quadratic kernel function de-

fined as K(z,y) = (3, z;4:)®. In this case, we are implicitly working in a space of

21

m? dimensions. This higher-dimensional space is called the feature space, and in this
example, it contains one dimension for every pair of dimensions in the input space.
This kernel can thus capture pairwise correlations between input variables. A ker-
nelized version of the SVM algorithm finds the maximum margin hyperplane in the
feature space, simply by solving the original optimization problem using a different

kernel function.

2.2.3 Combining kernels

Often, kernels are useful because they allow the SVM to find a separating hyperplane
in a data set that was previously inseparable. Kernels may also allow us to encode
prior knowledge about the data, such as the knowledge the pairwise correlations are
important. In the current work, however, we are particularly interested in the kernel
function as a way to encode similarities among non-vector and heterogeneous data
sets.

First, we note that although the discussion thus far has focused on vector data, a
kernel function can be defined for any arbitrarily complex data object. Thus, kernels
have been defined for DNA and protein sequences, protein-protein and metabolic
networks, phylogenetic trees, etc. [Noble, 2004] As long as our collection of data can
be represented as a square kernel matrix, then any kernel method can be applied to
the data. The kernel matrix is thus a sort of normal form for representing diverse
types of data.

Second, the mathematics of kernels allows us to derive new kernels by combin-
ing two or more kernel functions. Many mathematical operations are closed under
the kernel property. The most important such operation is addition: if K; and K,
are both kernel functions, then we can prove that K(z,y) = Ki(z,y) + Ka(z,y) is
a kernel. This operation is mathematically equivalent to concatenating the vector
representations of the two data points in the feature spaces defined by K; and Ks.

This mathematical formalism provides us with a straightforward way to combine

22

heterogeneous data. Given a set of proteins represented as sequences and struc-
tures, we compute a kernel matrix K, from the sequences and a kernel matrix K,
from the structures. The sum of these two kernel matrices is a new kernel that si-
multaneously represents the protein sequences and structures. As mentioned in the
introduction, this simple sum-of-kernels approach has been used successfully, e.g., to
predict protein-protein interactions using a combination of protein sequences, func-
tional annotation, and known protein-protein interactions [Ben-Hur and Noble, 2005].

In the current work, we contrast the simple sum-of-kernels approach with a more
sophisticated method that introduces weights on each kernel. Using one of various
optimization methods, we can simultaneously find a separating hyperplane and find
weights on each individual kernel. The weights are chosen so as to maximize the
margin between the two classes. This approach corresponds to learning, e.g., that the
sequence kernel is not as informative as the structure kernel for a given classification
task. Geometrically, the kernel weight re-scales each dimension of a given kernel.
Thus, in the feature space corresponding to K = K; + 2K, each of the dimensions

from K, is scaled by a factor of 2.

2.3 Methods

2.3.1 Gene Ontology classes

The Gene Ontology [Gene Ontology Consortium, 2000] is a diverse catalog of gene
(protein) annotation, which includes information about protein function and localiza-
tion. We define a GO term prediction benchmark by starting with a set of 8363 PDB
structures, pruned so that no two sequences share greater than 50% sequence identity
[Li et al., 2001]. Among these proteins, 5325 have GO annotations, downloaded from
www .geneontology.org. For each GO term 7', we partitioned the list of proteins into
three sets. First, all proteins that are annotated with 7" are labeled as “positive.”

Next, we traverse from 7 along all paths to the root of the Gene Ontology graph. At

23

each GO term along this path, we look for proteins that are assigned to that term and
not to any of that term’s children. We consider that such proteins might be properly
assigned to 7', and so we label those proteins as “uncertain.” Finally, all proteins
that are not on the path from 7" to the root are labeled as “negative.”

After this labeling procedure, we eliminated all GO terms with fewer than 100
“positive” proteins. In order to avoid redundancy, we then selected only the most
specific of the remaining GO terms, i.e., the leaf nodes of the remaining hierarchy.
This procedure yielded a total of 166 GO terms: 27 molecular function terms, 22
biological process terms, and 7 cellular component terms. All 56 terms are listed in
the supplementary results (Section 2.6).

For each GO term, the number of negative examples far exceeds the number of
positive examples. For efficiency, we randomly select a subset of the negative examples

so that the ratio of positives to negatives is one-to-one.

2.3.2 Kernels

To represent protein sequences, we use the mismatch kernel [Leslie et al., 2003].
This kernel generalizes upon the simpler, spectrum kernel [Leslie et al., 2002], which
represents a string as a vector of counts of all possible substrings of a fixed length
k. The mismatch kernel generalizes upon the spectrum kernel by incrementing, for
each observed k-length string (k-mer), the corresponding count as well as the counts
of all k-mers that differ from the observed k-mer by at most m mismatches. In this
work, we use a mismatch spectrum kernel with k¥ = 4 and m = 1. The final mismatch
spectrum vector has 20* = 160, 000 bins. The mismatch spectrum captures sequence
similarity, and has been shown to provide good performance in classifying SCOP
superfamilies [Leslie et al., 2003].

Insofar as a kernel function defines the similarity between pairs of objects, the
most natural place to begin defining a protein structure kernel is with existing pair-

wise structure comparison algorithms. Many such algorithms exist, including CE

24

[Shindyalov and Bourne, 1998], DALI [Holm and Sander, 1993] and MAMMOTH
[Ortiz et al., 2002]. Most of these algorithms attempt to create an alignment between
two proteins and then compute a score that reflects the alignment’s quality. In this
work, we use MAMMOTH [Ortiz et al., 2002], which is efficient and produces high
quality alignments.

Unfortunately, the alignment quality score returned by MAMMOTH cannot be
used as a kernel function directly, because the score is not positive semi-definite (i.e.,
for a given set of protein structures, an all-versus-all matrix of MAMMOTH scores
will have some negative eigenvalues). We therefore employ the so-called “empirical
kernel map” [Tsuda, 1999] to convert this score to a kernel: for a given data set of
structures X = z1,...x,, a structure z; is represented as an n-dimensional vector, in
which the jth entry is the MAMMOTH score between x; and ;. The SVM then uses
this vector representation directly. This method has been used successfully in the
SVM-pairwise method of remote protein homology detection [Liao and Noble, 2002],
in which a protein is represented as a vector of log E-values from a pairwise sequence
comparison algorithm such as Smith-Waterman [Smith and Waterman, 1981]. In our
experiments, we use the log of the E-value returned by MAMMOTH. The resulting
MAMMOTH kernel incorporates information about the alignability of a given pair of

proteins.

2.3.3 Experimental framework

All SVM experiments were performed using our own code, which is a combination
of C++ and Matlab. To compute weighted kernel combinations we use semidefinite
programming, as described in Lanckriet et al. [2002]. SVMs were tested using five-
fold cross-validation, repeated three times (3x5cv). We use a fixed value of the SVM
regularization parameter C' = 10. We measure classification performance using the
area under the receiver operating characteristic (ROC) curve, which plots the rate

of true positives as a function of the rate of false positives for varying classification

25

thresholds. We report means and standard deviations of the ROC with respect to
the fifteen 3x5cv splits.

2.4 Results

We present our results as a series of four experiments. The first experiment is a di-
rect comparison of the unweighted and weighted kernel combination methods across
all 56 GO terms in our benchmark. The results show that the structure kernel con-
sistently out-performs the sequence kernel, and that the unweighted combination
generally performs better than the weighted combination. In the second experiment,
we systematically vary the relative kernel weight on a subset of 10 GO terms, and
we show that, for this task, the unweighted sum of kernels performs nearly optimally.
The third experiment introduces artificial noise into the data set. In this scenario, the
weighted kernel approach is useful, and performs better than the unweighted approach
as the amount of noise increases. Finally, in a fourth experiment, we demonstrate the

robustness of both kernel combination methods in the presence of missing data.

2.4.1 Experiment 1: Comparison of kernel combination

methods

In this experiment, we performed cross-validated testing of four types of SVMs, using
sequence alone, structure alone, an unweighted combination of kernels, and a weighted
combination of kernels. Table 2.1 shows a subset of these results. The complete set of
results are available in the supplementary results (Section 2.6). Not surprisingly, the
MAMMOTH kernel frequently provides better classification performance: in 55 out
of 56 classes, the difference between the mean structure ROC and the mean sequence
ROC is greater than the sum of the two corresponding standard errors.

An alternate representation of these results, for all 56 terms, is shown in Figure 2.1.

Qualitatively, the figure shows that the sequence kernel performs far worse than

26

Table 2.1: Predicting GO terms from sequence or from structure. Each row
in the table lists a GO term and description, the ontology from which it comes (MF
= molecular function, CC = cellular compartment and BP = biological process), the
number of positive examples associated with the term, the mean and standard error
ROC scores for 3x5¢cv SVM training using (1) the structure kernel, (2) the sequence
kernel, (3) the unweighted sum of both kernels, and (4) the weighted sum of the
kernel. In the table, terms are sorted by the difference in ROC between “Structure”

Y

and “Sequence.” From the entire set of 56 terms that we considered, the table lists

only the top 10 and the bottom 5.

GO term Description Ont # Structure Sequence Average SDP
G0:0008168 methyltransferase activity MF 108 0.941 + 0.014 0.709 £ 0.020 0.937 £ 0.016 0.938 £ 0.015
G0:0005506 iron ion binding MF 129 0.934 + 0.008 0.747 £+ 0.015 0.927 + 0.012 0.927 + 0.012
G0:0006260 DNA replication BP 109 0.885 + 0.014 0.707 £ 0.020 0.878 + 0.016 0.870 £+ 0.015
G0:0048037 cofactor binding MF 118 0.916 £ 0.015 0.738 + 0.025 0.911 + 0.016 0.909 + 0.016
G0:0046483 heterocycle metabolism BP 128 0.949 + 0.007 0.787 £ 0.011 0.937 £ 0.008 0.940 £ 0.008
G0:0044255 cellular lipid metabolism BP 101 0.891 £ 0.012 0.732 £ 0.012 0.874 £ 0.015 0.864 £+ 0.013
G0:0016853 isomerase activity MF 124 0.855 + 0.014 0.706 + 0.029 0.837 £ 0.017 0.810 + 0.019
G0:0044262 cellular carbohydrate BP 209 0.912 £ 0.007 0.764 + 0.018 0.908 + 0.006 0.897 £+ 0.006
metabolism
G0:0009117 nucleotide metabolism BP 124 0.892 + 0.015 0.748 + 0.016 0.890 + 0.012 0.880 + 0.012
G0:0016829 lyase activity MF 201 0.935 £+ 0.006 0.791 + 0.013 0.931 + 0.008 0.926 £ 0.007
G0:0006732 coenzyme metabolism BP 119 0.823 + 0.011 0.781 + 0.013 0.845 + 0.011 0.828 + 0.013
G0:0007242 intracellular signaling BP 140 0.898 + 0.011 0.859 £ 0.014 0.903 + 0.010 0.900 £ 0.011
cascade
G0:0005525 GTP binding MF 104 0.923 £ 0.008 0.884 + 0.015 0.931 + 0.009 0.931 £ 0.009
G0O:0004252 serine-type endopeptidase MF 140 0.937 £ 0.011 0.907 £ 0.012 0.932 £ 0.012 0.931 £ 0.012
activity

G0:0005198 structural molecule activity MF 179 0.809 + 0.010 0.795 £ 0.014 0.828 + 0.010 0.824 + 0.011

27

8 7777777777777 T T T
g S50 r .
c
@
o
€ 40 r .
c
o
=
(@) 30 i
©
=
E I |
5, 20
=
Q Sequence
-45 10 B 7
S Average
Z O 1 SDF)l 1 1 1 I 1
06 065 0.7 075 08 08 09 095 1

Mean ROC

Figure 2.1: Combining kernels: cumulative comparison across 56 GO terms.
The figure plots the number of GO terms (y-axis) for which a given SVM classifier
achieves a specified mean ROC score (x-axis). Each series corresponds to an SVM that
uses sequence alone, structure alone, or combinations of kernels using an unweighted

average or using SDP.

28

any method that uses the structure kernel. Furthermore, we computed a Wilcoxon
signed-rank test between all four pairs of methods. The results yield the following
best-to-worst ranking of methods: unweighted sum of kernels, structure kernel alone,
weighted sum of kernels, and sequence kernel alone. In this ranking, the largest (i.e.,
least significant) p-value is 0.007 between the structure kernel alone and the weighted
sum of kernels. Thus it appears that combining sequence and structure can be helpful,

but only when using the unweighted sum of kernels.

2.4.2 Experiment 2: Varying relative kernel weight

The previous result—that the weighted sum of kernels performs worse than the un-
weighted sum—is surprising, not least because considerable effort has been expended
by various research groups to develop the optimization technology to solve this type
of MKL problem. Therefore, we selected a subset of the terms from our benchmark
and subjected them to further investigation. Specifically, we selected the 10 terms for
which the difference in ROC between the structure-only and sequence-only SVMs is
largest. For each of these terms, we systematically varied the relative kernel weights,
and performed cross-validated testing of the resulting SVM. The results are shown in
Figure 2.2.

The most striking aspect of Figure 2.2 is the qualitative similarity of all ten series
in the figure. For each GO term, the performance of the SVM stays roughly the same
for all kernel combinations that assign larger weight to the structure kernel. When
more weight is assigned to the sequence kernel, the performance degrades gradually,
with a rapid degradation only when the structure kernel receives very small weight.
This result shows that the SVM is quite robust in the presence of variation in the
relative scales of the two data sets.

A second observation is the placement of the green dots, indicating the choice
of kernel weights made by the SDP optimization. In nearly every case, the SDP

erroneously gives more weight to the sequence kernel. This explains why the weighted

29

095 7i477,,47] T ; | : | : | |
T T T e
D,
o e
c
©
£ o8¢
0.75
0.7 A S S S T .

nf-5-4-3-2-1012 3456 7 8 Inf
Log?2 ratio of kernel weights

Figure 2.2: Varying relative kernel weight. The figure plots mean ROC score
as a function of the log,(u,/p,), where p, and p, are the weights assigned to the
sequence and structure kernels, respectively. Each series corresponds to one of the
GO terms in Table 2.1. On each series, the large green circle indicates the log ratio

of the weights selected by SDP.

30

kernel combination fares poorly on this benchmark. Apparently, for these tasks, the
sequence kernel yields an embedding with a larger margin than does the structure
kernel, even though the latter provides better generalization performance.

Finally, it is interesting to consider whether the unweighted sum of kernels is
optimal. For many of the GO terms in Figure 2.2, the highest ROC is not achieved at a
log ratio of 0. However, in every case, the difference between the unweighted sum ROC
and the best possible ROC is quite small, on the order of 0.01. Furthermore, for any
fixed log ratio, there are some terms that perform worse than the unweighted average
and some that perform better. Thus, Figure 2.2 suggests that although an optimal
learning procedure might be able to find better kernel weights than the unweighted
average, this hypothetical method (1) would have to take into consideration not just
the kernel matrices but also the GO term labels, and (2) would still perform only
slightly better than the unweighted sum of kernels.

2.4.3 Experiment 3: Multiple noisy kernels

The results from our first two experiments beg the question: why bother with the
computational overhead of weighted kernel combinations when the unweighted sum
of kernels performs better? In the third experiment, we demonstrate via simulation
a situation in which the weighted sum is necessary.

To carry out this experiment, we created a collection of “noise” kernels. These are
simply copies of the structure kernel, with permuted rows and corresponding columns.
The resulting matrices are still kernels, but the entries no longer correspond to the
labeling. We then measured how the performance of our two kernel combination
methods changes as the number of noise kernels increases.

The results are shown in Figure 2.3. In the figure, green crosses correspond to
classifiers trained with no noise kernels. These points were thus generated in our first
experiment, described above. Most of the points fall below the line y = z, indicating

clearly that the unweighted kernel combination performs better than the weighted

31

1 T T T T T T
wx 2
* X% //
0.95 + o // T
E: 09 + X;i*,%// |
| . &
2 X« % & x %
o 0.85 + * o .
@)) x| o KRR
o 0.8 -
[¥
]
()]
= 0.75 + » .
0.7 | ’ _ |
) 1 noise kernel x
2 noise kernels X
065 1 1 1 1 1 1

065 07 075 08 085 09 0.9 1
Mean ROC (Average)

Figure 2.3: Learning in the presence of noisy kernels. The figure plots, for
each GO term, the ROC score achieved by the SDP SVM as a function of the ROC
score achieved by the unweighted sum of kernels. Different point types correspond to

training using zero, one or two noise kernels, as described in the text.

32

sum of kernels. However, this result changes as soon as we introduce a single noise
kernel. In this case, the weighted sum performs better than the unweighted sum for
55 out of the 56 terms. The effect becomes even more pronounced in the presence
of two noise kernels. A Wilcoxon signed-rank test supports these conclusions with

extremely small p-values.

2.4.4 Experiment 4: Kernels with missing examples

Finally, we consider a variant of our experimental design, in which we focus on the
problem of missing data. In particular, we are interested in the extent to which we
can combine incomplete structural information with complete sequence information.
Thus, we simulate randomly deleting varying percentages of the examples from the
structure kernel matrix, and measure the cross-validated ROC score of the result-
ing classifier. A pseudocode description of the experimental design is given in the
supplementary results (Section 2.6).

Because SVMs are not designed to handle missing data, it is not obvious a prior:
how to represent missing examples in the kernel matrix. We therefore consider three
alternative methods for filling in missing kernel entries. The first strategy, “None,”
simply replaces the row and column corresponding to a missing entry with all zeroes.
This strategy allows the sequence kernel to determine the weight assigned by the SVM
to this example, ignoring the structure kernel entirely. The second strategy (“Self”)
makes each missing example similar only to itself by placing a 1 on the diagonal
of the (normalized) kernel matrix and zeroes elsewhere. Finally, the “All” strategy
makes each missing example similar to every other missing example, but different
from all non-missing examples. This is accomplished by placing 1s in the kernel
matrix between all pairs of missing examples, and 0s between missing/non-missing
pairs. The effect is to place all missing examples in a single orthogonal dimension
in feature space. Effectively, all missing examples are co-located at a single point,

infinitely distant from the other data.

G0:0008168

o 09 \ i
o) g
x . %
c T
g 08 S —
= " *\~\“
07 i ‘
0 10 20 30 40 50 60 70 80 90 100
Percent missing structures
G0:0006260
0.9
)
o B
x . -
% S
s 08 o .
= g &
07 - R
0 10 20 30 40 50 60 70 80 90 100
Percent missing structures
GO0:0046483
LA‘%
o 09 S,
8 Al SDR ="
x ~
c Self SDP - —~ 3
g o8 All Ave =™ e g]
=
0.7 Structure .
10 20 30 40 50 60 70 80 90 100
Percent missing structures
G0:0016853
0.9
]
o
x |
3
g 08 .
= ..
~r
T " * g a
07 s S i
0 10 20 30 40 50 60 70 80 90 100
Percent missing structures
G0:0009117
09 ¢
(]
o T
4 -
& et
g 08 S "
= ST~ = o
. —~ a—-—a—**{
0.7 !
0 10 20 30 40 50 60 70 80 90 100

Figure 2.4:

Percent missing structures

Mean ROC

Mean ROC

Mean ROC

Mean ROC

Mean ROC

33

GO0:0005506
k;
09 o .
-
. \\, .
0.8 S
‘n — . .
0.7 -
10 20 30 40 50 60 70 80 90 100
Percent missing structures
GO0:0048037
0.9 e,
g
e
0.8 . \ .
0.7
0 10 20 30 40 50 60 70 80 90 100
Percent missing structures
GO0:0044255
0.9
i
0.8 5
\\ s
R
0.7 - .
0 10 20 30 40 50 60 70 80 90 100
Percent missing structures
GO0:0044262
0.9 .
S
IS o
o 3
08 T ,
0.7
0 100 20 30 40 50 60 70 80 90 100
Percent missing structures
GO0:0016829
09 Wi
Tl i3
i —
0.8 T i |
0.7 -
0 10 20 30 40 50 60 70 80 90 100

Percent missing structures

Combining kernels with missing data. Each figure plots, for a single

GO term, the mean ROC score as a function of the percentage of missing data in the

structure kernel. The first six series correspond to the AVE and SDP methods, with

missing data affinity coded as “None,” “Self” or “All.” The final series is from an

SVM trained from the structure kernel alone.

34

Figure 2.4 shows the results of this experiment. Strikingly, none of the series de-
teriorates dramatically as we introduce missing data. Indeed, most methods perform
better than the sequence kernel alone even when the structure kernel consists of 50%
missing entries.

Trends among the six methods that we considered—two kernel combination meth-
ods and three methods for replacing missing values—are not obvious from Figure 2.4.
A Wilcoxon signed-rank comparison of the data (see supplementary results (Sec-
tion 2.6)) yields the same ranking of methods at 10% or 20% missing data: all three
unweighted sum methods perform better than all three weighted sum methods, and
the best strategy for handling missing data depends upon the kernel combination
method. Using an unweighted combination, the best-to-worst ranking is All-None-
Self. Conversely, using a weighted combination, the corresponding ranking is Self-
None-All.

In short, this experiment does show convincingly that an SVM can make accurate
predictions in the presence of missing data; however, the results are inconclusive with

respect to the best method for representing missing examples in the kernel matrices.

2.5 Discussion

The primary conclusion from this empirical study is that using a weighted sum of
kernels in an SVM classifier does not always improve upon the simpler, unweighted
sum approach. In particular, we have shown that, for a combination of sequence
and structure kernels in the prediction of Gene Ontology terms, the weighted sum
method frequently selects a solution that is worse than the unweighted sum. On the
other hand, the weighted sum does appear to improve the SVM’s robustness in the
presence of noisy or irrelevant kernels. From a practitioner’s point of view, these
results suggest the value of evaluating individual kernels with respect to any given

classification task prior to applying a kernel combination method. In other words,

35

simply collecting a large variety of kernels and applying the resulting combination
of kernels to diverse classification tasks is not likely to be as successful as a more
directed approach, in which prior knowledge of a particular kernel’s relevance guides
its inclusion in the training set.

Our results also suggest that the kernel weights assigned by an MKL method may
be difficult to interpret. A priori, it is clear that a low weight may be assigned due
either to noise in the kernel or to redundancy with another kernel in the collection.
However, for many of the classification tasks that we considered, a relatively broad
range of relative kernel weights often yielded quite similar classification performance.
Furthermore, in this particular case, the size of the margin does not correlate well
with optimal generalization performance.

With respect to protein classification, it is perhaps not surprising that structure
is more informative than sequence. However, our results with respect to missing data
suggest that, even when some structure data is not present, an SVM combination of
sequence and structure might be valuable.

The lower performance of the weighted kernel combination might be due to overfit-
ting and insufficient training data. Thus, larger data sets might benefit from weighted
combination when there is sufficient data to reliably estimate kernel weights. Alterna-
tively, we might group multiple tasks and datasets to more reliably estimate a single
setting of the weights on kernels [Jebara, 2004b].

Any empirical study necessarily leaves some questions unanswered: one could
imagine a variety of modifications, extensions or additional experiments to add to
the four we described above. These include, for example, investigating different types
or a larger number of kernels, modifying the SVM regularization parameter, system-
atically adding noise to one or more kernels, etc. While some of these experiments
would likely be more informative than others, we believe that our primary message—
that combining kernels in a weighted fashion is not always beneficial—would remain

unchanged. Further experiments would more precisely define the situations in which

36

weighting kernels is beneficial.

We did, inadvertently, perform one additional experiment that was not reported
above, and we believe that the result is instructive. In setting up the experiment
comparing kernel combination methods across 56 GO terms, we first observed that
the SDP method almost uniformly gave a large weight to the sequence kernel and a
small weight to the structure kernel. Investigation of these results showed that the
sequence kernel margin was considerably larger simply because we had normalized
the kernels (i.e., projected all of the data onto the unit sphere in the feature space)
without first centering the data around the origin. In both cases, the data were far
from the origin, and so projection placed all of the data points onto a very small area
on the unit sphere. Centering before normalization, as recommended by Lanckriet
et al. [2002], leads to much better conditioned matrices. This result illustrates that
the weighted kernel method depends upon characteristics of the various kernels in
the combination. One avenue for future work would identify characteristics of “good”
kernels, and propose methods for creating such kernels.

A second area for future work is the development of alternate kernel combination
methods. For example, given the relatively robust performance of SVMs with respect
to gradations in relative kernel weight, we believe that a combinatorial method which
finds binary kernel weights might be very successful. Unfortunately, it is not obvious

how to perform efficient optimization on discrete kernel weights.

2.6 Supplementary Results

37

Algorithm 1 Cross-validation framework for the missing data experiment. The input
variables are defined as follows: L = label matrix, () = sequence kernel matrix, R =
structure kernel matrix, C = set of classes, I = number of iterations, S = number
of cross-validation splits, P = set of percentages missing, M = set of supervised
learning methods. The output of the algorithm is a matrix R of mean ROC scores,

indexed by class, percentage of missing data, and learning method.
1: procedure MISSING DATA EXPERIMENT(L,Q, R,C,1,S,P, M)

2: R+ [0,...,0] > Initialize all ROC scores to zero.
3 for c € C do > Begin the main experiment.
4 £ + selectClass(L, ¢)

5 fori<1...1do

6: for s+ 1...5do

7 (g, lE,QRr,QE, Rr, RE) + cvSplit(¢,Q, R,s,S) > Split into train and test sets.
8 for p € P do

9 RY, + makeMissing(p, Rg) > Insert missing rows and columns.
10: R’ + makeMissing(p, Rg)

11: for m € M do
12: classifier « train(m, (g, Qr, Rj) > Train the classifier.
13: predictions « test(classifier, Qg, R;) > Make predictions on the test set.
14: R.pm ¢ Repm+ computeRoc({g, predictions) /(S * I) > Score the

predictions.

15: end for
16: end for
17: end for
18: end for
19: end for

20: end procedure

38

Table 2.2: Predicting GO terms from sequence or from structure. Results

for the 41 remaining GO terms not shown in Table 2.1.

GO term Description Ont # Structure Sequence Average SDP
GO0:0016779 nucleotidyltransferase MF 142 0.866 £+ 0.013 0.727 £+ 0.020 0.869 + 0.016 0.865 £+ 0.017
activity
G0:0016043 cell organization and BP 106 0.871 + 0.013 0.733 £ 0.018 0.858 + 0.013 0.829 + 0.014
biogenesis
G0:0008270 zinc ion binding MF 234 0.892 + 0.006 0.756 £ 0.016 0.896 + 0.010 0.889 £ 0.011
G0:0006066 alcohol metabolism BP 111 0.921 £ 0.010 0.785 + 0.025 0.919 + 0.010 0.912 £ 0.010
G0:0003723 RNA binding MF 212 0.886 + 0.011 0.752 £+ 0.014 0.883 + 0.011 0.868 + 0.010
G0:0004518 nuclease activity MF 125 0.840 £ 0.017 0.708 + 0.016 0.831 + 0.016 0.816 + 0.014
G0:0006811 ion transport BP 117 0.771 £+ 0.014 0.642 £+ 0.020 0.774 £ 0.016 0.748 £+ 0.017
GO:0006725 aromatic compound BP 164 0.890 + 0.008 0.761 £ 0.014 0.894 + 0.008 0.883 £ 0.009
metabolism
G0:0016491 oxidoreductase activity MF 516 0.952 + 0.002 0.823 + 0.007 0.957 + 0.003 0.955 + 0.003
G0:0009405 pathogenesis BP 118 0.942 + 0.008 0.814 + 0.017 0.941 + 0.008 0.939 £ 0.008
G0:0005524 ATP binding MF 485 0.888 + 0.006 0.764 £ 0.008 0.899 + 0.005 0.892 £ 0.005
G0:0030246 carbohydrate binding MF 102 0.924 £+ 0.008 0.801 + 0.017 0.929 + 0.007 0.926 £ 0.008
G0:0006508 proteolysis and peptidolysis BP 330 0.945 + 0.003 0.829 + 0.009 0.941 + 0.004 0.940 £ 0.004
G0:0008652 amino acid biosynthesis BP 121 0.916 + 0.013 0.802 + 0.017 0.924 + 0.009 0.916 + 0.009
G0:0045184 establishment of protein BP 108 0.844 + 0.017 0.737 £ 0.014 0.842 £ 0.015 0.832 £ 0.013
localization
G0:0020037 heme binding MF 104 0.983 £ 0.006 0.878 + 0.015 0.986 + 0.005 0.984 + 0.006
G0:0003700 transcription factor activity MF 214 0.932 + 0.007 0.836 + 0.008 0.932 £ 0.007 0.923 £ 0.007
G0:0016070 RNA metabolism BP 140 0.886 £ 0.009 0.795 + 0.018 0.894 + 0.010 0.894 £ 0.010
G0:0005102 receptor binding MF 120 0.909 £ 0.010 0.818 + 0.018 0.932 + 0.008 0.930 £ 0.008
G0:0006355 regulation of transcription, BP 340 0.928 + 0.006 0.837 + 0.010 0.931 + 0.007 0.923 + 0.008
DNA-dependent
G0:0016874 ligase activity MF 161 0.873 + 0.011 0.783 + 0.010 0.892 + 0.009 0.892 + 0.009
G0:0006468 protein amino acid BP 160 0.892 £ 0.010 0.804 + 0.016 0.890 + 0.009 0.879 £ 0.010
phosphorylation
G0:0016798 hydrolase activity, acting MF 227 0.971 + 0.005 0.885 + 0.010 0.973 £ 0.005 0.974 £ 0.005
on glycosyl bonds
G0:0006118 electron transport BP 392 0.949 + 0.003 0.864 + 0.006 0.960 + 0.003 0.961 + 0.003
G0:0004672 protein kinase activity MF 164 0.898 £ 0.009 0.817 + 0.014 0.892 + 0.009 0.885 £ 0.010
G0:0004872 receptor activity MF 138 0.935 + 0.007 0.855 + 0.015 0.926 + 0.006 0.920 + 0.006
G0:0015075 ion transporter activity MF 110 0.808 + 0.020 0.730 £+ 0.019 0.822 £ 0.018 0.799 £ 0.016
G0:0005489 electron transporter MF 196 0.943 £ 0.008 0.867 + 0.009 0.958 + 0.007 0.957 £+ 0.007
activity
G0:0005576 extracellular region CcC 352 0.887 £ 0.007 0.815 + 0.009 0.897 £ 0.006 0.872 £ 0.007
G0:0019012 virion cC 101 0.858 + 0.015 0.790 £ 0.027 0.852 + 0.016 0.837 £+ 0.017
G0:0030234 enzyme regulator activity MF 132 0.815 £ 0.010 0.747 £+ 0.016 0.826 + 0.009 0.805 £ 0.011
G0:0016021 integral to membrane CcC 136 0.774 £ 0.009 0.707 £+ 0.019 0.780 + 0.008 0.729 £ 0.018
G0:0006412 protein biosynthesis BP 170 0.886 + 0.010 0.825 + 0.009 0.898 + 0.009 0.899 + 0.009
G0:0005634 nucleus cC 347 0.901 £ 0.006 0.843 + 0.007 0.920 + 0.005 0.917 £+ 0.005
GO:0017111 nucleoside-triphosphatase MF 154 0.813 + 0.013 0.756 £+ 0.017 0.826 + 0.015 0.821 + 0.015
activity
GO0:0005737 cytoplasm cC 490 0.884 + 0.006 0.826 + 0.006 0.902 + 0.005 0.891 + 0.005
G0:0051188 cofactor biosynthesis BP 118 0.809 + 0.017 0.752 £+ 0.019 0.834 + 0.016 0.831 £ 0.017
G0:0043232 intracellular cC 153 0.814 £ 0.009 0.757 £+ 0.013 0.837 £ 0.012 0.838 + 0.015
non-membrane-bound
organelle
G0:0043234 protein complex CcC 414 0.816 + 0.009 0.761 £ 0.009 0.840 + 0.009 0.824 + 0.009
G0:0005509 calcium ion binding MF 173 0.907 £ 0.011 0.854 + 0.009 0.913 + 0.011 0.913 £ 0.010
G0:0050874 organismal physiological BP 144 0.887 + 0.010 0.845 + 0.014 0.903 £ 0.010 0.901 £ 0.010

process

39

Table 2.3: Signed rank comparisons for Experiment 1. The table lists un-
corrected p-values from a Wilcoxon signed-rank test comparison of the results of
Experiment 1. A significant p-value in the table indicates that method along the row

performs significantly better than the method along the column.

Sequence Average SDP Structure

Sequence — — — —
Average 1.078e-134 — 7.519e-49 4.038e-09

SDP 4.649e-133 — — —

Structure 6.457e-128 — 0.00667 —

Table 2.4: Signed rank comparisons for Experiment 3. The table lists un-
corrected p-values from a Wilcoxon signed-rank test comparison of the results from
Experiment 3. A significant p-value in the table indicates that method along the row

performs significantly better than the method along the column.

Average SDP Average 1-Noise SDP 1-Noise Average 2-Noise SDP 2-Noise
Average — 7.519e-49 5.845e-118 7.319e-55 9.221e-129 9.538e-59
SDP — — 1.415e-84 0.000287 1.618e-113 1.115e-09
Average 1-Noise — — — — 2.499e-70 —
SDP 1-Noise — 0.000287 2.372e-83 — 2.857e-114 1.633e-05

Average 2-Noise — — — — — —
SDP 2-Noise — 1.115e-09 1.726e-70 1.633e-05 7.573e-116 —

40

Table 2.5: Signed rank comparisons for Experiment 4. Each table lists, for a
given percent missing, uncorrected p-values from a Wilcoxon signed-rank test com-
parison of the six classification methods in Experiment 4. A significant p-value in
the table indicates that method along the row performs significantly better than the

method along the column.

10% Average (All) SDP (All) Average (Self) SDP (Self) Average (None) SDP (None)
Average (All) — 4.925e-75 5.483e-31 2.994e-55 9.502e-30 2.649e-61
SDP (All) — — — — — —
Average (Self) — 1.02e-16 — 6.087e-17 — 3.767e-22
SDP (Self) — 4.951e-10 — — — 1.513e-19
Average (None) — 3.92e-19 3.894e-05 3.832e-23 — 8.638e-29
SDP (None) — 0.001914 — — — —
20% Average (All) SDP (All) Average (Self) SDP (Self) Average (None) SDP (None)
Average (All) — 8.145e-75 3.438e-58 6.751e-61 1.112e-47 1.946e-57
SDP (All) — — — — — —
Average (Self) — 4.444e-10 — — — 0.0007737
SDP (Self) — 3.895e-14 — — — 1.864e-07
Average (None) — 1.695e-16 4.963e-22 8.506e-12 — 9.056e-11
SDP (None) — 1.569e-12 — — — —
30% Average (All) SDP (All) Average (Self) SDP (Self) Average (None) SDP (None)
Average (All) — 7.182e-66 1.76e-64 1.718e-58 8.461e-50 2.364e-50
SDP (All) — — — — — —
Average (Self) — 1.801e-05 — — — —
SDP (Self) — 1.157e-13 0.0003909 — — —
Average (None) — 4.116e-14 5.129e-37 1.805e-07 — 0.0008848
SDP (None) — 8.058e-22 0.04355 — — —

41

Chapter 3

Nonstationary Kernel Combination

This chapter presents our primary contribution to the machine learning community.
The work presented herein has been accepted, in abridged form, to the International
Conference on Machine Learning (2006) [Lewis, Jebara, and Noble, 2006b], and the
full text has been submitted to the Journal of Machine Learning Research [Lewis,
Jebara, and Noble, 2006a] along with the empirical results of Chapter 4.

The technique of maximum entropy discrimination was introduced by Jaakkola,
Meila, and Jebara [1999¢] and was extended in Jebara [2004a]. Here, we build on the
prior work to present an improved latent MED variational bound, a latent MED mix-
ture of Gaussians for multi-kernel learning, and an efficient optimization procedure.
We then present the technique as a nonstationary kernel combination, by deriving
the combination weights. We show that the combination weights take the form of the
posterior over the mixture model, making each kernel most influential in the region

of input space for which it is most responsible for the input distribution.

3.1 Maximum Entropy Discrimination

The maximum entropy discrimination (MED) formalism was first introduced in

Jaakkola, Meila, and Jebara [1999¢| and was shown to be a flexible generalization

42

of support vector machines. MED produces a solution that is a distribution of pa-
rameter models P(O) rather than finding a single parameter setting ©*. We start
by assuming we are given training examples X; € R¢ with their corresponding labels
ye{xl}forte T ={1,...,T}.

We begin with a linear discriminant function, £(X;©) = 7 X + b. This discrimi-
nant function is specified by © = {6, b} containing the hyperplane parameter as well
as a scalar bias value b. A linear classifier will make a binary prediction, 7, for an

example, X, using the sign of discriminant.
§ = sign(L(X;0))

The margin of the classifier for example X; is given by y; £(X;; ©) and is positive iff
the label y; is on the correct side of the hyperplane. We define the loss, L : R — R,
as a non-increasing and convex function of the margin.

If we were using a regularization theory framework [Girosi et al., 1995], we would
seek a specific ©* setting of § and b that minimizes loss while ensuring that the

magnitude of a regularization function R(©) is kept small for generalization purposes,

e.g.,
©* = argmin {R(@) +) L (g £(X; @))} :
© teT
We can introduce desired minimum margin parameters, v = {v1,...,yr} and rewrite

the optimization of ©* as follows:

(67,7") = min {R(@) +2 L(%)}

teT

subject to y; L(X;0)—v > 0, VieT.

In the case of MED, we instead seek a distribution over ©. Thus, classification

will be performed with

§ = sign (/@ P(O)L(X: @)d@) .

43

Again, we introduce margin parameters and express the classification constraints as
| PO Lxs0)d0 = 3 VeeT.
e

Now, we must find P(©) that satisfies the classification constraints without assum-
ing anything additional about P(©). This can be accomplished by maximizing the
Shannon Entropy, H(P(0)) = — [, P(©)log P(©)dO, of the parameter distribution,
while satisfying the constraints. This is a mazimum entropy (ME) estimation prob-
lem. Though we retain the name “maximum entropy discrimination,” we will actually
use the more general minimum relative entropy (MRE), as in Jaakkola et al. [1999c].
We use the relative Shannon entropy given by

P(o)
PO(0)

mmﬂ%:/m@m de,

which allows choice of a prior distribution, P(®(6). Note that minimizing relative

entropy is more general since choosing P(®)(0) uniform gives maximum entropy.

Theorem 1 [Jaakkola et al., 1999¢c] The solution to the MRE problem has the fol-
lowing general form:

1
P(©,v) = mp(O) (@’,y)eZteTMytﬁ(XtI@)—%]

where Z(A) is the normalization constant (partition function) and X = {1, ..., A\r}
defines a set of non-negative Lagrange multipliers, one for each classification con-

straint. A are set by finding the unique mazrimum of the following jointly concave

function:

J(A) = —log Z(N).

We now have the means to solve MED problems, as long as we can analytically
evaluate the partition function, Z()). Because the objective, J()) is concave, we
can find its maximum through standard convex programming techniques [Boyd and

Vandenberghe, 2003].

44

A primary advantage of the MED framework is that we can easily move away
from the traditional linear discriminant to include probabilistic models. Log ratio
discriminants of the form

L(X;0)=In 7§E§sz;

+b

are readily handled by MED. This discriminant function is specified by © =
{61,607 ,b} containing generative model parameters as well as a scalar bias value b.
Note that when P(X|0") = N(X|ut,T) and P(X|07) = N(X|u~,I) we have equal
covariance Gaussians, and so retain a linear discriminant function.

Recall that in MED we solve for a distribution over solutions P(©) such that the
expected value of the discriminant under this distribution agrees with the labeling. In
addition to finding a P(©) that satisfies classification constraints in the expectation,
MED regularizes the solution distribution P(©) by either maximizing its entropy or
minimizing its relative entropy toward some prior target distribution P(°)(8). Thus,
MED solves the constrained optimization problem

win D(P|[P) st. / PO)L(Xi0) — v >0 VteT (3.1)

e
which projects the prior P()(©) to the closest point in the admissible set or convex
hull defined by the above ¢t = 1,...,T constraints. The solution[Jaakkola et al., 1999c]
for the posterior P(O) is the standard maximum entropy setting
0
(©) = P(6) et MY L(Xt50) =]
Z(A)

where Z(\) = /P(O)(@)eztAt[ytL(Xt;G)—%]_
e

The partition function Z(A) normalizes P(©). MED finds the optimal setting of the
Lagrange multipliers \; for ¢ = 1,...,7T by maximizing the concave objective function
J(A) = —In Z(A). Given), the solution distribution P(©) is fully specified. It is then
straightforward to use this distribution for predicting the label of a new datum X via

y =sign([y P(©)L(X;©)dO). The integrals in MED are often analytic and result in

45

efficient and deterministic equations for both learning and prediction. Exponential

family models were shown to be analytic in Jebara [2004a].

3.2 Discriminative Gaussian Ratio Classifiers

We now derive a log-likelihood ratio Gaussian classifier. We want to find a discrimi-
nant function as follows:

NX|p*, 1)

E(X;@)zlnm

+b

whose sign agrees with the labeled training set. This discriminant function is specified
by © = {u™, p7,b} containing both Gaussian means p* and p~ as well as a scalar
bias value b. Thus, MED solves the constrained optimization problem (3.1).
Interestingly, applying MED to a ratio of identity covariance Gaussians ezactly
reproduces support vector machines, as is evident from the objective, Jsyy. We
assume that the prior distribution factorizes into a prior over the vector parameters
and a prior over scalar bias, P(0(©) = PO (y+)P©(4~)P©)(b). The first two priors
are identity-covariance zero-mean Gaussians over the means as follows PO (ut) =
N (u*|0,1) and PO (u~) = N(p|0, I) which encourages means of low magnitude for
our Gaussians. The last prior is a non-informative (i.e. flat) prior P (b) = N (|0, o)
indicating that any scalar bias is equally probable a priori. The integrals are solved

in Jebara [2004a]. The resulting objective function is

1
Jsvm(A) = Z Aty — 2 X 2 Z MYy X[X

teT tt'eT
Note the quadratic terms appear doubled since we have a term for each of the two
Gaussian models in the partition function. If we choose v, = 2 the above optimization
is identical to the SVM dual optimization problem (it is simply twice the SVM’s
objective). Our objective is also subject to the standard non-negativity constraints

on the \; values since the expectation constraints in the maximum entropy problem

46

use greater-than inequalities. Furthermore, the non-informative bias prior yields the
equality constraint), Ay = 0. Thus learning involves simply solving a quadratic
program (QP). Prediction for a query datum X is given by
/ P(O)L(X;0)d0 = Y yMX/X +b,
© teT
where the expected bias b is found via the Karush-Kuhn-Tucker (KKT) conditions as
usual.

To work with non-separable problems, we use a distribution over margins in the
prior and posterior instead of simply setting margins equal to a constant 2 (which
is like using a delta-function prior P (v,) = §(v; — 2)). The MED solution distri-
bution then involves an augmented © which includes all margin variables as follows:
© ={ut,u,b,7,...,y7}. The formula for the partition function Z(\) is as above
except we now have P (0) = PO (ut)PO(u~)POB)]/, PO (y;) and integrate
over dOd; ...dyr. The margin priors are chosen to favor large margins yet allow

negative margins with exponentially decaying probability. An appropriate choice is

ce 0y <2,
p (%) =

PO(v,) =0 otherwise.
Solving gives the new objective function J(A) = Jgyam(A)+), In(1—A;/c). The non-
separability creates a logarithmic barrier function preventing Lagrange multipliers
from growing beyond c. This is like a soft margin SVM’s explicit constraint \; < c.
For simplicity, we omit these logarithmic barrier functions in all non-separable MED
problems, and just impose the upper bound c constraint on Lagrange multipliers.
Another important extension to the above is allowing the Gaussian models to be

applied over feature vectors instead of the original data. In this situation, we have:

N(¢*(X)|u™, 1) exp(—z[l¢7(X) — u*|?)
N(¢=(X)|u=, 1) exp(—3[167(X) — u~|?)

where the vector X is mapped into a feature vector ¢*(X) before interacting with

L(X;0)=In +b = In +5b

the positive Gaussian model and a feature vector ¢~ (X) before interacting with the

47

negative Gaussian model. Because we are dealing with possibly infinite dimensional
feature spaces, the Gaussian means are handled as linear combinations of distances be-
tween examples implicitly projected to feature space via kernel functions. Equations
for Hilbert space Gaussians with implicit mean are easily derived by starting with tra-
ditional distance and using the well-known d(z,y) = k(z, z)+k(y, y) —2k(x, y). Since
we are dealing with discrimination, we can ignore normalization issues with these
Gaussian models. The resulting J()\) objective, subject to SVM-like constraints, is
still a QP:
23 A\ - % > My (K (Xe, Xo) + k- (X0, Xi))

teT tyeT
where Mercer kernel functions kT (X, Xy) = ¢7(Xy)TodT(Xy) and k™ (X, Xyp) =

¢~ (X;)Téd~ (Xy) take the place of inner products of our feature functions. The pre-
diction rule for the final classifier for a query datum X is § = + ", ysMe(KF (X, X;) +
k™ (X, X;)) + b.

3.3 Latent Maximum Entropy Discrimination

We now present the latent MED model for exponential family distributions. The

discriminant function is written as follows:

£(X;0) =In > e P(m, 6,(X0)167,)
| SN P(n, by (X0)|607)

In Equation (3.2), we introduce model parameters 6;", 6, for positive and negative

(3.2)

models, respectively; and b for the scalar bias. A non-informative prior is chosen for b
to formalize our lack of knowledge about the parameter and to simplify the resulting
MED integrals. Appropriate priors should be selected for 6} and 6, . We wish to

recover an MED distribution,
P(©)=P0f,...,04,07,...,0%,b),

that is as close to these priors as possible yet also satisfies the classification constraints

which should label the data correctly under expectations over P(0). Note the use

48

of explicit feature mappings ¢, ¢, which permit each model to reside in a distinct
feature space.

In the latent variable case the classical maximum entropy solution (3.1) is not
fruitful because, for mixtures, computing and minimizing the partition function Z(\)
is intractable with exponentially many terms. This mirrors the classical case of max-
imum likelihood parameter estimation for mixture models, for which we use expecta-
tion maximization (EM) [Dempster et al., 1977]. To compensate, we use variational
methods. The general scheme is to use tractable functions that lower and upper bound
the intractable terms of the partition function. We then optimize the tractable func-
tions to indirectly optimize the intractable one, subject to tightness of the bounds.
We iterate the bounding projection and re-estimation of the parameters, thus tight-
ening the bound and maximizing the objective, until convergence. The procedure is
guaranteed to converge to a local maximum as in Jaakkola et al. [1999c].

Jensen’s inequality is first applied to the correct class model in the classification
constraints to simplify them, while tightening them so that any admissible point is
admissible under the original constraints. Then, Jensen is applied to the partition
function which still contains log-sums for the incorrect class model. This yields a
tractable latent MED projection. Starting with an initial solution P(!)(0), we iterate
the tractable projection step and convex hull restriction step until convergence, slowly
updating the current MED solution P®(©) and reducing divergence to the prior
P©)(©), while moving within the MED admissible set.

We now begin to derive the tractable partition. We illustrate the variational

tth

lower bound by considering the classification constraint for the ¢** example, which we

assume without loss of generality has a positive label, 3, = 1. The constraint for the

t** datum is

S, Pom, 65Xl
[re) (1“ S Py (X)) T %) 1920

Choosing a distribution ¢;, we apply Jensen’s inequality to the positive mixture model

49

to obtain a stricter classification constraint:

/7 (th) In P(m, 67,(X,)|077) + H(a)

where H(g;) is the entropy of ¢;. We choose a distribution ¢; such that the classifica-
tion inequality is tight under P(i_l)(@). We see that the expression for the bounding
constraint is simpler, but still includes a log-sum for the negative mixture model. The
remaining log-sum will be eliminated by applying Jensen’s inequality to upper bound
the partition function, as we will show.

We now proceed to apply Jensen’s inequality on each constraint’s numerator for
positive data ¢ € T and on each constraint’s denominator for negative data ¢t € 7.
This leads to a new, more constrained problem in which we formally define a single

MED projection as follows:

min D(P(9)|P(6)

subject to:

Ep{th)In P(m, ¢ (X,)|0) + H(g:) — ananzS (X0)16,) + }z%\ﬁeﬁ

Ep {th)In P(n, ¢ (X)|67) + H(q) anP m, ¢ (X,)]67) — } >yt e T
Thus, the Jensen-bounded correct mixture domlnates the incorrect mixture on all
data points. The new partition function for this projection given gq is

Z0in) = [POe 0)exp (32 A(Eam)In P 64(X0/02) + Ha)

teT+

—anP n, 6, (X0)16,) +b = 7))

exp (3 A th)In P(n, ¢ (X,)|07) + H(g,)

teT
—In'>" P(m, 65,(X0)|65) — b= 7)) de,

20

It is interesting to note that this partition function bounds the original one via

Z(\) > Z(\|g) for any ¢. To project, we maximize:

A* = argmax(— In Z()\|q))
A

subject to:
0< M <pg Z)\tyt:()-
teT

This problem is log-concave and simpler than the original full MED problem, yet it
is still intractable due to the remaining log-sums in the expression from the opposite
class models. Therefore, we place an upper bound on the partition function for the
constrained projection by applying Jensen’s inequality to the log-sums in Z()\|q) using
variational distributions ;. This gives a variational upper bound Z(), Q|q) > Z(\|q):

Z0.Qu) = [PO® 0)exp (30 M(E arm) Pl 61,(X0103) + H(a)

teT+

_ZQt)In P(n, ¢, (Xy)|0,) — (Qt)-i-b—%))

exp(Z)\t th)In P(n, ¢, (X¢)|6,) + H(q:)

teT —

—ZQt)In P(m, 65,(X,)[6,,) H(@Q) ~ b —) do.

To tighten this upper bound, we must minimize the partition function Z over Q or

maximize —In Z over (). Thus, we have:

(A, Q) = arg;gaX(— In Z(A, Q)

subject to:
0<Mh<c > Ay=0
teT

0<Q, Q1=1

The above maximization uses a tractable partition function Z(\, @|q) which in-

cludes the variational distributions () and ¢ required by the double Jensen bound. In

o1

fact, we can solve the optimization simultaneously over A and () as a convex program.
The q distribution is updated as the maximum likelihood posterior over the latent
variables, given) and A. The overall latent MED problem proceeds iteratively by
updating the ¢ to tighten the equality constraints around a previous P%~1)(0) model
to get a more constrained projection and then solves the constrained projection as
a convex program, recovering () and A simultaneously. This iterative procedure—
bounding the classification constraints with Jensen using a previous model P(~1(0)
and then solving a simpler MED problem—has been shown to converge to a local
minimum as in the latent anomaly detection problem of Jaakkola et al. [1999c¢].

The derivation we present here is an improvement upon the presentation in Jebara
[2004a] because of the application of Jensen’s inequality to bound the incorrect-class
model. Our double Jensen approach yields a tight upper bound rather than the winner
takes all approximation. OQur new derivation also makes it apparent that latent MED
parameter estimation is a minimax optimization. The two opposing bounds must be

tight, squeezing in on the true latent MED objective:

argmin argmax Z(\, Qlq) = Z()).
Q q

3.4 Discriminative Kernelized Gaussian Mixtures

We now present the latent MED model for the ratio of Hilbert space Gaussian mix-

tures. The discriminant function is written as follows:

M
£(X,: ©) = In 22m=t N (90 (X0 i, 1)

SN BN (67 (X) |, T)

(3.3)
and the MED -classifier is:

j = sign (/@ P(©)L(X;; @)d@) . (3.4)

In Equation (3.3), we introduce model parameters p' . u., for Gaussian means; «,

for mixing proportions; and b for the scalar bias. White Gaussian prior distributions,

92

PO (u) = N(0,I), are chosen to regularize the Gaussian means toward zero. Non-
informative priors are chosen for «, 3, and b to express our lack of knowledge about
these parameters and to simplify the resulting MED integrals. We wish to recover
an MED distribution that is as close to these priors as possible yet also satisfies the
classification constraints which should label the data correctly under expectations
over P(©). Note the use of explicit feature mappings ¢, ¢, which permit each
Gaussian to reside in a distinct feature space.

Specifically, we wish to recover

P(G) = P(aluu—li_""aaMa/'L—lA—Ja/Bla/'Ll_a'"aBNa,u]_Vab)'

We apply the variational approach developed in Section 3.3 with the conditioned
Gaussian models replacing the generic joint probabilities. The more substantial task
is to solve the various integrals for Z(\,Q|q) in closed form. We refer to the for-
mulas in Jebara [2004a, chap. 5|. The expression for the partition function drasti-
cally simplifies if we assume a non-informative prior on the bias and non-informative
Dirichlet priors over the multinomial parameters. Ultimately, the negative loga-

rithm of the partition function is computed and is our SVM-like objective function

J()" qu) = - IOgZ()\, qu)

J(\, Qlg) Z)\t H(q) +Z/\t%

teT teT

9 Z Aty Z% m) gy (m)ky, (¢,1) +ZQt JQu(n)k, (1,1))

teT+
t’eT+

- = Z At Ay ZQt)Qu (m)k} (¢, 1) +ZQt n)qy (n)k, (t,t'))

teT—
teT—

+ Z Aty Z% VQu (m)k! (¢,t) —I—ZQt n)qy (n)k, (t,1)).

teTt
veT ™

Above, we have written the objective in terms of kernel evaluations, k[(-,-) and

93

k, (-,-), rather than inner products on our explicit feature mappings.

A set of M + N linear equality constraints emerge from barrier functions during
integration and are enforced in addition to the positivity and upper bound constraints
on A. Note that these constraints subsume the traditional linear equality constraint

of the SVM.

D A@i(m) =) Ng(m) Vm € {1,..., M}

teT— teT+
Z)‘tQt(n) = Z)‘tQt(n) Vn € {L,N}
teT+ teT —

0<AN<cVte{l,... T}

We implemented the maximization of J (A, Qlq), subject to the above constraints,
as a quadratic program, omitting the entropy terms H(Q;) due to their non-quadratic
nature. This simplification is tolerable for the moment, because H((;) vanishes
toward zero as () becomes committed to a single mixture component, which often
happens in practice.

The update for ¢ ensures that bounds on classification constraints are tight under

the previous iteration’s P~ (@) solution:

g:(m) o exp (E{lnay,} + E{In N (¢} (X,)|ph)}) t e T
a:(n) oc exp (E{ln B,} + E{In N (¢, (X;)|u;)}) t € T~

Thus, for updating ¢ and for making predictions with the final model, we need

expectations under P(0) for various components of the discriminant function. For

04

instance, the expected value of each log-Gaussian for m = 1..M is

D 1 1
BN (G (X))} = 5 In(@m) — 1 — k(X0 X)
+ Z)\TQT(m XT;Xt Z A QT X’raXt)
TETT TET™
1
— 5 Z /\T/\T’qT(m)QT’(m)k;;(XTaXT’)
TeTt
TeTt
Y Z A)‘T’QT QT’()kr_;(XT,X’T’)
TET_
T'eT™
+ Y Mg (m)Qr (M) (X, Xo).
TeTt
TeT™

We similarly compute the expected log Gaussian probability E{In N (¢, (X¢)|p,)}
for negative models. Finally, we obtain the expected bias and mixing proportions

indirectly via the following surrogate variables:

1
am = F{lnay,} + §E{b} Vvm e {1,...,M}
1
b, = E{lng,} — §E{b} Vn e {l,...,N}
This is done by using the KKT conditions, which ensure that at non-bound Lagrange

multiplier settings, classification inequalities are achieved with equality. In other

words, the stricter MED constraints implicit in Z(), Q|¢q) become equalities. Thus,

95

when); € (0, ¢) we must achieve the following with equality:
Xm: ¢(m)(am + E{In N (¢, (X0)) }) + H(a) =
Zn: Q:(n) (by + E{In N (¢, (X))} + H(Q) +7 t€TT
En: ¢(n)(bn + E{In N (¢, (Xo)|p,)}) + H(q) =

Y Qum)(am + BN ($5(X) 1)} H(Q) + v teT .

We solve for a,, for m = 1..M and b, for n = 1..N in this (over-constrained) linear
system, obtaining the expected bias and mixing proportions.

To make predictions with the latent MED’s learned P(©), we cannot use the
standard rule from Equation (3.4) due to its intractable log-sums. Instead, we employ
the following approximate prediction using the expectation formulas we just derived:

2 m €XP (E{In N (¢y, (X)|ptz) } +)
>n exp (E{In N (67 (X)[pz)} + bn)

y=In (3.5)

3.5 Sequential Minimal Optimization

Platt’s sequential minimal optimization (SMO) [Platt, 1999] is an algorithm for the
iterative solution of convex quadratic programs with a single linear equality constraint
and bound constraints. SMO was specifically designed to solve large-scale SVM op-
timization problems. SMO is particularly efficient when the solution is sparse, as is
the case with SVM.

SMO takes advantage of a special case of the structured constraints we describe
in the next section. SMO can be applied to a QP problem

1
x* = argmin <ch + ExTHx> , subject to Az = b. (3.6)

x

o6

The single linear equality constraint has the form:

Ty
Ay .. G ... |] =0 (3.7)

Ty

If we examine the form of the linear equality constraint (3.7), we notice that we can
maintain the constraint by updating as few as two arbitrary dimensions, v and v.

This is accomplished by maintaining the equality,
ATy + QpTy = Ayuy + Ay Ty (3.8)

where Z denotes the new value of z. We can solve (3.8) for z, and rewrite the
quadratic objective function (3.6) in terms of the two axes u and v in the one variable
2. The resulting function can be differentiated with respect to x,, and the root
can be computed to find the minimum. Iterating such a procedure for all pairs of
axes will monotonically approach the global minimum of (3.6) while maintaining the
constraint. See [Platt, 1999] for details.

SMO relies on several heuristics to choose axis-pairs to optimize. These heuristics
are critical to the efficiency of SMO. The algorithm takes maximum advantage of
sparsity and attempts to make maximum progress with each step. Building upon
Platt’s work, others have proposed improved heuristics for axis selection [Keerthi
et al., 1999].

We now consider the problem of optimizing the latent MED quadratic program
subject to the given system of linear equality constraints. Like many optimization
problems from the machine learning community, this problem possesses structure that
can be exploited to yield an efficient algorithm. The general form of the objective
function for the MED discriminative projection step is J(\) = ¢T' A + %/\TH/\, where

A is the solution to the QP proposed in the Section 3.4. The constraints are of the

o7

form AX = 0. In general, we cannot simultaneously maintain the M + N linear
equality constraints by optimizing over only axis pairs, as in Platt’s SMO for the
SVM. However, some analysis reveals that we can reduce the number of axes to a
maximum of max(M, N) and a minimum of two, depending on the situation.

General linear equality constrained algorithms must consider the null space of
the linear system of constraints. In the case of constrained Newton methods, this
generally requires the inversion of a matrix that corresponds to the KKT system of
the problem. Working set methods, an extreme case of which is Platt’s SMO, save
computation by optimizing over a subset of the axes in an iterative algorithm. SMO
uses a working set, of two axes. The single linear equality constraint of the SVM can be
explicitly satisfied between the two axes. There is one degree of freedom along which
the linearly coupled variables are analytically optimized. The primary efficiency of
SMO is that it takes advantage of sparsity in .

Latent MED is more general than the SVM. We replicate variables to permit
optimization over a latent distribution. This replication imparts regular structure to
the constraints. The following equation shows the form of the constraint matrix A for
a latent MED problem with four latent states, two for each binary class from which

examples are drawn:

Auy
Aus
Guy Quy; --- —1 0 ... Qu Qu 0
Qus Quy - -- 0 -1 . Quy Gu, | | Am _ 0 (3.9)
10 .. =@y —Q --- 1 0 ... [0
I 0 1 ... —Qu —Q@, ... 0 1 | _0_
Awy
Aw,

o8

The illustrated columns of A correspond to axes uq, us, vy, v, and wy, wo associated
with examples u, v, and w in the latent MED problem. The entries of the form g;;
are given by the posterior probability distributions ¢; over the M and N latent states
of the generative models. (In this case, M = N = 2.) Note the replication of values
within the constraint matrix. A corresponding replication is required in the dual
variables, A\. The embedded N x N and M x M identity matrices effectively select a
latent configuration of the opposite class and its associated dual variable. Note how
the form of the constraints differs based upon the class of the chosen example. We

will now explore the effect of this structure on the optimization problem.

3.5.1 Inter-class

Let us consider two examples, v and v from opposite classes. Without loss of gener-
ality, let u be positive and v be negative. Then we can maintain the constraints using

the following equalities in vector form:

Gu (/\u 1) -)‘Av: qu ()\51) — A

Then, we can write

AX,= (ANT1) g,
Ad= (AN 1)gy = (AN 1)a) 1gw = (A1) g,

Thus, (AX]1) = (AXI'1), and AN, and A\, are coupled via their norms by a single

scalar that we will call As.

AXy= As g, (3.10)
AXy= As g,. (3.11)

99

In other words, we can maintain the linear equality constraints by updating the
solution with the scaled posterior distributions ¢, and g,.

The change in the quadratic objective function for the axes u and v is

Ady(AN) = cE AN, + T AN,
+ LANTH, AN, + ANTH, AN, + SANTH,, AN,
Dy (AT HLAN, + ANTHRAN,).

All that remains is to express the change in the objective, AJ,,(A)) as a function of
As by changing variables using Equations (3.10) and (3.11). This is a straightforward
algebraic manipulation. The resulting one-dimensional quadratic objective function,
AJy,(As), can be analytically optimized by finding the root of the derivative under

the box constraint.

3.5.2 Intra-class

Now we examine the case in which axes u and w are chosen from the same class.
Without loss of generality, we choose u and w members of the positive class as in
Equation (3.9). As in the inter-class case, we write the constraints in terms of our

two variables, v and w, in vector form:

G 1) + qu (N 1)=qu(\1) + g0 (V1)

Xy 4 A= Ay + A

These constraints are simpler than in the previous case. In particular, when ¢, = q,,

we obtain the further simplification:

~ T

(N 1)+ (N 1)= (AT1) + (AZ1) (3.12a)
Xe 4 o= A + Ao (3.12b)

60

Note that (3.12a) is satisfied when (3.12b) is satisfied. Therefore, we need only enforce
that the sum of the vectors is constant. It is important to observe that the intra-class

case is comprised of two sub-cases distinguished by whether ¢, = ¢,, or not.

Intra-class equal Now, we continue with the derivation of the intra-class equal
case. Referring to Equation (3.12b), we see that the constraints can be satisfied, at
each iteration, by choosing a single sub-axis k£ along which to optimize, so we restrict
ourselves to u; and wy. In this case, the latent MED optimization decomposes directly

into Platt’s SMO. Working from (3.12b), we obtain
which leads us to

/\;k:)\uk + ()\’wk -)\;Jk)

We also observe that

Ay, = —Aly,.

We again call this scalar quantity As. The derivation of update rules proceeds anal-

ogously with Platt’s SMO.

Intra-class unequal Finally, we consider the intra-class unequal case. This situa-
tion is slightly complicated by the fact that the posterior distributions ¢, and ¢, are
not equal, and so no longer factor out and cancel as in (3.12a). This change requires
us to explicitly enforce a constraint on the norm of the dual variable vectors, X
and X,. In order to enforce the additional constraint, we must choose an additional
sub-axis [over which to optimize.

Ultimately, we express the relationship between the four changing axes as a single

scalar As and derive update rules, similarly to the other cases.

61

3.5.3 Newton Step

After implementing SMO as described above, we had trouble getting consistent con-
vergence with latent variable problems. SMO did converge well in the SVM case. It
seemed that convergence was heavily dependent upon the order in which axes were
selected, which should not be the case for a convex optimization. After verifying
the implementation, we were forced to accept that convergence could proceed with
infinitesimal step size due to an almost flat objective when considering a minimal
working set. It appears that F. R. Bach [2004] ran into a similar problem. To ad-
dress this situation, we apply a more global optimization over a larger working set
of axes. As long as the working set is a small percentage of the full set of axes, the
computational efficiency is not harmed.

We use an equality constrained second-order gradient descent type step (a Newton
step) as described in Boyd and Vandenberghe [2003]. This optimization requires that
we construct and invert the KK'T system to solve for the minimum of the objective
within the null space of the equality constraints. We use a singular value decomposi-
tion (SVD) to perform the matrix pseudo-inverse. This is a reasonably efficient cubic
time algorithm, but because the working set tends to be small, the time is still O(n?)

on the full problem. This is in line with the average complexity of SMO.

3.5.4 Implementation

As with any piece of non-trivial software, we chose to begin with a relatively simple
but correct implementation. We actually prototyped the SMO optimization function
in MATLAB. We gave our SMO function an interface that was compatible with the
interface for the MATLAB optimization toolbox implementation of QP (quadprog).
Because MATLAB is an interactive language and built-in matrix operations, imple-
menting and debugging the prototype was accelerated. Even in MATLAB, there were
numerous challenges to getting a correct SMO implementation. At first, issues of nu-

merical instability were a problem. It was necessary to explicitly enforce that certain

62

quantities could not become even slightly negative, since a change in sign could have
disastrous effects. Once the basic problems were addressed, we discovered the need
for additional “step types” as described in the preceding sections. Jebara [2004a] in
its suggestion of SMO did not distinguish between these cases, and did not cover the
entire feasible space. Even after we discovered the need for the intra-class step types,
we had no knowledge of the need for the Newton steps. It took quite a bit of inves-
tigation, and in fact a few re-derivations, to convince ourselves that the algorithm
was correct, because it did not always converge. Ultimately, it became apparent that
the implementation was correct, but the application of a local optimization such as
SMO was problematic. The realization came independently, but was supported by
the claims in F. R. Bach [2004].

Once we had a correct MATLAB implementation, we translated it to C++ and
used the MATLAB MEX interface to invoke the function. Again, we opted for cor-
rectness as opposed to speed in the first implementation. We wrote a C+-+ matrix
class as a lightweight replacement for MATLAB’s matrices. All necessary opera-
tions were implemented in C++, with support from LAPACK [Anderson et al., 1999
and BLAS [Lawson et al., 1979] (linear algebra and matrix libraries). Finally we
went back and spent some time optimizing the implementation. To give some idea
of the importance of code optimization, we show five plots (3.5.4) that were cre-
ated as we progressed with the code modifications. Panel (f) of this figure shows
our SMO compared against the highly optimized, MOSEK [Andersen and Andersen,
2000] commercial optimization software.

In optimizing the SMO software, some of the tasks that proved most valuable
were moving costly, invariant code out of loops, replacing temporary object construc-
tion/destruction with static objects, and axis selection heuristics. Of these, the last
is most interesting, because it is specific to SMO. Sequential minimal optimization
involves choosing a minimal set of axes (variables) to update. The size of that set

of axes is determined by the constraints, as described above. The question remains,

Elepeer Seconds

—*— §MO0
—e=1p

z
10
Mumnker of Examples

Elapsed Seconds

&

Elapsad Ssconds
s

10’
Mumber of Examples

=T
—+-SMO

0°
Nurber of Examples

Figure 3.1: SMO code optimization.

Elapsed Seconds

Elegpoed Seconds

Elpsed Seconds

63

1 T
—— MO
—¢—aP
'l 4
0’
'k 5
'L 4
TDD 1 . 2 5
10 10 10
Mumber of Examples
5
10
—*—5MOD
—&—qgp
10 |
IU3
10 o |
1
10 q
o
10 .
1 £ 3
10 10 10
Mumnber of Examples
o*
w?
/'/‘
//{u’
4/ '
i A
0 .
A
i
s
1° /
o
o ar
—=— SMO
107

0°
Nurmber of Examples

This figure shows the progression from the

initial correct C++ implementation of the SMO algorithm, to the optimized version.

(a-e) compare elapsed time for SMO and MATLAB quadprog. (f) compares elapsed

time for SMO and MOSEK commercial optimization software.

64

which are the most suitable axes to choose. We call this problem axis selection. Platt
[1999] uses heuristics that work well, on average, for the SVM optimization. Jebara
[2004a, chap. 7] suggests “learning” axis transitions by greedily recalling past choices
that made large improvements in the objective function. Here, we take something
of a hybrid approach. We enumerate a random permutation of all non-redundant
axis pairs. We iterate repeatedly over the permutation, removing pairs that produce
little improvement, or that are at bound (0 or ¢). When the list becomes empty, we
reinitialize it with a different random permutation. This algorithm provides good ran-
domized coverage of the axis-pairs, but focuses effort on those that have performed
well. The optimization is repeated until the change in solution and objective are
bounded by a small threshold. Convergence is strictly monotonic. Our contribution

is the first implementation of SMO for latent MED.

3.6 Nonstationary Kernel Combination

The kernelized latent MED mixture model can be viewed as a nonstationary kernel
combination technique. Most methods for kernel combination assume that several
base kernels are provided and a single convex combination is ultimately utilized.
Using the above mixture modeling framework provides posteriors over the S and
« mixing proportions, which affect how much total influence each kernel has in the
discriminant ratio. However, in addition, the input to the discriminant will determine
a re-weighting for each Gaussian according to the Euclidean distance of each mapped
input to each Gaussian mean in Hilbert space. This effectively re-weights the kernel
combination in non-stationary ways and allows different kernel nonlinearities in the
input space.

Therefore, this paper describes a technique for combining kernels that is more
general than a weighted linear summation (a stationary combination). The technique

uses a generative framework that specifically optimizes distributions to achieve max-

65

imal margins, effectively embedding latent variables into support vector machines.
The approach thus permits the use of mixture modeling in a large-margin discrimi-
native setting.

We demonstrate the power of the proposed technique by mixing kernels in a non-
stationary fashion, allowing kernel weights to be a function of the data. In order to
illustrate the differences among the standard SVM formulation, existing kernel com-
bination methods, and the technique proposed here, consider the SVM discriminant

function:

I) = Z yt)\tk(-ft, l‘) —+ b.

teT
Here, the class label assigned to example x by the trained SVM depends on the train-

ing examples z;, the SVM weights \;, a bias term b, and a single kernel function k(-, -).
In the SDP [Lanckriet et al., 2002] and hyperkernel [Ong et al., 2005] approaches,
this formula is generalized to use multiple kernels, each of which has a fixed weight

Vpn:

Zyt)‘tzym -Tt, b

teT
The approach that we propose generalizes th1s formulation further, allowing the kernel

weight v, to depend upon the properties of the example being classified:

Zyt)\tZth m (T,) + b

teT

This dependence on z is useful, for example, if the training data contains structure
such that some types of examples are best classified on the basis of one kernel and
other types of examples are best classified on the basis of a different kernel.

The decision rule in Equation (3.5) can be viewed as a nonstationary kernel com-
bination. This is done by rewriting the equations using the definition of the expec-
tations for the log-Gaussians. First, recall Jensen’s inequality, which holds for any

non-negative ¢, and v, scalars such that Zm Vy, = 1:

anqm anqu—m Zthlq—m

66

If we set v, = and substitute into the right hand side above, the inequality is

Em dm
actually an equality:

lnzqm>22 Qm —Gm

EQm

> Z dm anqm

> m
=10 gm
m

The result is applied to the definition for the final decision rule (Equation (3.5)) to

rewrite it as follows:

exp(E(1n N (65,0X) 1i5)) + a) o)
7= S exp BN ())] + a) - N n)]

Z exp(E{In N (¢, (X))} + bn)
2n exp(E{In N (67 (X)|12)} + bn)

The ratios above can be written as the weights in a non-stationary kernel combination

E{In o N (¢;, (X)) + bn}

as follows:

= S COBRNGLC0l0)}+ o = 3w, (BN (67 (0} + by

Recall that we have:

E{In N (¢ (X)|ptm)} =
1
D M (m)kg (X, X) = 3 0 AQe(m)ky (X, X) — Sk (X, X) + constant
TETT TET~
and that

E{lnN (¢, (X)|p,)} =
Z Argr(n)k, (Xr, X) — Z Q- (n)k, (X, X) — ;k;(X, X) + constant

TET ~ TETT

67

Combining all terms yields:

I=) Mg (myh(X)EL(X, X) =)0 D \Q(m)vh (X)k) (X, X)

TET+ m TET- m
= 2 D ey (X)ky (X, X) +) Y M Qe(n)y (X)ky (X7, X)
TET- n TET+T n
—l—ZV;,:(X)kH (X, X) ZV - (X, X) + constant,

from which we clearly see that the kernel combination weights depend on the input
X, and the discriminant depends also on the learned parameters, which maximize
the margin.

Nonstationary kernel combination is interesting, in that it displays more represen-
tational power than the linear combinations in popular use; however, our empirical
studies indicate that it does not overfit. The latent MED prior distribution, in this
case N (0, I) for the Gaussian means, regularizes the solution, as does the explicit soft
margin bound constraint.

The following chapter presents a thorough set of experiments that compare NSKC

to state-of-the-art techniques on a variety of problems.

68

Chapter 4

Nonstationary Kernel Combination

Empirical Results

In this chapter, we present the experimental results we obtained with our nonstation-
ary kernel combination technique. The chapter begins with two synthetic problems,
designed primarily to illustrate the capabilities of the technique. The next section
validates NSKC on some popular University of California at Irvine Machine Learning
Repository [Murphy and Aha, 1995] benchmark data sets, which were chosen because
they were used in Lanckriet et al. [2002]. Following those experiments, we discuss the

application of NSKC to some real yeast protein function annotation problems.

4.1 Synthetic data sets

In this section, we validate the NSKC technique on two synthetic data sets. The pri-
mary purpose, here, is to illustrate the power of the technique to solve problems that
existing approaches fail to solve. Thus, any positive result indicates a fundamental
improvement over the state of the art. In all figures, the plotted decision boundaries

were actually learned by the classifiers.

69

4.1.1 Eight-Gaussians data set

We use an MED ratio of two two-component Gaussian mixtures on eight Gaussian
clusters to illustrate how margin optimization can overcome model mismatch. In
this case, the margin optimization—absent from traditional maximum likelihood pa-
rameter estimation—drives the classifier toward the correct solution. Though latent
MED optimizes a discriminative objective function, it does, learn a generative model.
However, the model parameters are estimated to produce the most discriminative
distribution. Therefore, generating data with the model will produce “ideal” samples
with regard to discrimination. In this respect, we consider latent MED as a way to
overcome model mismatch or to clean the data.

Figure 4.1(a) shows two independent two-component Gaussian mixtures fit to
the data using maximum likelihood. Figure 4.1(b) shows latent MED with two-
component Gaussian mixtures. This problem emphasizes a capability absent in the

ML technique. In real data the effect would still be beneficial, but in smaller degree.

4.1.2 Linear-quadratic data set

In order to illustrate the characteristics of nonstationary kernel combination, we first
present a synthetic two-dimensional problem. We generate a binary labeled data set
using a function that is quadratic in part of the input space and linear elsewhere.
The function is given by

2?2 if |z] < 1,

flz) =

1 otherwise.

Points are translated up and down along the vertical axis to create two classes for
the binary problem. We then attempt to learn a decision surface using a maximum
likelihood mixture of Gaussians (Figure 4.2a) and an SDP kernel combination (Fig-
ure 4.2b). While the SDP result may seem surprising at first, consider the objective

the SDP is optimizing. The linear kernel combination weights are chosen along with

70

x
XX(>><< X%
o
A 08 0
(a) 4
X X
x Sex X X

X
XX(>><< ><><X><

(o¥6)

oA O80
(b)

x X X
x XX X X

o
5o ®

Figure 4.1: Latent MED Gaussian mixture. This figure shows the ability of
latent MED to learn a large margin classifier, even in an extreme case of model
mismatch. The classifier is the ratio of two Gaussian mixtures, each with two com-
ponents. Maximum likelihood (a) classifies poorly, achieving 50% accuracy because
it ignores discriminative performance. Latent MED (b) achieves perfect classification

accuracy.

71

the Lagrange multipliers to minimize loss and maximize margin. That is precisely
what is accomplished.

Figure 4.3(a) shows the classifier with the proposed nonstationary kernel combina-
tion. Note that NSKC achieves perfect separation of the data with maximum margin.
The decision surface is extremely smooth except at the transition between linear and
quadratic regions. One may argue that in this example, an RBF kernel could learn a
similar decision surface. However, the RBF solution would behave poorly in regions
of low density. The RBF is a higher capacity function and would not likely produce as
smooth a solution. Also, in real applications, the kernel often encodes some domain
knowledge, which is preserved by NSKC.

Figure 4.3(b) shows how the combination weights vary over the input space. This
illustrates the nonstationarity that we have described and derived. This example
exhibits the novelty of the NSKC technique and indicates its usefulness. In any
situation in which the combination weights man need to vary over the input space,

NSKC will have an advantage.

4.2 Benchmark data sets

Next, we validate the nonstationary kernel combination technique on several bench-
mark data sets from the UCI machine learning repository. We use the Wisconsin
breast cancer, sonar, and statlog heart data, all of which were previously used to
validate the SDP method [Lanckriet et al., 2002]. We use three kernels: a quadratic
kernel

ki(z1,22) = (1 + 21 32)%,

a radial basis function (RBF) kernel

ko(21,72) = exp(—0.5(x; — z9) (21 — 22)/0),

and a linear kernel

kg(il?l, LL'Q) = CE{.IQ.

72

X
(b) X X
o o
X X
o X X0
X X
oOx X O
o) o)
o o
o o
o O

g

Figure 4.2: Kernel combination on synthetic data. The figure illustrates the
binary decision surface between examples taken from a function that is linear and
quadratic. Panel (a) shows the ML mixture decision boundary; panel (b) shows the

SDP decision boundary. Neither technique correctly classifies the data.

73

| CG00000000000000000000000000000)

CIR0000000000000000000003000000) »

X0000000000900000000000000000)

Figure 4.3: Nonstationary kernel combination on synthetic data. The figure
illustrates the binary decision surface between examples taken from a function that is
piecewise linear and quadratic. Panel (a) shows the NSKC decision boundary; NSKC
correctly separates the data. Panel (b) shows the NSKC kernel weight over the input
space; darker shades correspond to the quadratic kernel. Note the smoothness of the

solution.

74

All three kernels are normalized so that their features lie on the surface of a unit
k(x,2))
k(z,x)k(z,2)
margin (with ¢ = 10,000 to avoid numerical difficulties when ¢ = 00), and the RBF

hypersphere, /Ac(:v,z) = As in [Lanckriet et al., 2002], we use a hard
width parameter o is set to 0.5, 0.1 and 0.5, respectively, for the three tasks. NSKC
and maximum likelihood (ML) mixtures use one mixture component per kernel for
each class model, i.e., M = N = 3. We report mean test set accuracy across five
random replications of three-fold cross validation.

Tables 4.1, 4.2, and 4.3 summarize the results of these experiments. NSKC
achieves the top mean test set accuracy for two of three data sets. For the heart
data set, NSKC is second best. We believe that this good generalization performance
is due, in large part, to NSKC’s ability to achieve a more regularized classifier by
using the lower capacity polynomial and linear kernels for regions of the input space
in which they perform well. By contrast, the SDP technique is forced to down-weight
those entire kernels and use the RBF kernel with hard margin. With SDP, we ob-
served an overfit classifier in many cases, i.e., train accuracy was often perfect while

test accuracy was not.

4.2.1 Wisconsin breast cancer

The breast cancer data set is not separable using the polynomial or linear kernels.
Nonetheless, these kernels are useful to the combination techniques. Indeed, both the

SDP and NSKC methods gain significant advantage by combining kernels (Table 4.1).

4.2.2 Sonar

The sonar data set is the only data set that is separable using each of the three kernels
individually. The SDP technique matches the accuracy of the best individual kernel,
the RBF. NSKC achieves a small additional gain from nonstationarity (Table 4.2).

75

Table 4.1: Comparison on Wisconsin breast cancer data. The table lists, for the
UCI Wisconsin breast cancer data set and six classification methods, the mean and
standard deviation of test set accuracy across fifteen cross-validations (three-fold CV
repeated five times). The first three methods are SVMs trained with single kernels,
followed by the SDP approach of [Lanckriet et al., 2002], a maximum likelihood
mixture of Gaussians classifier, and the NSKC method. The maximal mean value is

indicated in boldface.

Algorithm Mean ROC
quadratic 0.5486 + 0.091

RBF 0.6275 4+ 0.019
linear 0.5433 £ 0.087
SDP 0.8155 4+ 0.015
ML 0.5573 4+ 0.03

NSKC 0.8313 £ 0.014

76

Table 4.2: Comparison on sonar data. The table lists, for the UCI sonar data set
and six classification methods, the mean and standard deviation of test set accuracy
across fifteen cross-validations (three-fold CV repeated five times). The first three
methods are SVMs trained with single kernels, followed by the SDP approach of
[Lanckriet et al., 2002], a maximum likelihood mixture of Gaussians classifier, and

the NSKC method. The maximal mean value is indicated in boldface.

Algorithm Mean ROC
quadratic 0.8145 + 0.01
RBF 0.8595 + 0.009
linear 0.7297 + 0.01
SDP 0.8595 + 0.009
ML 0.6817 £ 0.022
NSKC 0.8634 + 0.008

4.2.3 Heart

For the heart data set, the maximum test set accuracy is achieved when using the
polynomial of degree two, with which the data set is not separable. The data is
separable using the kernel combination techniques; however, neither SDP nor NSKC
is able to make full use of the polynomial kernel. NSKC is apparently able to use the
polynomial over at least part of the input space (Table 4.3).

4.3 Yeast protein functional classification

In a larger experiment, we apply our nonstationary kernel combination to the problem
of protein function annotation from a collection of heterogeneous kernels. We compare
the latent MED method against SVMs using single kernels and the SDP method in
[Lanckriet et al., 2004b] using data from that study (noble.gs.washington.edu/

7

Table 4.3: Comparison on heart data. The table lists, for the UCI heart data set
and six classification methods, the mean and standard deviation of test set accuracy
across fifteen cross-validations (three-fold CV repeated five times). The first three
methods are SVMs trained with single kernels, followed by the SDP approach of
[Lanckriet et al., 2002], a maximum likelihood mixture of Gaussians classifier, and

the NSKC method. The maximal mean value is indicated in boldface.

Algorithm Mean ROC
quadratic | 0.6141 + 0.032
RBF 0.5556 £ 0.01
linear 0.5237 + 0.02
SDP 0.5556 + 0.01
ML 0.5361 + 0.024
NSKC 0.6052 + 0.016

proj/yeast). We use three kernels, representing gene expression, protein domain
content, and protein sequence similarity. We train one-versus-all classifiers for 12
functional classes of yeast genes. We randomly sample from the data set to reduce
its size to 500 genes and then perform three-fold cross-validation, repeating the entire
procedure five times. For all methods, we use the regularization parameter ¢ = 10,
as in [Lanckriet et al., 2004b]. With NSKC, we again use one component per kernel
per class in the model.

Table 4.4 summarizes the mean AUCs over 15 trials for all methods. The NSKC
method has the highest accuracy for eight of the twelve classes. We speculate that
an advantage for NSKC over SDP in these experiments is the ability of the mixture
model to capture some of the latent structure in the data. In particular, the 12 yeast
functional classes represent the top level of the MIPS functional hierarchy. Thus,

these 12 classes contain meaningful substructure, which NSKC can exploit.

Yeast Protein Function Annotation
1 T T T T T T T T T T T T

ROC

I =xp
I Dom
N Seq
[Cspbp
[INSKC

2 3 4 5 6 7 8 9 10 11 12
Class

78

Figure 4.4: Nonstationary kernel combination for yeast protein function an-

notation. The figure shows, for each functional class and each classification method

the mean AUC from five times three-fold cross-validation.

79

Table 4.4: Comparison of yeast protein function annotation methods. The

table lists, for each functional class (row) and each classification method (column)

the mean AUC from five times three-fold cross-validation. The first three columns

correspond to SVMs trained on single kernels (gene expression, protein domain con-

tent and sequence similarity, respectively). The final two columns contain results for

the SDP and nonstationary kernel combination methods. For all methods, standard

errors (not shown) are generally on the order of 0.02, except for classes 2 (0.04) and

9 (0.05).

Class | Exp

Dom

Seq

SDP

NSKC

0.630
0.657
0.668
0.596
0.810
0.617
0.554
0.594
0.535
0.554
0.506

© 00 N O Ot s W NN~

— = =
o= O

0.682

0.717
0.664
0.706
0.756
0.773
0.690
0.715
0.636
0.564
0.616
0.470
0.896

0.750
0.718
0.729
0.752
0.789
0.668
0.740
0.680
0.603
0.706
0.480
0.883

0.745
0.751
0.768
0.766
0.834
0.698
0.720
0.697
0.582
0.697
0.524
0.916

0.747
0.755
0.774
0.778
0.836
0.717
0.738
0.699
0.576
0.687
0.526
0.918

80

Table 4.5: Standard error for yeast mean AUC scores. The table lists, for each

functional class (row) and each classification method (column) the standard errors

associated with the corresponding means from Table 4.4.

Class | Exp Dom Seq SDP NSKC
1 0.02 0.01 0.009 0.014 0.016
2 0.037 0.029 0.038 0.041 0.042
3 0.03 0.018 0.016 0.014 0.013
4 0.015 0.012 0.02 0.019 0.015
5 0.024 0.017 0.019 0.019 0.02
6 0.018 0.017 0.011 0.014 0.015
7 10.017 0.016 0.015 0.019 0.016
8 0.02 0.031 0.021 0.016 0.018
9 0.02 0.056 0.057 0.057 0.055
10]0.021 0.024 0.019 0.023 0.026
11 | 0.041 0.031 0.032 0.022 0.03
12 0.03 0.013 0.009 0.007 0.008

81

Table 4.6: Comparison of yeast protein function annotation methods using
sequence and structure. The table lists, for each GO term (row) and each classi-
fication method (column) the mean AUC from three times five-fold cross-validation.
The first column corresponds to a kernel average, the second to SDP, and the third

to nonstationary kernel combination.

GO term Average SDP NSKC
GO:0008168 | 0.937 + 0.016 0.938 £+ 0.015 0.944 + 0.014
GO:0005506 | 0.927 + 0.012 0.927 £+ 0.012 0.926 + 0.013
GO:0006260 | 0.878 + 0.016 0.870 £ 0.015 0.880 £ 0.015
GO:0048037 | 0.911 + 0.016 0.909 + 0.016 0.918 4+ 0.015
GO:0046483 | 0.937 + 0.008 0.940 £ 0.008 0.941 £ 0.008
G0O:0044255 | 0.874 + 0.015 0.864 £+ 0.013 0.874 + 0.012
GO0O:0016853 | 0.837 = 0.017 0.810 £ 0.019 0.823 £ 0.018
GO0O:0044262 | 0.908 4+ 0.006 0.897 £ 0.006 0.906 £ 0.007
GO:0009117 | 0.890 4+ 0.012 0.880 £+ 0.012 0.887 + 0.012
GO:0016829 | 0.931 + 0.008 0.926 + 0.007 0.928 + 0.008

Table 4.6 summarizes another experiment we conducted for yeast protein function
annotation. This time, we use the sequence/structure dataset from Chapter 2. The
mean AUCs over 15 trials for kernel averaging, SDP, and NSKC are listed. There
is no clear winner between NSKC and kernel averaging; however, NSKC consistently
outperforms the SDP technique. We computed p-values using a one-sided Wilcoxon
signed rank test that show a significant advantage for NSKC over SDP. Again, we
find that averaging is surprisingly good with this data. Statistically, averaging equals
NSKC over these results.

82

10000 [T T T T

1000

100 |

Time (s)

10 |

QUADPROG —+— |
SMO -~~~

0.1 1 1 1
0 100 200 300 400 500

Number of examples

Figure 4.5: Running time comparison of SMO and quadprog. The figure plots
running time as a function of the number of examples for our SMO implementation

and MATLAB’s quadprog on the toy data set described in Section 4.1.2.
4.4 SMO Timing

In order to evaluate the time complexity of our optimization procedure, we ran a
small timing experiment using the synthetic data set described in Section 4.1.2. We
computed the latent MED discriminative projection step for varying numbers of ex-
amples. We repeated this procedure several times to compute mean optimization
times for our SMO and for MATLAB’s quadprog function. The results are summa-
rized in Figure 4.5. With 500 examples, SMO runs 7.5 times faster than quadprog.

83

Chapter 5

Conclusion

5.1 Summary of contribution

We set out to extend the domain of large margin classification [Vapnik, 1998] and
kernel methods [Schélkopf et al., 1999] to the realm of latent graphical models, and
in so doing, discovered a novel way to combine kernels in a multi-kernel learning al-
gorithm. We call this approach nonstationary kernel combination (NSKC), because
the kernel combination weights vary over the input space, rather than being a con-
stant, stationary distribution. NSKC generalizes upon existing kernel combination
techniques [Lanckriet et al., 2002, Ong et al., 2005], defining the combination weights
using the posterior distribution of a mixture model, rather than a simple linear com-
bination. The mixture model adds capacity, in the VC sense [Vapnik, 1998], to the
resulting classifier. While increased capacity gives the classifier more power to overfit,
the regularization imparted by minimum relative entropy parameter estimation along
with a sensible prior distribution encourages a smooth solution that generalizes well.
It is important to note that the increased capacity takes the form of a structured
generative model. This is not as arbitrary as increasing capacity with a more general
kernel function, e.g., an RBF kernel. NSKC preserves the prior knowledge given in

the kernels, but allows more flexibility in its use.

84

We proposed a more principled latent MED variational bounding technique than
Jebara [2004a] that achieves a tightly bounded locally optimal solution. This was
achieved by a second application of the Jensen’s inequality bound to eliminate the
intractability resulting from the incorrect-class log-sums that remain after the first
application of Jensen’s inequality. The original intractable partition function is sand-
wiched from below and above between the bounding terms of the new tractable par-
tition function. When both bounds are tightened via minimax optimization, the
original partition is recovered. We combine the bound tightening steps with a max-
imization over the objective, to iteratively converge to a tightly bounded locally op-
timal solution. We presented detailed derivations for the latent MED mixture of
Gaussians and explained the general case in sufficient detail for others to extend the
work.

We also fully explained our approach to efficient optimization through SMO [Platt,
1999]. We began with the linear system of constraints and showed how to ensure
that the constraints remain satisfied, i.e., that we remain in the null space of the
linear system, while modifying as few axes as possible. We discovered three different
cases for SMO step types and explicated the derivations to obtain the correct update
equations. We also shared our experience in applying SMO to latent MED problems,
and the difficulty that we faced in obtaining consistent convergence. The latent MED
objective is convex, but not smooth. Thus, it is possible to become “trapped” on a
locally flat region of the objective and make virtually no progress toward the minimum
with each step. In these cases, we found it necessary to take a bigger step toward
the global minimum by considering all active axes simultaneously with a constrained
Newton step. The Newton step does not destroy the computational efficiency of the
technique, because the number of active axes involved in the inversion of the KKT
system—a O(n3) operation—tends to be less than ns. Therefore, the time required
for the SVD to compute the null space does not exceed O(n?) over all axes, the

average complexity of the SMO algorithm.

85

We conducted several empirical studies using kernel combination, including one
set of experiments [Lewis et al., 2006c] that investigates the cost/benefit trade-off
of learning kernel combination weights via optimization versus using an unweighted
combination. This study is particularly relevant to practitioners due to the time
required to compute the combination weights for large data sets and due to the
current lack of freely available software to perform the optimization. We determined
that unweighted combination can be as accurate as an optimized combination. This
study also examined the effect of missing data with kernel combination. We found
that the simple unweighted combination is quite robust to missing data. In another
experimental direction, we validated the NSKC technique on numerous problems
and have found that in the majority of cases, results have been better than existing
techniques. These results did not require particular tuning of the algorithm.

We have created a complete MATLAB/C++ software implementation, including
MATLAB classes for kernel functions, learning algorithms, and, cross validation ex-
periments. We provide an implementation of the SMO optimization as a MATLAB
MEX file written in C++4. We will make the software publicly available for academic

use. A user guide to to the software is provided in Appendix A.

5.2 Future Directions

In formulating the latent MED iterative bounding and optimization technique, we
chose a very EM-like [Dempster et al., 1977] algorithm. The M-step, which updates
the model parameters, is discriminative and involves a convex optimization. How-
ever, the E-step only involves computing simple expectations given the model and
essentially ignores the discriminative goal. The technique works, but may suffer from
slower convergence or local minima than if we actively optimized both projection
steps. Latent MED can be formulated as a saddle-point optimization problem of an

indefinite objective function. The solution would be found with a minimax optimiza-

86

tion. We did derive latent MED in this way; however, we did not find an efficient
way to update the required distributions. There was some hope of finding a tractable
solution, and this could be a direction for future research.

In addition, we simplified the latent MED objective by omitting the non-quadratic
entropy terms associated with the () variational distributions. This was justified by
the fact that the converged distributions tend to be like delta functions with all weight
on a single component. Therefore, the entropy tends toward zero, and the objective
truly becomes quadratic. However, at early stages of the latent MED optimization,
the distributions are not fully committed, and the addition of the entropy terms
would likely help the optimization to proceed more smoothly and avoid commitment
to a local minima. This might ultimately speed the convergence to a more globally
optimal solution and prevent cyclic behavior, which is sometimes seen with the current
implementation. It should be relatively easy to add the entropy terms to the SMO
optimization or to add the entropy terms to the objective and optimize the second-
order Taylor approximation of the objective using QP.

Our experiments showed NSKC results that usually outperformed SDP kernel
combination. However, the SDP algorithm [Lanckriet et al., 2002] had a clear advan-
tage for these experiments because it is a transductive technique, i.e., SDP used the
test examples when learning the combined kernel. The SDP formulation computes
the regularizing trace constraint on the entire combined the kernel matrix, so smooth-
ness is encouraged over the test data. Our current NSKC algorithm did not use the
test examples, though it could have. The latent MED distribution can easily be aug-
mented with a latent variable for the label of the test data, and we can integrate
over that variable. Since probabilistic models handle semi-supervised classification
naturally, and this area has been studied, this would be a beneficial extension to
NSKC.

Though we covered the application of kernel combination quite thoroughly, the

formalism of latent MED is more general and can support other probabilistic mod-

87

els. The next logical model to explore would be the hidden Markov model (HMM)
[Rabiner, 1995]. Essentially, the HMM with Gaussian emissions is just the mixture
model we already have with non-iid distribution over the multinomial latent variable.
The Markov assumption for a first-order model is that the future is independent of
the past, given the present. Thus, the mixing proportions for the next sample depend
on the current latent state. Latent MED with HMMs is the most ambitious of the
tasks listed here. The HMM involves more multinomial distributions, which intro-
duces more Dirichlet priors, and more optimization constraints. Although this work
would constitute a new project, we believe it would be worthwhile future work and

would build on the current research.

88

Bibliography

Yasemin Altun, Ioannis Tsochantaridis, and Thomas Hofmann. Hidden markov sup-
port vector machines. In 20th International Conference on Machine Learning

(ICML), 2003.

E. D. Andersen and K. D. Andersen. The mosek interior point optimizer for linear pro-
gramming: an implementation of the homogeneous algorithm. High Performance

Optimization, pages 197-232, 2000.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’
Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, third
edition, 1999. ISBN (-89871-447-8 (paperback).

F. R. Bach, R. Thibaux, and M. I. Jordan. Computing regularization paths for learn-
ing multiple kernels. In Lawrence K. Saul, Yair Weiss, and Leon Bottou, editors,
Advances in Neural Information Processing Systems, Cambridge, MA, 2004. MIT

Press.

A. Ben-Hur and W. S. Noble. Kernel methods for predicting protein-protein interac-
tions. Bioinformatics, 21 suppl 1:138-i46, 2005.

K.M. Borgwardt, C. S. Ong, S. Schoenauer, S.V.N. Vishwanathan, A. Smola, and
H-P. Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21

(Suppl. 1):147-i56, 2005.

89

B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal
margin classifiers. In D. Haussler, editor, 5th Annual ACM Workshop on COLT,
pages 144-152, Pittsburgh, PA, 1992. ACM Press.

S. Boyd and L. Vandenberghe. Conver Optimization. Prentice-Hall, 2003. To appear.
Available at http://www.stanford.edu/ boyd/cvxbook.html.

R. Collobert, F. Sinz, J. Weston, and L. Bottou. Large scale transductive SVMs. In

preparation, November 2005.

C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273-297,
1995.

N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines.
Cambridge UP, Cambridge, UK, 2000.

N. Cristianini, J. Shawe-Taylor, A. Elisseef, and J. Kandola. On kernel-target align-

ment. In Advances in Neural Information Processing Systems 14. MIT Press, 2002.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, 39:1-22, 1977.

H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and V. Vapnik. Support vector
regression machines. In Advances in Neural Information Processing Systems, pages

155-161, Cambridge, MA, 1997. MIT Press.

S. Dumais. Using svins for text categorization. IEEE Intelligent Systems Magazine,

13(4), 1998.

M. I. Jordan F. R. Bach, G. R. G. Lanckriet. Multiple kernel learning, conic duality,
and the smo algorithm. In 21st International Conference on Machine Learning

(ICML), 2004.

90

A. Gammerman, V. Vovk, and V. Vapnik. Learning by transduction. In G. F. Cooper
and S. Moral, editors, Proceedings of the Fourteenth Conference on Uncertainty in

Artificial Intelligence, pages 148-155, San Francisco, CA, 1998. Morgan Kaufmann.

Gene Ontology Consortium. Gene ontology: tool for the unification of biology. Nature

Genetics, 25(1):25-29, 2000.

Federico Girosi, Michael Jones, and Tomaso Poggio. Regularization theory and neural

networks architectures. Neural Computation, 7(2):219-269, 1995.

L. Holm and C. Sander. Protein structure comparison by alignment of distance

matrices. Journal of Molecular Biology, 233:123—-138, 1993.

T. Jaakkola, M. Diekhans, and D. Haussler. Using the Fisher kernel method to detect
remote protein homologies. In Proceedings of the Seventh International Conference
on Intelligent Systems for Molecular Biology, pages 149-158, Menlo Park, CA,
1999a. AAAT Press.

T. Jaakkola, M. Diekhans, and D. Haussler. A discriminative framework for detecting

remote protein homologies. Journal of Computational Biology, 7(1-2):95-114, 2000.

T. Jaakkola and D. Haussler. Exploiting generative models in discriminative classi-
fiers. In Advances in Neural Information Processing Systems 11, San Mateo, CA,

1998. Morgan Kauffmann.

T. Jaakkola, M. Meila, and T. Jebara. Maximum entropy discrimination. Technical

Report AITR-1668, Massachusetts, December 1999b.

T. Jaakkola, M. Meila, and T. Jebara. Maximum entropy discrimination. In Advances

in Neural Information Processing Systems, volume 12, December 1999c.

T. Jebara. Machine Learning: Discriminative and Generative. Kluwer Academic,

Boston, MA, 2004a.

91

T. Jebara. Multi-task feature and kernel selection for SVMs. In Proceedings of the

International Conference on Machine Learning, 2004b.

T. Jebara and A. Pentland. Maximum conditional likelihood via bound maximization
and the cem algorithm. In Advances in Neural Information Processing Systems 11,

San Mateo, CA, 1998. Morgan Kauffmann.

T. Joachims. Making large-scale support vector machine learning practical. In
A. Smola B. Scholkopf, C. Burges, editor, Advances in Kernel Methods: Support
Vector Machines. MIT Press, Cambridge, MA, 1998.

T. Joachims. Transductive inference for text classification using support vector ma-
chines. In I. Bratko and S. Dzeroski, editors, Proceedings of the Sizteenth Interna-
tional Conference on Machine Learning, pages 200-209, San Francisco, CA, 1999.

Morgan Kaufmann.

T. Joachims, N. Cristianini, and J. Shawe-Taylor. Composite kernels for hypertext
categorisation. In C. Brodley and A. Danyluk, editors, Proceedings of the Inter-
national Conference on Machine Learning, pages 250-257, San Francisco, 2001.

Morgan Kaufmann.
M. Jordan and Bishop. An introduction to graphical models. In press.

M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. Introduction to varia-
tional methods for graphical models. Machine Learning, 37:183-233, 1999.

S. Keerthi, S. Shevade, C. Bhattacharyya, and K. Murthy. Improvements to platt’s

smo algorithm for svm classifier design, 1999.

G. R. G. Lanckriet, T. De Bie, N. Cristianini, M. I. Jordan, and W. S. Noble. A
statistical framework for genomic data fusion. Bioinformatics, 20(16):2626—2635,

2004a.

92

G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. I. Jordan.
Learning the kernel matrix with semi-definite programming. In C. Sammut and
A. Hoffman, editors, Proceedings of the 19th International Conference on Machine

Learning, Sydney, Australia, 2002. Morgan Kauffman.

G. R. G. Lanckriet, M. Deng, N. Cristianini, M. I. Jordan, and W. S. Noble. Kernel-
based data fusion and its application to protein function prediction in yeast. In R. B.
Altman, A. K. Dunker, L. Hunter, T. A. Jung, and T. E. Klein, editors, Proceedings
of the Pacific Symposium on Biocomputing, pages 300-311. World Scientific, 2004b.

C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic Linear Algebra
Subprograms for Fortran usage. ACM Transactions on Mathematical Software, 5

(3):308-323, September 1979. ISSN 0098-3500.

C. Leslie, E. Eskin, and W. S. Noble. The spectrum kernel: A string kernel for SVM
protein classification. In R. B. Altman, A. K. Dunker, L. Hunter, K. Lauderdale,
and T. E. Klein, editors, Proceedings of the Pacific Symposium on Biocomputing,
pages 564-575, New Jersey, 2002. World Scientific.

C. Leslie, E. Eskin, J. Weston, and W. S. Noble. Mismatch string kernels for SVM pro-
tein classification. In Suzanna Becker, Sebastian Thrun, and Klaus Obermayer, ed-

itors, Advances in Neural Information Processing Systems, pages 1441-1448, Cam-

bridge, MA, 2003. MIT Press.

D. Lewis, T. Jebara, and W. S. Noble. Large margin classification using exponential

family mixtures. Submitted, April 2006a.

D. Lewis, T. Jebara, and W. S. Noble. Nonstationary kernel combination. In 23rd
International Conference on Machine Learning (ICML), 2006b.

D. Lewis, T. Jebara, and W. S. Noble. Support vector machine learning from heteroge-
neous data: an empirical analysis using protein sequence and structure. Submitted,

April 2006¢.

93

W. Li, L. Jeroszewski, and A. Godzik. Clustering of highly homologous sequences to
reduce the size of large protein databases. Bioinformatics, 17(3):282-283, 2001.

L. Liao and W. S. Noble. Combining pairwise sequence similarity and support vector
machines for remote protein homology detection. In Proceedings of the Sizth An-
nual International Conference on Computational Molecular Biology, pages 225232,

Washington, DC, April 18-21 2002.
M. Minsky and S. Papert. Perceptrons. MIT Press, Cambridge, MA, 1967.

M. Minsky and S. Papert. Perceptrons: An Introduction to Computational Geometry.
MIT Press, Cambridge, MA, 19609.

P. M. Murphy and D. W. Aha. UCI repository of machine learning databases. Dept.

of Information and Computer Science, UC Irvine, 1995.

W. S. Noble. Support vector machine applications in computational biology. In J.-
P. Vert B. Schoelkopf, K. Tsuda, editor, Kernel methods in computational biology,
pages 71-92. MIT Press, Cambridge, MA, 2004.

C. S. Ong, A. J. Smola, and R. C. Williamson. Learning the kernel with hyperkernels.
Journal of Machine Learning Research, 6:1043-1071, 2005.

A. R. Ortiz, C. E. M. Strauss, and O. Olmea. MAMMOTH (Matching molecular mod-
els obtained from theory): An automated method for model comparison. Protein

Science, 11:2606-2621, 2002.

E. Osuna, R. Freund, and F. Girosi. Training support vector machines:an application

to face detection, 1997.

P. Pavlidis, I. Wapinski, and W. S. Noble. Support vector machine classification on
the web. Bioinformatics, 20(4):586-587, 2004.

94

P. Pavlidis, J. Weston, J. Cai, and W. N. Grundy. Gene functional classification from
heterogeneous data. In Proceedings of the Fifth Annual International Conference

on Computational Molecular Biology, pages 242-248, 2001.

P. Pavlidis, J. Weston, J. Cai, and W. S. Noble. Learning gene functional classifica-
tions from multiple data types. Journal of Computational Biology, 9(2):401-411,
2002.

J. Pearl. Probabilistic Reasoning in Intelligent Systems : Networks of Plausible In-

ference. Morgan Kaufmann, 1998.

J. C. Platt. Fast training of support vector machines using sequential minimal opti-
mization. In B. Schélkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in
Kernel Methods. MIT Press, 1999.

L. R. Rabiner. A tutorial on hidden Markov models and selected applications in

speech recognition. Proceedings of the IEEE, 77(2):257-286, 1995.

F. Rosenblatt. The perceptron: a probabilistic model for information storage and

organization in the brain. Psychological Review, 65:386-408, 1959.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations

by error propagation. pages 318-362, 1986.

B. Scholkopf, P. L. Bartlett, A. Smola, and R. Williamson. Shrinking the tube: a new
support vector regression algorithm. In M. S. Kearns, S. A. Solla, and D. A. Cohn,

editors, Advances in Neural Information Processing Systems 11, pages 330-336,

Cambridge, MA, 1999. MIT Press.

B. Scholkopf, C. J. C. Burges, and A. J. Smola, editors. Advances in Kernel Methods:
Support Vector Learning. MIT Press, Cambridge, MA, 1999.

B. Scholkopf and A. Smola. Learning with Kernels. MIT Press, Cambridge, MA,
2002.

95

I. N. Shindyalov and P. E. Bourne. Protein structure alignment by incremental com-
binatorial extension (ce) of the optimal path. Protein Engineering, 11:739-747,
1998.

T. Smith and M. Waterman. Identification of common molecular subsequences. Jour-

nal of Molecular Biology, 147:195-197, 1981.

S. Sonnenburg, G Rétsch, and C. Schafer. A general and efficient multiple kernel

learning algorithm. In Advances in Neural Information Processing Systems, 2006a.

S. Sonnenburg, G Ratsch, and C. Schafer. Learning interpretable SVMs for biological
sequence classification. BMC' Bioinformatics, 7(Suppl. 1):S1-S9, 2006b.

B. Taskar, C. Guestrin, and D. Koller. Max margin markov networks. In S. Becker,

S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing

Systems, Cambridge, MA, 2003. MIT Press.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector ma-
chine learning for interdependent and structured output spaces. Proceedings of the

International Conference on Machine Learning, 2004.

K. Tsuda. Support vector classification with asymmetric kernel function. In M. Ver-

leysen, editor, Proceedings ESANN, pages 183188, 1999.

K. Tsuda, H.J. Shin, and B. Scholkopf. Fast protein classification with multiple
networks. In ECCB, 2005.

V. N. Vapnik. Statistical Learning Theory. Adaptive and learning systems for signal

processing, communications, and control. Wiley, New York, 1998.

P. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behav-
toral Science. PhD thesis, Harvard University, Cambridge, MA, 1974.

96

J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik. Feature
selection for SVMs. In Sara A Solla, Todd K Leen, and Klaus-Robert Miiller,
editors, Advances in Neural Information Processing Systems 13. MIT Press, 2001.
URL http://www.ens-1lyon.fr/~ochapell/feature_sel.ps.

J. Weston and C. Watkins. Multi-class support vector machines. Royal Holloway
Technical Report CSD-TR-98-04, 1998.

A. Zien and C. S. Ong. An automated combination of sequence motif kernels for
predicting protein subcellular localization. Technical Report TR-146, Max-Planck
Institute for Biological Cybernetics, Tiibingen, Germany, April 2006.

Appendices

97

98

Appendix A

MaLT User Guide

Part of the contribution of this thesis is the software developed to validate the pro-
posed techniques. We disseminate the software for academic use to encourage the
adoption and extension of latent MED.

The software will inevitably continue to evolve after the deposit of this thesis.
However, the thesis will remain an archival document. Therefore, a current version of
this appendix will be distributed with the software. This appendix serves to clarify the
contribution of the software in the context of the original research and to document
the initial revision of the software in an archival sense.

The Machine Learning Toolbox (MaLT) software contains MATLAB scripts for
running cross-validation experiments. A user guide for the code is presented in this
appendix. Some details are intentionally omitted to focus attention on common usage.
The interfaces and options for all important MaL.T classes and functions are given in

Appendix B.

99

A.1 Getting Started

The Machine Learning Toolbox (MaLT) is a set of MATLAB classes and programs.
MaLT is general enough to handle many learning scenarios; however, the current

focus is kernel methods and multi-kernel classification.

Before we proceed to an example, it is necessary to have MATLAB (R14 or newer)
installed. MATLAB is commercial software and requires a license. Academic licenses

are available. In the following, we assume a LINUX operating system with tcsh shell.

The MaLT software should be unpacked into a directory, which we will call MALTDIR.
Anywhere that MALTDIR appears in this document, it should be replaced with
the correct path. Start MATLAB, and in a command window, enter “addpath
MALTDIR/src” this will make the MaLT scripts easily available to MATLAB. Next,
enter “maltenv” to set up the MaLT environment. At this point, all MaLT classes

are ready for use.

A.2 Example

The example experiment we will perform is a three-times replicated, five-fold cross-
validation (3x5cv) over different settings of the C' parameter of a linear SVM, on
a test data set consisting of 20 two-dimensional vectorial inputs with binary {-1,1}
labels. This type of cross-validation over a parameter setting is an extremely common
type of experiment. Of course, the example data set is small so the experiment will
run quickly, and the results can be visualized. The example experiment script can

easily be adapted for other purposes and provides a template for users.

100

The following example should provide enough information to get most users started
with MaLT. The experiment is fully specified by the file MALTDIR/results/
examples/examplel/examplel.m. The content of that file is repeated here in Fig-

ure A.1.

Let us look at the code in Figure A.1. The extremely compact size of the script
indicates the convenience of MaLT as a platform for cross-validation experiments.
Lines 4 and 5 load the test data set and labels into MATLAB matrices. Beginning
on line 7, we create the cell array, learners, of MedmixLearner objects. Note the
parameterization of the MedmixLearners. The learners vary in the C' soft margin
parameter. This experiment will run each of the three learners over the same random
splits of the data, so the results may be compared. We can, for example, empirically
select a value for C in this way. It is important to note that we can use any of the
Learner classes with any parameter choices to construct an experiment. Beginning
on line 12, we see a call to the function malted, the MaLT experiment driver. malted
requires a Gram object representation of the data, a Labels object with class labels,

a cell array of Learner objects, and an optional list of preferences.

Let us explore the malted parameters. On line 13, a Gram object is constructed for
the test data. The Gram constructor is called with the result of the compute method
of the default PolynomialKernel object along with the complete data matrix (twice).
The Gram object will contain the dot product between all rows of the data matrix
with itself. Therefore, the Gram object will contain a 20 x 20 Gram matrix. We could
have used any of the available Kernel objects with any of their parameter settings.
Alternatively, we can construct a Gram object from an existing Gram matrix in a

file. We can also use more Gram matrices for multi-kernel learning.

The next malted parameter, on line 14, is the Labels object that provides the target

labels used to train the learners. The Labels constructor is called in-place with the

101

%% Script to execute example cross-validation experiment
warning off all;
%% Load data and labels
load(’../../../data/test/linear—data.txt’);
load(’../../../data/test/noisy-labels.txt’);
%% Create Learner objects
learners={
MedmixLearner ({[1],[1]},°’C’,1); ...
MedmixLearner ({[1],[1]1},’C’,10);...
MedmixLearner({[1],[1]},°C?,100)};
%% Call experiment driver
malted(
Gram(compute (PolynomialKernel,linear_data,linear_data)),...
Labels(noisy_labels),...
learners,...
’Folds’,5, ...
’Seed’,0) ;

Figure A.1: The experiment script for an example three-times replicated, five-fold,
cross-validation experiment over C' = 1, C' = 10, and C' = 100. The script sets up
parameters and invokes the MaL'T experiment driver program (malted) to do the real

work.

102

matrix of class labels. The class label file could contain several columns, one for each
target class we wish to learn. In the case of multiple classes, malted has several
strategies for running an experiment. The default multi-class behavior is to run the

experiment over the class labels in each column.

The final two malted parameters on lines 16 and 17 are part of the options list of
name, value pairs. An option name precedes the desired value for the option. In our
example, we choose to randomly partition the data into five folds, rather than the
default two. We also specify a seed for the random number generator, to make the
experiment deterministic (repeatable). Other options are available, as described in

Section A.3.

Now, we will run the experiment. First, enter “cd ../results/examples/examplel/”
to move into the correct directory. Then, enter “examplel” to execute the script.
The various scripts and programs will generate diagnostic output that will scroll onto
the command window. When this stops the program will indicate the outcome and

elapsed time. The experiment should complete successfully.

The principal output of malted is a directory tree of results. The interesting files are
at the leaf-level of the tree. The internal nodes segment the experiment according to
several variables, over which malted iterates. Since malted is recoverable, and exper-
iments are extensible, the directory tree always has the same structure. Re-starting
an experiment or changing certain parameters is handled gracefully. When discussing

the filesystem, the wildcard character (*) matches any sequence of characters.

We can test for results in several ways. In the current directory, the files “gram.mat”
and “labels.mat” should have been created. These are MATLAB representations
of objects containing the data and labels. A set of directories, with names of the

form “replication_*” should have been created. Each of these should contain a

103

directory for each target class, for this example, “class 1.” Also, there should be a
file “samples.mat” that contains a random sampling of indices into the data. In each
class directory, there should be a “missing 0%" directory and under that a directory
for each of the five folds, “fold *.” In the fold directories are directories for each
learning algorithm, in this example, “Medmix Pos=1 Neg=1 C=x.” Finally, in the
learner directories are the files “state.mat”, “train.mat”, and “test.mat.” These
leaf-level files contain the state of the trained learning algorithm and the classification

result on training and testing data, respectively.

There is usually no need to verify the complete tree of results. In fact, it is
not meant to be human readable. We view the result of an experiment with the
summarizeResults script. In the current directory in the MATLAB command win-
dow, enter “summarizeResults” and the script will generate a table of scores for the
different learners. In this example, we see one row of mean ROC AUC scores with
one column for each setting of the regularization parameter, C'. These scores can be

compared to evaluate relative performance.

The statistical significance of the result can be computed with the signedRank script.
Enter “signedRank” to compute a one-sided Wilcoxon signed-rank statistic for all

pairs of learners in the experiment. The significance threshold is 0.05.

More example programs are included in the Mal.T software distribution, along with
other documentation. Those examples illustrate some of the more advanced MaLT
features. The following sections of this appendix provide more detail regarding the

scripts used in this example.

104

A.3 malted

The MaLT experiment driver, malted, is used to run cross-validation experiments.
In Section A.2, malted is called from the experiment script, examplel.m, with appro-
priate arguments to run the 3x5cv experiment. Here, we discuss all of the arguments

for malted.

malted(gram, labels, learners, optList)

gram - a Gram object or cell array of desired gram filenames. The files
should be tab-delimited text with the first row containing column
names and the first column containing row names. Other entries
must be numeric.
labels - a Labels object or string containing the labels filename.
learners - a cell array of Learner objects

optList - a list of NAME,VALUE option pairs

optList:
"WorkDir’ - directory for output files (default=".")

'Folds’ - number of folds (default=2)
'Replications’ - array of replications to run (default=[1,2,3])

"Classes’ - cell array of class names (default=all columns in labels)

"Missing’ - struct with percent missing, kernel indices, and type of affinity be-
tween missing examples (default=struct('percent’, 0, ’kix’, [], "affin-
ity’, ”))

'Size’ - size of random sample from data set (default=size of full data set)
'Mode’ - one of {’OneVsAll’, ’OneVsSample’, ’Pairwise’} (de-
fault="OneVsAll’)

'Seed’ - random seed; given value or clock if value is [| (default=unchanged)

105

malted creates a hierarchy of directories containing the results of the specified k-fold
cross-validation experiment. Refer to examples in the MALTDIR/results/ directory

for actual usage of various arguments.

A.4 summarizeResults

The summarizeResults script computes aggregate results for malted experiments.
A score type can be selected. The default is the area under the receiver operating
characteristic curve (ROC AUC). A mean score is computed over the replications
and folds for each learner, class, and percentile of missing data. The mean scores are
printed in a table, and a struct array is returned with fields for the mean, standard

error, and sample size for each table entry.

summarizeResults traverses a hierarchy of directories containing the results created
by malted; it is very tolerant of incomplete results and attempts to return as much
meaningful information as possible. The user can restrict the directories considered

in the computation with optional parameters.

stats = summarizeResults(optList)

optList - a list of NAME,VALUE option pairs

106

optList:
"WorkDir’ - directory for work files (default=".")

’OutFile’ - name for output file (default=stdout)
'Replications’ - array of replications to run (default=[1;2;3])

"Classes’ - cell array of classes to run {’class1’;’class3’} (default=all classes)

"Percentiles’ - array of percentiles of missing data to run: [10;50] (default=[0])
'Score’ - type of score to compute: one of {*Tp’, "Tn’, 'Fp’, 'Fn’, *Accuracy’,

"Sensitivity’, *Specificity’, 'RocAuc’} (default="RocAuc’)

'Format’ - type of output: one of {'Tabular’, " HTML’} (default="Tabular’)

"Compare’ - append additional columns with difference between score columns.

One column for each row in specifier: [1,3;1,4] (default=[))

A.5 signedRank

The signedRank script computes the statistical significance of malted experiments.
A score type can be selected. The default is the area under the receiver operating
characteristic curve (ROC AUC). All scores for each learner, class, and percentile
of missing data are used in the comparison. The Wilcoxon one-sided signed rank
p-values are printed in a table, and a matrix is returned with the p-value for each
table entry. The significance threshold is 0.05 and insignificant results are designated

by “=--"in the table.

signedRank traverses a hierarchy of directories containing the results created by
malted; it is not tolerant of incomplete results. However, the user can restrict the

directories considered in the computation with optional parameters.

stats = signedRank(optList)
optList - a list of NAME, VALUE option pairs

107

optList:
"WorkDir’ - directory for work files (default=".")
’OutFile’ - name for output file (default=stdout)
'Replications’ - array of replications to run (default=[1;2;3])
"Classes’ - cell array of classes to run {’class1’;’class3’} (default=all classes)
"Percentiles’ - array of percentiles to run: [10;50] (default=[0])

'Score’ - type of score to compute: one of {*Tp’, "Tn’, 'Fp’, 'Fn’, *Accuracy’,

"Sensitivity’, *Specificity’, 'RocAuc’} (default="RocAuc’)

108

Appendix B

MaLT Reference

The Machine Learning Toolbox (MaLT) software contains MATLAB classes for creat-
ing and combining kernels, training classifiers, prediction, and cross-validation experi-
ments. The code is described below in alphabetical order. For most users, Appendix A
will be sufficient to demonstrate how to run cross-validation experiments. This ap-

pendix is provided primarily for those who wish to extend the MaL'T implementation.

B.1 Gram

Class for Gram matrix objects to be used by the learning algorithms. The Gram
object contains K Gram matrices, so it can be used in multi-kernel learning appli-
cations. A full Gram matrix must be symmetric, positive semidefinite and contain
corresponding entries along rows and columns. Partial Gram matrices are often used
for classification, e.g., one row for each test example and one column for each train

example. The Gram object also handles this case.

109

B.1.1 Gram (constructor)

Gram class constructor. Several variants are provided for different types of input

arguments.
gram = Gram/()

gram = Gram(gramObj, optList)
gramQObj - Gram object
optList - list of NAME,VALUE option pairs

gram = Gram(gramMatrices, optList)
gramMatrices - Matrix of K M x N Gram matrices (M x N x K)

optList - list of NAME,VALUE option pairs

gram = Gram(gramFiles, optList)

gramFiles - cell array of desired gram filenames. The files must be tab-delimited
text with the first row containing column names and the first column

containing row names. Other entries must be numeric.

optList - list of NAME,VALUE option pairs

optList:
"Rows’ - indices of rows to select
"Cols’ - indices of columns to select
"Zero’ - indices of rows/cols to zero
’Append’ - A (M x N x L) matrix of Gram matrices to append to the Gram
object. The new object will have K + L matrices.

gram=Gram (compute(PolynomialKernel, z, x)) will construct a Gram object from

the data matrix, x, using a linear kernel.

110

B.1.2 get

Get class attributes.

value = get(gramObj, name)

gramQbj - Gram object
name - the name of the desired attribute
name:
'RowNames’ - row names in cell array of strings

'ColNames’ - column names in cell array of strings

B.1.3 diag

Return the K diagonals of the Gram object in a (M x K) matrix. The diagonals
will be taken from the square matrix with corner at lower right and size equal to
the number of rows. This is useful for the case in which the Gram matrices are
not complete (square). This assumes the square test-test kernel entries are in the
rightmost columns of the matrix. When the matrix is complete, this strategy also

works.

d = diag(gramObj)
gramObj - Gram object

B.1.4 normalize

Normalize the gram matrices so the features lie on the surface of a unit hypersphere,

l;:(x,z) = % When the Gram matrices are not full, i.e., the diagonals do

not contain all k(x,z) or k(z, z) entries, the diagonals must be provided in optList.

111

gram = normalize(gramObj, optList)

gramObj - Gram object
optList - list of NAME,VALUE option pairs

optList:

'Diagl’ - Diagonal entries associated with first dimension for K Gram matri-
ces in a (M x K) matrix.
'Diag2’ - Diagonal entries associated with second dimension for K Gram ma-

trices in a (N x K) matrix.

B.1.5 combine

Linearly combine the gram matrices. If no weights are given, an unweighted combi-

nation is computed.

gram = combine(gramObj, optList)
gramObj - Gram object
optList - list of NAME,VALUE option pairs

optList:

"Weights’ - Vector of K weights for linear combination. To guarantee positive
semidefiniteness, non-negative weights can be used. Alternatively,
weights can be determined using SDP.

"Kernels’ - A permutation of 1..K that indicates the mapping of weights to

kernels.

112

B.2 Kernel

B.2.1 Kernel

A base class upon which classes for various kernel functions are implemented. Cur-
rently, there is no functionality in the base class. It only defines the inheritance
hierarchy. The Gram object is used for Gram matrices and is a more general way to

provide a kernel to a learning algorithm.

B.2.2 PolynomialKernel

The family of polynomial kernels k(z, z) = (az” 2 + b)¢ is implemented by this class.

B.2.2.1 PolynomialKernel (constructor)

PolynomialKernel class constructor.
poly = PolynomialKernel()

poly = PolynomialKernel(polyObj)
polyObj - PolynomialKernel object

poly = PolynomialKernel(optList)
optList - list of NAME,VALUE option pairs

113
optList:
'Coefficient’ - the multiplicative constant, a (default=1)

’Constant’ - the additive constant, b (default=0)

"Exponent’ - the exponential constant, ¢ (default=1)

B.2.2.2 compute

Compute PolynomialKernel function value(s).
k = compute(polyObj, u, v)
polyObj - object of class PolynomialKernel

u - row vector (or matrix) of test example(s)

v - row vector (or matrix) of train example(s)

B.2.3 RadialKernel

The radial basis function kernels k(z,z) = exp(—||z — z||*/0?) are implemented by

this class.

B.2.3.1 RadialKernel (constructor)

RadialKernel class constructor.
radial = RadialKernel()

radial = RadialKernel(radial Obj)
radialObj - RadialKernel object

114

radial = RadialKernel(optList)
optList - list of NAME,VALUE option pairs

optList:

"Width’ - the width constant, o (default=1)

B.2.3.2 compute

Compute RadialKernel function value(s).
k = compute(radialObj, u, v)
radialObj - object of class RadialKernel

u - row vector (or matrix) of test example(s)

v - row vector (or matrix) of train example(s)

B.3 Labels

A class to contain labels required by the supervised learning algorithms and cross-
validation result objects. This is essentially a numeric matrix with cell arrays of

strings for row and column names.

B.3.1 Labels (constructor)

labels = Labels()

115

labels = Labels(labelsObj, optList)
labelsObj - object of class Labels

optList - list of NAME,VALUE option pairs

labels = Labels(labelsMatrixz, optList)

labelsMatriz - matrix of labels

optList - list of NAME,VALUE option pairs

labels = Labels(labelsFile, optList)
labelsFile - name of desired labels file. The file must be tab-delimited text

with the first row containing column names and the first column

containing row names. Other entries must be numeric.

optList - list of NAME ,VALUE option pairs

optList:
"Rows’ - indices of examples to select

’Cols’ - indices of classes to select

"Classes’ - names of classes to select

B.3.1.1 get

Get class attributes.

value = get(labelsObj, name)
labelsObj - Labels object

name - the name of the desired attribute

name:
"Names’ - cell array of row names

'ClassNames’ - cell array of class (column) names

116

B.4 Learned

B.4.1 Learned

The base class for an object to hold the state of a trained classifier. Currently,
there is no specific base class functionality. Learned serves as parent to the derived,

learner-specific classes.

B.4.2 MedmixLearned

A class to represent a trained MedmixLearner classifier. Objects of MedmixLearned
can be used to classify new data. These objects also contain various statistics regard-

ing the training, e.g. elapsed seconds.

B.4.2.1 MedmixLearned (constructor)

MedmixLearned class constructor. There is no need to directly call this function.

B.4.2.2 get

Get class attributes.

value = get(medmixzObj, name)

medmizObj - MedmixLearned object

name - the name of the desired attribute

117

name:
labels’ - train labels

'diag’ - train Gram diagonal(s)
‘observed’ - train observed state
‘elapsed’ - elapsed seconds for training
'seed’ - random seed for training
'best’ - best re-init from training

‘inits’ - struct array of learned parameters for each re-init

B.4.2.3 classify

Predict class labels given a trained classifier and Gram object for a test data set.
The result is returned in a Result object. Optionally, test labels can be provided for

comparison. In this case, a CvResult object is returned.

result = classify(medmixObj, gram, optList)

medmizObj - MedmixLearned object
gram - Gram object with test data

optList - list of NAME,VALUE option pairs

optList:
"Labels’ - test Label object

"Missing’ - struct of missing test data entries (default=[])

B.4.3 MlmixLearned

A class to represent a trained MlmixLearner classifier. Objects of MImixLearned can
be used to classify new data. These objects also contain various statistics regarding

the training, e.g. elapsed seconds.

118

B.4.3.1 MlmixLearned (constructor)

MlmixLearned class constructor. There is no need to directly call this function.

B.4.3.2 get

Get class attributes.

value = get(mlmizObj, name)

miImizObj - MlmixLearned object

name - the name of the desired attribute

name:
‘elapsed’ - elapsed seconds for training

'seed’ - random seed for training
'best’ - best re-init from training

‘inits’ - struct array of learned parameters for each re-init

B.4.3.3 classify

Predict class labels given a trained classifier and Gram object for a test data set.
The result is returned in a Result object. Optionally, test labels can be provided for

comparison. In this case, a CvResult object is returned.

result = classify (mlmixObj, gram, optList)

milmizObj - MlmixLearned object
gram - Gram object with test data

optList - list of NAME,VALUE option pairs

119

optList:
"Labels’ - test Label object

B.4.4 SdpLearned

A class to represent a trained SdpLearner classifier. Objects of SdpLearned can be
used to classify new data. These objects also contain various statistics regarding the

training, e.g. elapsed seconds.

B.4.4.1 SdpLearned (constructor)

SdpLearned class constructor. There is no need to directly call this function.

B.4.4.2 get

Get class attributes.

value = get(sdpObj, name)
sdpObj - SdpLearned object
name - the name of the desired attribute
name:
‘elapsed’ - elapsed seconds for training
'labels’ - train labels
'diag’ - train Gram diagonal(s)

'muOpt’ - the kernel combination weights

120

B.4.4.3 classify

Predict class labels given a trained classifier and Gram object for a test data set.
The result is returned in a Result object. Optionally, test labels can be provided for

comparison. In this case, a CvResult object is returned.

result = classify(sdpObj, gram, optList)
sdpObj - SdpLearned object
gram - Gram object with test data

optList - list of NAME,VALUE option pairs

optList:

"Labels’ - test Label object

B.5 Learner

B.5.1 Learner

A base class from which all classes for learning algorithms are derived. At this time,
all derived learners are supervised algorithms. However, the Learner interface is

completely generic and can support unsupervised techniques, as well.

B.5.2 MedmixLearner

This class implements the maximum entropy discrimination (MED) mixture of Gaus-
sians classifier. The discriminant is based on the log ratio of two Gaussian mixture

models. The technique permits each Gaussian component to reside in a separate

121

feature space, thus allowing a combination of kernels. This class requires one of the

optimizers, listed below, to be installed.

B.5.2.1 MedmixLearner (constructor)

MedmixLearner class constructor.

medmixr = MedmixLearner()

medmix = MedmixLearner(medmixObj)

medmizObj - MedmixLearner object

medmix = MedmixLearner(components, optList)

components - cell array of positive class and negative class mixture components.
In this example, {[1, 3], [1]}, the positive class mixture has two com-
ponents that use kernels 1 and 3 from the GramObject and the
negative class mixture has one component and uses only kernel 1.

optList - list of NAME,VALUE option pairs

optList:
'C’ - regularization parameter (default=100)
"Thresh’ - convergence threshold (default=1e-3)
"MaxIter’ - maximum iterations (default=50)
’NumlInits’ - number of re-inits (default=1)
'Optimizer’ - 'QUADPROG’, 'MOSEK’, 'SMO’ (default="QUADPROG’)

’Observe’ - observe mixture state (default=[|)

122

B.5.2.2 get

Get class attributes.

value = get(medmizObj, name)

medmizObj - MedmixLearner object
name - the name of the desired attribute
name:
’Components’ - the component-to-kernel mappings
'C’ - regularization parameter
"Thresh’ - convergence threshold
"MaxlIter’ - maximum iterations
"‘Optimizer’ - 'QUADPROG’, 'MOSEK’, 'SVLAB’, 'SMO’
"Observe’ - observed mixture state
"Uname’ - uniquely derived name based on parameterization. This is useful in

creating directory names for experimental results.

B.5.2.3 train

Train a MED Gaussian mixture classifier given a MedmixLearner object, training
examples and labels, and a list of options. The returned trained classifier can be used

to predict labels for test examples.

123

learned = train(medmizObj, gramObj, labelsObj, optList)

medmizObj - MedmixLearner object
gramQObj - training Gram object. Can include test data in last rows/cols for
transductive applications.
labelsObj - training Labels object. Must contain corresponding train labels
only.
optList - list of NAME,VALUE option pairs

optList:
'Seed’ - value for random number generator seed. Use [] for clock. (de-
fault=unchanged)
'Missing’ - struct of missing data entries (default=[])

'Debug’ - enforce strict bug checking (default=true)

B.5.3 MlmixLearner

This class implements the maximum likelihood (ML) mixture of Gaussians classifier.
The discriminant is based on the log ratio of two (GGaussian mixture models. The
technique permits each Gaussian component to reside in a separate feature space,

thus allowing a combination of kernels.

B.5.3.1 MlmixLearner (constructor)

MImixLearner class constructor.
mlmiz = MlmixLearner()

mlmiz = MlmixLearner(mlmizObj)

miImizObj - MlmixLearner object

124

mlmiz = MlmixLearner(components, optList)

components - cell array of positive class and negative class mixture components.
In this example, {[1, 3], [1]}, the positive class mixture has two com-
ponents that use kernels 1 and 3 from the GramObject and the
negative class mixture has one component and uses only kernel 1.

optList - list of NAME,VALUE option pairs

optList:
"Thresh’ - convergence threshold (default=1e-2)

"MaxIter’ - maximum iterations (default=50)

’NumlInits’ - number of re-inits (default=1)

B.5.3.2 get

Get class attributes.

value = get(mlmizObj, name)

miImizObj - MlmixLearner object
name - the name of the desired attribute
name:
’Components’ - the component-to-kernel mappings
"Thresh’ - convergence threshold
"MaxIter’ - maximum iterations
"Uname’ - uniquely derived name based on parameterization. This is useful in

creating directory names for experimental results.

125

B.5.3.3 train

Train a ML Gaussian mixture classifier given a MlmixLearner object, training exam-
ples and labels, and a list of options. The returned trained classifier can be used to

predict labels for test examples.

learned = train(mlmizObj, gramObj, labelsObj, optList)

milmizObj - MlmixLearner object
gramObj - training Gram object. Can include test data in last rows/cols for
transductive applications.
labelsObj - training Labels object. Must contain corresponding train labels
only.
optList - list of NAME,VALUE option pairs

optList:
'Seed’ - value for random number generator seed. Use [| for clock. (de-

fault=unchanged)
'Debug’ - enforce strict bug checking (default=true)

B.5.4 SdpLearner

This class implements the SDP combination of kernels within a support vector ma-

chine (SVM) classifier. The discriminant is the SVM with a linear combination of

kernels.

126

B.5.4.1 SdpLearner (constructor)

SdpLearner class constructor. At present, this class requires the Mosek optimization

software, which is not free.

sdp = SdpLearner()

sdp = SdpLearner(sdpObj)

sdpObj - SdpLearner object

sdp = SdpLearner(kernels, optList)

kernels - array of kernels to use. In this example, [1, 3], the kernels 1 and 3

from the GramObject are combined.

optList - list of NAME,VALUE option pairs

optList:
'C’ - regularization parameter (default=100)
"Mode’ - optimization mode for kernel weights. ’'Opt’ is SDP optimized.
'NoOpt’ is equal weight. (default="Opt’)
"Weights’ - vector of fixed kernel combination weights (default=[])

'Normalize’ - re-normalize kernels after combination (default=false)

B.5.4.2 get

Get class attributes.

value = get(sdpObj, name)
sdpObj - SdpLearner object

name - the name of the desired attribute

127

name:
"Kernels’ - the kernel indices

'C’ - regularization parameter
"Mode’ - optimization mode for kernel weights. ’'Opt’ is SDP optimized.
'NoOpt’ is equal weight.
"Weights’ - vector of kernel combination weights
"Normalize’ - re-normalize kernels after combination
"Uname’ - uniquely derived name based on parameterization. This is useful in

creating directory names for experimental results.

B.5.4.3 train

Train a multi-kernel SDP SVM classifier given a SdpLearner object, training examples
and labels, and a list of options. The returned trained classifier can be used to predict

labels for test examples.

learned = train(sdpObj, gramObj, labelsObj, optList)
sdpObj - SdpLearner object

gramObj - training Gram object. Can include test data in last rows/cols for
transductive applications.
labelsObj - training Labels object. Must contain corresponding train labels
only.
optList - list of NAME,VALUE option pairs

optList:
'Debug’ - enforce strict bug checking (default=true)

128

B.6 Result

B.6.1 Result

A class for the result of a classification experiment. The Result object contains the

predictions and discriminant values.

B.6.1.1 Result (constructor)

Counstructor for Result.

result = Result()

result = Result(resultObj)
resultObj - Result object

result = Result(disc, pred, ep, en)

disc - column vector of discriminant values
pred - column vector of predicted labels
ep - matrix of expected log likelihood for positive model or ||

en - matrix of expected log likelihood for negative model or []

B.6.1.2 get

Get class attributes.

129

value = get(resultObj, name)

resultObj - Result object

name - the name of the desired attribute

name:
'Disc’ - column vector of discriminant values

"Pred’ - column vector of predicted labels
"Ep’ - matrix of expected log likelihood for positive model, if applicable.

"En’ - matrix of expected log likelihood for negative model, if applicable.

B.6.2 CvResult

CvResult extends the Result class for cross-validation experiments, where the test
labels are known. The CvResult class allows the computation of various scores of

classifier performance. The scores are retrieved with the get method.

B.6.2.1 CvResult (constructor)

Constructor for CvResult.

cvresult = CvResult()

cvresult = CvResult(cvresultOby)

cvresultObj - CvResult object

cvresult = CvResult(resultObj, labels)
resultObj - Result object

labels - Label object with true class labels

130

B.6.2.2 get

Get class attributes.

value = get(cvresultObj, name)

couresultObj - CvResult object
name - the name of the desired attribute
name:
"Disc’ - column vector of discriminant values
"Pred’ - column vector of predicted labels
"Ep’ - matrix of expected log likelihood for positive model, if applicable.
"En’ - matrix of expected log likelihood for negative model, if applicable.
"T'p’ - number of true positive predictions
"Tn’ - number of true negative predictions
'Fp’ - number of false positive predictions
'Fn’ - number of false negative predictions
’Accuracy’ - accuracy
"Sensitivity’ - sensitivity
"Specificity’ - specificity

'RocAuc’ - area under the receiver operating characteristic

B.7 smo

SMO is sequential minimal optimization, an iterative algorithm for solving an opti-
mization problem with analytic steps over a minimal number of variables. We provide
an implementation of SMO for the MedmixLearner. The code is written in C++ and
must be compiled for the hardware/operating system platform. MATLAB includes a
program called mex to compile C code for use with the MATLAB MEX interface. The

131

mex documentation is the definitive reference; however, it should be sufficient to cd
MALTDIR/src/smo and edit the mexopts.sh file, as necessary for the desired platform.
Then the command “mex smo.cpp” will build the binary code that MATLAB needs
to run SMO.

The final step is to specify that MedmixLearner should use SMO. That is done by
providing the optional parameters “’Optimizer’, ’SM0’” to the MedmixLearner

constructor.

