- .

Combining Kernels for Classification
Doctoral Thesis Seminar

Darrin P. Lewis

dpl ew s@s. col unbi a. edu

Combining Kernels for Classification — p.



°

© o o o 0

Outline

Summary of Contribution

Stationary kernel combination
Nonstationary kernel combination
Sequential minimal optimization
Results

Conclusion

-

Combining Kernels for Classification — p.



°

© o o @

Summary of Contribution

Empirical study of kernel averaging versus SDP
weighted kernel combination

Nonstationary kernel combination
Double Jensen bound for latent MED
Efficient iterative optimization
Implementation

-

Combining Kernels for Classification — p.



© o o o o ©

Outline

Summary of Contribution
Stationary kernel combination
Nonstationary kernel combination
Sequential minimal optimization
Results

Conclusion

-

Combining Kernels for Classification — p.



Example Kernel One
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Example Kernel Two
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Example Kernel Combination
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Effect of Combination

Ko(z, z) = Kq(x, 2) + Ka(x, 2)
— <¢1($)7 ¢1(Z)> + <¢2($)7 ¢2(Z)>
= (¢1(x) :d2(2), ¢1(2) : P2(2))
# The implicit feature space of the combined kernel is a

concatenation of the feature spaces of the individual
kernels.

# A basis in the combined feature space may be lower
dimensional than the sum of the dimensions of the
iIndividual feature spaces.

o -
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Combination Weights
-

fThere are several ways in which the combination weights
can be determined:

# equal weight: or unweighted combination. This is also
essentially kernel averaging 4.

# optimized weight: SDP weighted combination®.
Weights and SVM Lagrange multipliers are determined
In a single optimization. To regularize the kernel
weights, a constraint is enforced to keep the trace of the
combined kernel constant.

o -
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Seqguence/Structure

We compare!® the state-of-the-art SDP and simple
averaging for conic combinations of kernels

Drawbacks of SDP include optimization time and lack of
a free implementation

We determined the cases in which averaging is
preferable and those in which SDP is required

Our experiments predict Gene Ontology? (GO) terms
using a combination of amino acid sequence and
protein structural information

We use the 4,1-Mismatch sequence kernel® and
MAMMOTH (sequence-independent) structure kernel!?

-
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Cumulative ROC AUC
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Mean ROC AUC Top 10 Go Terms

GO term Structure Sequence Average SDP
G0:0008168 0.941 +0.014 0.709 +0.020 0.937 £-0.016 0.938 + 0.015
GO:0005506 0.934 +£0.008 0.747 +£0.015 0.927 +0.012 0.927 £+ 0.012
GO0:0006260 0.885 + 0.014 0.707 £0.020 0.878 +=0.016 0.870 4 0.015
GO0:0048037 0.916 £0.015 0.738 +£0.025 0.911 +0.016 0.909 £+ 0.016
G0:0046483 0.949 4+ 0.007 0.787 +20.011 0.937 +0.008 0.940 £ 0.008
GO0:0044255 0.891 +0.012 0.732 +0.012 0.874 +0.015 0.864 4+ 0.013
G0:0016853 0.855 +0.014 0.706 +0.029 0.837 +0.017 0.810 £ 0.019
G0:0044262 0.912 +£0.007 0.764 +0.018 0.908 4+ 0.006 0.897 £ 0.006
GO:0009117 0.892 +£0.015 0.748 +£0.016 0.890 +0.012 0.880 £ 0.012
G0:0016829 0.935+ 0.006 0.791 +0.013 0.931 4+ 0.008 0.926 + 0.007
GO:0006732 0.823 £0.011 0.781 +0.013 0.8454+0.011 0.828 £+ 0.013
GO0:0007242 0.898 +£0.011 0.859 +0.014 0.903 +0.010 0.900 £+ 0.011
GO0:0005525 0.923 +0.008 0.884 4+ 0.015 0.931 4+ 0.009 0.931 + 0.009
GO0:0004252 0.937 +0.011 0.907 +0.012 0.932 £ 0.012 0.931 £+ 0.012
GO:0005198 0.809 +£0.010 0.795+0.014 0.828 +0.010 0.824 £+ 0.011

=

-
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Mean ROC

Varying Ratio Top 10 GO Terms
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Mean ROC (SDP)
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Kernelized Discriminants

-

Single:

= Z yt)\tk(l‘t, 37) + b
t

Linear combination:

Z Yt At Z Vi km (¢, T)
Nonstationary combination®:

Zyt)\tZth m(Zt, ) + b

o -
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Parabola-Line Data
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Parabola-Line SDP

-
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Ratio of Gaussian Mixtures
L o

M
(X, ) = In 2=m=1 OmN (G0 (Xl 1)

SN BN (6 (Xo) i, T)

wt ., u Gaussian means

+b

«, 3 mixing proportions
b scalar bias

© o o @

For now, maximum likelihood parameters are estimated
iIndependently for each model.

°

Note explicit feature maps, ¢, ¢ ~.

o -
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Parabola-Line ML

-
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Ratio of Generative Models

- .

M
L(Xt; @) —In Zmzl P(m7 ¢%(Xt)|9;§) + b

SN P(n, ¢n (X0)|6)

o Find distribution P(©) rather than specific ©*
» Classify using § = sign (o P(©)L(X¢; ©)dO)
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Max Ent Parameter Estimation

Find P(@) to satisfy “moment” constraints:
f@ yt[, Xt, @)d@ > Vi Vte T
while assuming nothing additional.

Minimize Shannon relative entropy:

D(P||PO) = [o P(6)In 55 k-0

to allow the use of a prior P(0)(0©).

Classic ME solution? is:

P(8) = 5 PO (©)e2uer Ml £lX:[O) =

A fully specifies P(O).

Maximize log-concave objective J(\) = —log Z(\).

Combining Kernels for Classification

=

-
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Tractable Partition
- Z0.Q)= [ PU® o

exp(zxtzqt )In P(m, ¢, (X:)167;) + H(g:)

te7T +

= 3 Qum) n Pl 65 (X0l67) — H(Q) + =)
exp ( >0 MO aln) In Pln, 7 (X0)160;) + Har)

= > Qulm)In P(m, 67, (X)|655) = H(Q1) = b =) d®

$® Introduce variational distributions ¢, over the correct class log-sums
and (); over the incorrect class log-sums to replace them with upper

and lower bounds, respectively.
$ argming argmax, Z(\Qlg) = Z(\)
® [terative optimization is required.
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MED Gaussian Mixtures

- .

M
(X, ) = In 2=m=1 OmN (G0 (Xl 1)

SN BN (6 (Xo) i, T)

# Gaussian priors N (0,1) on g, p

+b

# Non-informative Dirichlet priors on «, 5
# Non-informative Gaussian N (0, co) prior on b.

These assumptions simplify the objective and result in a set
of linear equality constraints on the convex optimization.

o -
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Convex Objective

JNQl) = ) A(H H(g))+ > Aeve

tET teT

1 Z Mt(zqt m)k (t,1')

tt€T+



Optimization

f.ﬂ For now, we discard the H(Q;) entropy terms. T

#® We redefine A — Q) and optimize with a quadratic
program.

# Subsumes SVM (M=N=1)

The following constraints must be satisfied:

Z )\tQt(m) — Z )\tqt(m) Vm=1...M

teT -~ teT
Z )\tQt(Tb) — Z )\tqt(n) Vn=1...N
teT teT —

OS)\tSCVtZIT

o -
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Expected Gaussian LL

E{In N (¢, (X1) 1) } =
D 1

2 111(27'(') — 5 — —k+ (Xt Xt)

+ > Arge(m)kf (X, Xy)
TET T



Expected Mixing/Blas LL

f am = E{lna,,} + :E{b} Vm=1.M T
b, = E{lnB,} — E{b} VYn=1.N

When )\; € (0, c) we must achieve the following with equality:

> ar(m)(am + E{N (¢, (Xo) ) }) + H(ar) =

N Qu(n) (b + E{InN (¢, (Xo)|up)}) + H(Qe) + 3 Ve TH

th(n)(bn + E{In N (¢, (X¢)|u,)}) + H(qr) =

S Qu(m) (@ + B{nN (6 (X)) }) + H(Qu) +7¢ Ve T

We solve for a,,, form = 1..M and b,, for n = 1..N in this
(over-constrained) linear system, obtaining the expected bias and mixing

u)roportions. J
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Tractable Prediction
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Nonstationary Weights

- .

ecall the nonstationary kernelized discriminant:

f(x) = Z oy Z U t(T)km (2, ) + ).

To view a MED Gaussian mixture as nonstationary kernel
combination, we choose weight functions of the form:

exp(E{In N (¢77, (X)|tt) } + am)

vt = '
(X) Zm exp(E{lnN(¢7—Jr_z(X) ’M’I—’Il_%)} + a’m)

Note how the kernel weight depends on the Gaussian
components.

o -
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NSKC Prediction

B o
J= ) Y AMQr(myf(X)khH (X, X)

TET+ M

= 5T NN Q) (X)L (X, X)

+ D V(X (X, X) = > vy (X)k, (X, X)

+ constant.
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Parabola-Line NSKC

(Q00000000000000000000000000000) (000000000000000000000000000000)
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Parabola-Line NSKC Weight
| -
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SMO
. .

argminy J(A) = ¢I' A + $ATHA subject to:

Auq
A
Qui  Qui - - - —1 0 cvr Qwy,  Quy 0
qu2 Q’u,g o o O _]. o o qu qw2 o« o A’Ul . O
1 0 o . _q'Ul _q'U]_ o o 1 O .« o e A'UQ O
I 0 1 cer —Quy  —Quy e 0 1 ] 0]
A,
Aws

o -
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Inter-class

-

We can maintain the constraints using the following
equalities in vector form:

qu ()\AuTl) — )\Av = qu (A;Z;l) — Ay

o — @R 1) = A — (A7),
Then, we can write

Ay = (AN 1)g,
Al = (AN D)gy = (AX D) g) T 1) ge = (AN 1),

o -
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Analytic Update
B o

(AXI1) = (AXI'1) = As. We have A\, = Asg, and
AN, = Asq,. The change in the quadratic objective function
for the axes v and v IS

Ay (AN) = L Al + L AN,
+ AN Hyw ANy + AN Hyw AN, + LANTH,, AN,
+ Z#W(mf Hiw Ay + AN Hiy AN,
We must express the change in the objective, AJ,,(A)\) as
a function of As. The resulting one-dimensional quadratic

objective function, AJ,,(As), can be analytically optimized
by finding the root of the derivative under the box constraint.

o -
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Other Cases
fIntra-class:

(e 1)+ qw( 1) = qu(AI1) + qu(AZ1)

A+ A = A+ A
Newton Step:

® Occasionally interleave a second-order step?! over a
larger set of axes.

#® We discovered that SMO can get trapped in a local
plateau in the objective function.

# Though the objective and constraints are convex,
choosing a minimal set of axes to update results in slow

\_ convergence. J
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Time (s)
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Benchmark data sets

We validate NSKC on UCI!! Breast Cancer, Sonar, and
Heart data sets. We use a quadratic kernel

ki(x1,79) = (1 + 21 22)?, an RBF kernel

kQ(ZCl, :CQ) = exp(—().5(x1 — IQ)T(xl — 332)/0), and a linear
kernel kg(:ljl, ZCQ) = I?mg.

® All three kernels are normalized so that their features lie
on the surface of a unit hypersphere.

# As in Lanckriet et al.®, we use a hard margin
(c = 10, 000)

# RBF width parameter o Is set to 0.5 (Cancer), 0.1
(Sonar) and 0.5 (Heart).

o -
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Breast Cancer

T
Algorithm Mean ROC

guadratic | 0.5486 + 0.091

RBF 0.6275 £+ 0.019

linear 0.5433 £ 0.087

SDP 0.8155 + 0.015

ML 0.5573 £+ 0.03

NSKC 0.8313 £ 0.014

-
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Sonar

T
Algorithm Mean ROC

guadratic | 0.8145 + 0.01

RBF 0.8595 + 0.009

linear 0.7297 £ 0.01

SDP 0.8595 + 0.009

ML 0.6817 + 0.022

NSKC 0.8634 =4 0.008

-
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Heart

Algorithm Mean ROC

guadratic | 0.6141 + 0.032

RBF 0.5556 + 0.01
linear 0.5237 £+ 0.02
SDP 0.5556 + 0.01
ML 0.5361 + 0.024

NSKC 0.6052 + 0.016

-
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Yeast Experiment

-

We compare NSKC against three single-kernel SVMs and
against an SDP combination of the three kernels. This is

the data set used for the original SDP experiments’:>.

=

#® Gene expression kernel

Protein domain kernel

Sequence kernel

MIPS MYGD labels

500 randomly sampled genes in a 5x3cv experiment

© o o @

o -
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B

Protein Function Annotation

Class | EXxp Dom  Seq SDP NSKC
1 0.630 0.717 o0.750 0.745 0.747
2 0.657 0.664 0.718 0.751 0.755
3 0.668 0.706 0.729 0.768 0.774
4 0.596 0.756 0.752 0.766 0.778
5 0.810 0.773 0.789 0.834 0.836
6 0.617 0.690 0.668 0.698 0.717
7 0.554 0.715 0740 0.720 0.738
8 0.594 0.636 0.680 0.697 0.699
9 0.535 0.564 0603 0582 0.576
10 0.554 0.616 o0.706 0.697 0.687
11 0.506 0.470 0.480 0.524 0.526
12 0.682 0.896 0.883 0.916 0.918

=

-
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o

Seqguence/Structure Revisited

GO term Average SDP NSKC
G0:0008168 0.937 £0.016 0.938 +£0.015 0.944 + 0.014
GO0:0005506 0.927 £0.012 0.927 £0.012 0.926 + 0.013
G0:0006260 0.878 £0.016 0.870 +£0.015 0.880 + 0.015
G0:0048037 0.911 £0.016 0.909 +£0.016 0.918 + 0.015
G0:0046483 0.937 +0.008 0.940 4+ 0.008 0.941 + 0.008
GO0:0044255 0.874 +0.015 0.864 +0.013 0.874 4+ 0.012
G0:0016853 0.837 £0.017 0.810+0.019 0.823 +0.018
G0:0044262 0.908 £ 0.006 0.897 £ 0.006 0.906 + 0.007
GO0:0009117 0.890 £0.012 0.880+0.012 0.887 +0.012
G0:0016829 0.931 +0.008 0.926 4+ 0.007 0.928 + 0.008

#® NSKC and averaging are in a statistical tie

#® NSKC is significantly better than SDP

=

-
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Conclusion

-

® Prior work
® Contributions
® Future directions
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Prior work

fTo complete this research we built upon an impressive
foundation of prior work in:

# Kernel methods?®
Support vector machines*8

Multi-kernel learning14:6:1217

Maximum entropy discrimination?®

© o o ©

Protein function annotation from heterogeneous data
sets 1/
# Optimization®>:

In particular, this thesis extends the work of Jebara®.
William Noble and Tony Jebara are my advisors and
Lco-authors and greatly influenced the work. J
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Contributions

Empirical study of averaging versus SDP
Nonstationary kernel combination
Double Jensen bound for latent MED
Efficient optimization

Implementation

-
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Averaging vs. SDP
-

We present a comparison of SDP and averaging for
combining protein sequence and structure kernels for
the prediction of function.

We analyze the outcomes and suggest when each
approach is appropriate.

We conclude that in all practical cases, averaging is
worthwhile.

This result is significant to practitioners because it
Indicates that a simple, fast, free technigue is also very
effective.

-
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Nonstationary kernel combination

=

We propose a novel way to combine kernels that
generalizes upon the state-of-the-art.

NSKC allows kernel combination weight to depend on
the input space.

We demonstrate our technique with a synthetic problem
that existing technigues cannot solve.

We validate NSKC with several common benchmark
data sets and two real-world problems.

NSKC usually outperforms existing techniques.

-
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Double Jensen, SMO, Implementation

-

# The new double Jensen variational bound is tight and

-

assures that latent MED optimization will converge to a
local optimum.

Sequential minimal optimization for MED Gaussian
mixtures improves optimization speed and helps to
make the technique practical.

SMO is faster than the quadpr og standard QP solver
and matches the speed of the highly optimized
commercial Mosek optimization software.

Our C++ SMO implementation and our Matlab classes
for kernels, learning algorithms, and cross validation
experiments will be freely available for academic use.

-
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Future directions

- .

# Saddle-point optimization of indefinite objective
o Entropy terms for @)

# Transduction

# Other latent variable models

o -
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