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Abstract

The power and popularity of kernel meth-
ods stem in part from their ability to han-
dle diverse forms of structured inputs, in-
cluding vectors, graphs and strings. Re-
cently, several methods have been proposed
for combining kernels from heterogeneous
data sources. However, all of these meth-
ods produce stationary combinations; i.e.,
the relative weights of the various kernels
do not vary among input examples. This
article proposes a method for combining
multiple kernels in a nonstationary fashion.
The approach uses a large-margin latent-
variable generative model within the maxi-
mum entropy discrimination (MED) frame-
work. Latent parameter estimation is ren-
dered tractable by variational bounds and an
iterative optimization procedure. The clas-
sifier we use is a log-ratio of Gaussian mix-
tures, in which each component is implicitly
mapped via a Mercer kernel function. We
show that the support vector machine is a
special case of this model. In this approach,
discriminative parameter estimation is feasi-
ble via a fast sequential minimal optimization
algorithm. Empirical results are presented on
synthetic data, several benchmarks, and on a
protein function annotation task.

1. Introduction

Although support vector machines (SVMs), kernel ma-
chines and other discriminative learning methods pro-
duce useful classifiers, they generally are not as flexible
as generative models. For instance, Bayesian or gen-
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erative models provide a rich framework for describ-
ing an input domain and exploring various structures
and prior knowledge with respect to a given learning
problem. Recently, several techniques have emerged to
endow discriminative learning with useful properties
found in generative models. These techniques handle
probabilistic models, missing labels, feature selection,
structured models, and so forth.

Consider how elegantly sequence learning is expressed
using generative hidden Markov models. Only re-
cently have large margin methods been extended to
handle fully observed structured models such as trees
and Markov networks (Jaakkola et al., 1999; Taskar
et al., 2003; Jebara, 2004). Similarly, missing class
labels, which are naturally handled via probabilis-
tic expectation-maximization methods (Nigam et al.,
2000), were difficult to migrate into an SVM setting
(Joachims, 1999). Other extensions that are straight-
forward in a generative setting, such as feature selec-
tion, have only recently been accomplished in a large-
margin setting (Weston et al., 2001).

Similarly, generative methods provide a principled
means for performing inference on heterogeneous data
sets, in which each example is represented by data
drawn from different distributions and possibly hav-
ing different forms—vectors, sets, strings, graphs, etc.
Recently, several methods have been described for han-
dling heterogeneous data sets by combining kernels
in the context of SVM learning. These methods in-
clude using unweighted sums of kernels (Pavlidis et al.,
2001), weighted sums using semidefinite programming
(Lanckriet et al., 2002) and so-called “hyperkernels”
(Ong et al., 2005; Sonnenburg et al., 2006). These
kernel combination techniques have been applied pri-
marily in computational biology (Pavlidis et al., 2001;
Lanckriet et al., 2004; Ben-Hur & Noble, 2005; Borg-
wardt et al., 2005; Sonnenburg et al., 2006), where
heterogeneous data sets are common.

This paper describes a technique for combining kernels
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that is more general than a weighted linear summation.
The technique uses a generative framework that specif-
ically optimizes distributions to achieve maximal mar-
gins, effectively embedding latent variables into sup-
port vector machines. This permits the use of mixture
modeling in a large-margin discriminative setting.

We demonstrate the proposed technique by mixing
kernels in a nonstationary fashion, allowing kernel
weights to be a function of the data. In order to illus-
trate the differences between standard SVMs, existing
kernel combination methods, and our technique, con-
sider the SVM discriminant function:

f(x) =
∑

t

ytλtk(xt, x) + b.

Here, the class label assigned to example x by the
trained SVM depends on the training examples xt,
the SVM weights λt, a bias term b, and a single ker-
nel function k(·, ·). In the SDP and hyperkernel ap-
proaches, this formula is generalized to use multiple
kernels, each of which has a fixed weight νm:

f(x) =
∑

t

ytλt

∑

m

νmkm(xt, x) + b

The approach that we propose generalizes this formu-
lation further, allowing the kernel weight νm to depend
upon the properties of the example being classified:

f(x) =
∑

t

ytλt

∑

m

νm,t(x)km(xt, x) + b

This dependence on x is useful, for example, if the
training data is structured such that some types of
examples are best classified with one kernel and other
types of examples are best classified using another.

In order to estimate the nonstationary kernel combina-
tion, we follow derivations similar to those in (Jebara,
2004). That work used a slightly different algorithm
and only learned large margin mixtures of Gaussians.
We extend this approach by allowing the Gaussians to
have different kernels or mappings to Hilbert space.

In the following section, we describe the maximum
entropy discrimination (MED) framework (Jaakkola
et al., 1999), as well as our approach to latent vari-
able modeling and nonstationary kernel combination
(NSKC). We then describe an optimization method
targeted to this particular problem, based on sequen-
tial minimal optimization (SMO) (Platt, 1999). Fi-
nally, we demonstrate the utility of our NSKC method
in three sets of experiments: an illustrative synthetic
example, three benchmark data sets, and a protein
functional classification problem using three kernels.

(a)

(b)

Figure 1. Latent MED Gaussian mixture. This figure
shows the advantage of discriminative learning, even under
extreme model mismatch. The classifiers are log-ratios of
two Gaussian mixtures, each with two Gaussian compo-
nents. Maximum likelihood (a) classifies poorly, achieving
50% accuracy due to poor discrimination. Latent MED (b)
achieves perfect large-margin classification.

2. Latent Maximum Entropy

Discrimination

Maximum entropy discrimination (MED) (Jaakkola
et al., 1999) is a flexible generalization of support vec-
tor machines. MED produces a solution that is a dis-
tribution of parameter models P (Θ) rather than find-
ing a single parameter setting Θ∗. We will use this
approach to learn a classifier as the log-ratio of Hilbert
space Gaussian mixtures. This discriminant function
is simply

L(Xt; Θ) = ln

∑M

m=1 αmN (φ+
m(Xt)|µ+

m, I)
∑N

n=1 βnN (φ−
n (Xt)|µ

−
n , I)

+ b. (1)

Given the solution distribution P (Θ), the MED classi-
fier is ŷ = sign

(∫

Θ
P (Θ)L(Xt; Θ)dΘ

)

. In Eq. (1), the
model parameters Θ are the µ+

m, µ−
n Gaussian means,

the α, β mixing proportions, and the scalar bias, b. We
assume white Gaussian (N (0, I)) prior distributions
on the Gaussian means which regularize them towards
zero. Non-informative priors are chosen for α, β, and b
to reflect our lack of knowledge about these parameters
and to simplify the resulting MED integrals. Note the
use of explicit feature mappings φ+

m, φ−
n which permit

each Gaussian to reside in a distinct feature space.

MED finds a distribution P (Θ) that minimizes
divergence to a prior P (0)(Θ) such that we
satisfy the required classification constraints
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∫

P (Θ)ytL(Xt; Θ)dΘ ≥ γt ∀t in the expected
sense. The classical maximum entropy solution is
P (Θ) = Z−1(λ)P (0)(Θ) exp(

∑

t λt[ytL(Xt; Θ) − γt]).
Yet this solution is not fruitful here because, for
mixtures, computing and minimizing the required
partition function Z(λ) (the normalizer of P (Θ))
is intractable with exponentially many terms. To
compensate, we use variational methods. Jensen’s
inequality is first applied in the classification con-
straints and tightens them. Then, Jensen’s is applied
to the partition function to yield a tractable projec-
tion. Starting with an initial solution P (1)(Θ), we
iterate the tractable projection step and convex hull
restriction step until convergence, slowly updating
the current MED solution P (i)(Θ) and reducing
divergence to the prior P (0)(Θ), while moving within
the MED admissible set. Details of the variational
bounding and iterative update procedure are beyond
the scope of this brief paper, but are available in
(Jebara, 2004). However, here we use an improved
bound over the incorrect class examples.

Invoking Jensen on the MED inequality constraints
and then on the resulting partition function yields a
tractable partition function we denote Z̈(λ,Q|q) which
uses the variational distributions Q and q required
by the double Jensen bound. We can solve the op-
timization over λ and Q simultaneously as a quadratic
program. We update the q distribution using an
EM-like procedure to keep the MED inequality con-
straints tight. The iterative procedure—bounding the
classification constraints with Jensen using a previous
model P (i−1)(Θ) and then solving the simpler MED
problem—has been shown to converge to a local min-
imum as in the latent anomaly detection problem of
(Jaakkola et al., 1999). We solve the various integrals
for Z̈(λ,Q|q) in closed form using the formulas in (Je-
bara, 2004). Ultimately, the negative logarithm of the
partition function is our SVM-like objective function

J̈(λ,Q|q) =
∑

t∈T

λt(H(Qt)−H(qt)) +
∑

t∈T

λtγt

−
1

2

∑

t,t′∈T +

λtλt′

(

∑

m

qt(m)qt′(m)k+
m(t, t′)

+
∑

n

Qt(n)Qt′(n)k−
n (t, t′)

)

−
1

2

∑

t,t′∈T −

λtλt′

(

∑

m

Qt(m)Qt′(m)k+
m(t, t′)

+
∑

n

qt(n)qt′(n)k−
n (t, t′)

)

+
∑

t∈T +

t′∈T −

λtλt′

(

∑

m

qt(m)Qt′(m)k+
m(t, t′)

+
∑

n

Qt(n)qt′(n)k−
n (t, t′)

)

.

In J̈(λ,Q|q), we have written the objective in terms
of kernel evaluations, k+

m(·, ·) and k−
n (·, ·), rather than

inner products on our explicit feature mappings. Fur-
thermore, a set of M + N linear equality constraints
emerge from barrier functions that are by products of
the integration. These are enforced in addition to the
positivity and upper bound constraints on λ. Note
that these constraints subsume the traditional linear
equality constraint of the SVM.

∑

t∈T −

λtQt(m) =
∑

t∈T +

λtqt(m) ∀m = 1 . . . M

∑

t∈T +

λtQt(n) =
∑

t∈T −

λtqt(n) ∀n = 1 . . . N

0 ≤ λt ≤ c ∀t = 1 . . . T

We implemented the maximization of the above
J̈(λ,Q|q), subject to the above constraints, as a
quadratic program, omitting the entropy terms H(Qt)
due to their non-quadratic nature. This simplification
is tolerable for the moment, because H(Qt) vanishes
toward zero as Q becomes committed to a single mix-
ture component, which often happens in practice.

The update for q ensures that bounds on classifica-
tion constraints are tight under the previous iteration’s
P (i−1)(Θ) solution:

qt(m) ∝ exp
(

E{ln αm}+ E{lnN (φ+
m(Xt)|µ

+
m)}

)

and

qt(n) ∝ exp
(

E{ln βn}+ E{lnN (φ−
n (Xt)|µ

−
n )}

)

,

for ∀t ∈ T + and ∀t ∈ T −, respectively.

Thus, for updating q and for making predictions with
the final model, we need expectations under P (Θ) for
various components of the discriminant function. For
instance, the expected value of each positive-model
log-Gaussian for m = 1..M is

E{lnN (φ+
m(Xt)|µ

+
m)} =

−
D

2
ln(2π)−

1

2
−

1

2
k+

m(Xt, Xt)

+
∑

τ∈T +

λτqτ (m)k+
m(Xτ , Xt)

−
∑

τ∈T −

λτQτ (m)k+
m(Xτ , Xt)

−
1

2

∑

τ,τ ′∈T +

λτλτ ′qτ (m)qτ ′(m)k+
m(Xτ , Xτ ′)

−
1

2

∑

τ,τ ′∈T −

λτλτ ′Qτ (m)Qτ ′(m)k+
m(Xτ , Xτ ′)
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+
∑

τ∈T +

τ ′∈T −

λτλτ ′qτ (m)Qτ ′(m)k+
m(Xτ , Xτ ′)

We similarly compute the expected log Gaussian prob-
ability E{lnN (φ−

n (Xt)|µ−
n )} for negative models. Fi-

nally, we obtain the expected bias and mixing propor-
tions indirectly via the following surrogate variables:

am = E{ln αm}+
1

2
E{b} ∀m = 1..M

bn = E{ln βn} −
1

2
E{b} ∀n = 1..N

This is done by using the KKT conditions, which en-
sure that at non-bound Lagrange multiplier settings,
classification inequalities are achieved with equality. In
other words, the stricter MED constraints implicit in
Z̈(λ,Q|q) become equalities. Thus, when λt ∈ (0, c)
we must achieve the following with equality:

∑

m

qt(m)(am + E{lnN (φ+
m(Xt)|µ

+
m)}) + H(qt) =

∑

n

Qt(n)(bn + E{lnN (φ−
n (Xt)|µ

−
n )}) + H(Qt) + γt

for t ∈ T + and the following equalities

∑

n

qt(n)(bn + E{lnN (φ−
n (Xt)|µ

−
n )}) + H(qt) =

∑

m

Qt(m)(am + E{lnN (φ+
m(Xt)|µ

+
m)}) + H(Qt) + γt

for t ∈ T −. We solve for am for m = 1..M and bn

for n = 1..N in this (over-constrained) linear system,
obtaining the expected bias and mixing proportions.

To make predictions with the latent MED’s learned
P (Θ), we cannot directly use the expectation predic-
tion rule due to its intractable log-sums. Instead, we
employ the following approximate prediction using the
expectation formulas we just derived:

ŷ = ln

∑

m exp
(

E{lnN (φ+
m(X)|µ+

m)}+ am

)

∑

n exp
(

E{lnN (φ−
n (X)|µ−

n )}+ bn

) . (2)

2.1. Nonstationary Kernel Prediction

We now show how the decision rule in Eq. (2) can
be viewed as a nonstationary kernel combination. We
rewrite the equations using the definition of the ex-
pectations for the log-Gaussians. First, recall Jensen’s
inequality, which holds for any non-negative qm and
νm scalars such that

∑

m νm = 1:

ln
∑

m

qm = ln
∑

m

νm

qm

νm

≥
∑

m

νm ln
qm

νm

If we set νm = qm
∑

m
qm

and substitute into the right

hand side above, the inequality is actually an equality:

ln
∑

m

qm ≥
∑

m

qm
∑

m qm

ln
qm
qm

∑

m
qm

= ln
∑

m

qm

Given the above, we choose:

ν+
m(X) =

exp(E{lnN (φ+
m(X)|µ+

m)}+ am)
∑

m exp(E{lnN (φ+
m(X)|µ+

m)}+ am)

ν−
n (X) =

exp(E{lnN (φ−
n (X)|µ−

n )}+ bn)
∑

n exp(E{lnN (φ−
n (X)|µ−

n )}+ bn)

The ratios above can be integrated into Eq. (2) as
weights as follows:

ŷ =
∑

m

ν+
m(X)E{lnN (φ+

m(X)|µ+
m)}

−
∑

n

ν−
n (X)E{lnN (φ−

n (X)|µ−
n )}

Inserting our formula for E{lnN (φ+
m(X)|µ+

m)} and
E{lnN (φ−

n (X)|µ−
n )} yields the prediction rule:

ŷ =
∑

τ∈T +

∑

m

λτQτ (m)ν+
m(X)k+

m(Xτ , X)

−
∑

τ∈T −

∑

m

λτQτ (m)ν+
m(X)k+

m(Xτ , X)

−
∑

τ∈T −

∑

n

λτQτ (n)ν−
n (X)k−

n (Xτ , X)

+
∑

τ∈T +

∑

n

λτQτ (n)ν−
n (X)k−

n (Xτ , X)

+
∑

m

ν+
m(X)k+

m(X,X)−
∑

n

ν−
n (X)k−

n (X,X)

+ constant.

3. Improved Optimization with SMO

The general form of the objective function for the
MED discriminative projection step is J(λ) = cT λ +
1
2λT Hλ, where the Hessian matrix, H, contains the

quadratic coefficients from our objective J̈(λ,Q|q) and
the linear coefficients are in the vector c. The vector
λ is the solution to the combined QP proposed in the
previous section, i.e., λ← Qλ. The constraints are of
the form Aλ = 0. In general, we cannot simultane-
ously maintain the M + N linear equality constraints
by optimizing over only axis pairs, as in Platt’s SMO
for the SVM (Platt, 1999). However, some analysis
reveals that we can reduce the number of axes to a
maximum of max(M,N) and a minimum of two, de-
pending on the situation.
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Latent MED is more general than the SVM. We repli-
cate variables to permit optimization over a latent dis-
tribution. This replication imparts regular structure
to the constraints. Eq. (3) shows the form of the con-
straint matrix, A, for a latent MED problem with four
latent states, two for each binary class from which ex-
amples are drawn.








... qu1
qu1

... −1 0 ... qw1
qw1

...

... qu2
qu2

... 0 −1 ... qw2
qw2

...

... 1 0 ... −qv1
−qv1

... 1 0 ...

... 0 1 ... −qv2
−qv2

... 0 1 ...









(3)
The illustrated columns of A correspond to axes u1, u2,
v1, v2, and w1, w2 associated with examples u, v, and
w in the latent MED problem. The entries of the form
qij

are given by the posterior probability distributions
qi over the M and N latent states of the generative
models. (In this case, M = N = 2.) Note the replica-
tion of values within the constraint matrix. A corre-
sponding replication is required in the dual variables,
λ. The embedded N×N and M×M identity matrices
effectively select a latent configuration of the opposite

class and its associated dual variable. Note how the
form of the constraints differs based upon the class of
the chosen example. We will now explore the effect of
this structure on the optimization problem.

3.1. Inter-class

Let us consider two examples, u and v from opposite
classes. Without loss of generality, let u be positive
and v be negative. Then we can maintain the con-
straints using the following equalities in vector form:

qu

(

λ̂u

T
1
)

− λ̂v = qu

(

λT
u 1

)

− λv

λ̂u − qv

(

λ̂v

T
1
)

= λu − qv

(

λT
v 1

)

.

Then, we can write

∆λv = (∆λT
u 1)qu

∆λu = (∆λT
v 1)qv = (((∆λT

u 1)qu)T 1)qv = (∆λT
u 1)qv.

Thus, (∆λT
u 1) = (∆λT

v 1), and ∆λu and ∆λv are cou-
pled via their norms by a single scalar that we will
call ∆s. We now have ∆λv = ∆squ and ∆λu = ∆sqv.
In other words, we can maintain the linear equality
constraints by updating the solution with the scaled
posterior distributions qu and qv. The change in the
quadratic objective function for the axes u and v is

∆Juv(∆λ) = cT
u ∆λu + cT

v ∆λv

+ 1
2∆λT

u Huu∆λu + ∆λT
u Huv∆λv + 1

2∆λT
v Hvv∆λv

+
∑

t6=u,v
(∆λT

t Htu∆λu + ∆λT
t Htv∆λv).

All that remains is to express the change in the ob-
jective, ∆Juv(∆λ) as a function of ∆s by changing
variables. The resulting one-dimensional quadratic ob-
jective function, ∆Juv(∆s), can be analytically opti-
mized by finding the root of the derivative under the
box constraint.

3.2. Intra-class

Now, we examine the case in which axes u and w are
chosen from the same class. Without loss of generality,
we chose u and w members of the positive class as
in Eq. (3). As in the inter-class case, we write the
constraints in terms of our two variables, u and w, in
vector form:

qu

(

λ̂u

T
1
)

+ qw

(

λ̂w

T
1
)

= qu

(

λT
u 1

)

+ qw

(

λT
w1

)

λ̂u + λ̂w = λu + λw

These constraints are simpler than in the previous
case. In particular, when qu = qw, we obtain the fur-
ther simplification:

(

λ̂u

T
1
)

+
(

λ̂w

T
1
)

=
(

λT
u 1

)

+
(

λT
w1

)

(4a)

λ̂u + λ̂w = λu + λw. (4b)

Note that (4a) is satisfied when (4b) is satisfied.
Therefore, we need only enforce that the sum of the
vectors is constant. It is important to observe that
the intra-class case is comprised of two sub-cases dis-
tinguished by whether qu = qw or not.

3.2.1. Intra-class Equal

Now, we continue with the derivation of the intra-

class equal case. Referring to Eq. (4b), we see that
the constraints can be satisfied, at each iteration,
by choosing a single sub-axis k along which to opti-
mize, so we restrict ourselves to uk and wk. In this
case, the latent MED optimization decomposes di-
rectly into Platt’s SMO. Working from (4b), we obtain
ˆλuk

+ ˆλwk
= λuk

+ λwk
, which leads us to

ˆλuk
= λuk

+ (λwk
− ˆλwk

)

ˆλwk
= λwk

+ (λuk
− ˆλuk

).

We also observe that ∆λuk
= −∆λwk

. We again call
this scalar quantity ∆s. The derivation of update rules
proceeds analogously with Platt’s SMO.

3.2.2. Intra-class Unequal

Finally, we consider the intra-class unequal case. This
situation is slightly complicated by the fact that the
posterior distributions qu and qw are not equal, and
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Figure 2. Running time comparison of SMO and

QUADPROG. Running time as a function of the num-
ber of examples for our SMO implementation and Matlab’s
QUADPROG on the synthetic data set described in Sec-
tion 4.1.

so no longer factor out and cancel as in (4a). This
change requires us to explicitly enforce a constraint
on the norm of the dual variable vectors, λ̂u and λ̂w.
In order to enforce the additional constraint, we must
chose an additional sub-axis, l, over which to optimize.

Ultimately, we express the relationship between the
four changing axes as a single scalar ∆s and derive
update rules, similarly to the other cases.

3.3. Newton Step

In addition to the SMO step types we described above,
we found that it is necessary to occasionally interleave
a second-order step over a larger set of axes. In work-
ing with the implementation, we discovered that SMO
can get trapped in a local plateau in the objective func-
tion. Though the objective and constraints are con-
vex, choosing a minimal set of axes to update results
in slow convergence. The equality-constrained Newton
step takes a more global view of the objective and pro-
gresses past some local problems. Due to the typically
small working set, the efficiency of the optimization is
not compromised.

3.4. Timing

To evaluate the efficiency of our optimization proce-
dure, we ran a small timing experiment using the syn-
thetic data set described in the next section. We com-
puted the latent MED discriminative projection step
for varying numbers of examples. We repeated this
procedure several times to obtain mean optimization
times for our SMO and for Matlab’s QUADPROG.
The results are summarized in Figure 2. With 500
examples, SMO is 7.5 times faster than QUADPROG.

4. Results

4.1. Synthetic Data Set

In order to illustrate the characteristics of nonstation-
ary kernel combination, we first present a synthetic
two-dimensional problem. We generate a binary la-
beled data set using a function that is quadratic in
part of the input space and linear elsewhere. The func-
tion is f(x) = x2 for |x| < 1, and f(x) = 1 otherwise.
Points are translated along the vertical axis to create
two classes for the binary problem. We then attempt
to learn a decision surface using SDP kernel combina-
tion and the proposed nonstationary kernel combina-
tion.

The results are depicted in Figure 3. The decision
surface of the SDP combination (b) is confounded be-
tween achieving large margin and high classification
accuracy within the confines of a linear combination of
kernels. The NSKC decision surface (c) achieves per-
fect large-margin classification, illustrating the merit
and novelty of the technique.

4.2. Benchmark Data Sets

Next, we validate the nonstationary kernel combina-
tion technique on several benchmark data sets from
the UCI machine learning repository. We use the Wis-
consin breast cancer, sonar, and statlog heart data,
all of which were previously used to validate the SDP
method (Lanckriet et al., 2002). We use three ker-
nels: a quadratic kernel k1(x1, x2) = (1 + xT

1 x2)
2,

a radial basis function (RBF) kernel k2(x1, x2) =
exp(−0.5(x1 − x2)

T (x1 − x2)/σ), and a linear kernel
k3(x1, x2) = xT

1 x2. All three kernels are normalized.
As in (Lanckriet et al., 2002), we use a hard margin
(with c = 10, 000 to avoid numerical difficulties when
c =∞), and the RBF width parameter σ is set to 0.5,
0.1 and 0.5, respectively, for the three tasks. NSKC
and maximum likelihood (ML) mixtures use one mix-
ture component per kernel for each class model, i.e.,
M = N = 3. We report mean test set accuracy across
five random replications of three-fold cross validation.

Table 1 summarizes the results of these experiments.
NSKC achieves the top mean test set accuracy for two
of three data sets. We believe that this performance
is due, in part, to NSKC’s ability to achieve a more
regularized classifier by using the lower capacity poly-
nomial and linear kernels for regions of the input space
in which they perform well. By contrast, the SDP
technique is forced to down-weight those entire ker-
nels and use the RBF kernel with hard margin. The
SDP classifier overfits in many cases.

The breast cancer data set is not separable using the
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Figure 3. Nonstationary kernel combination on synthetic data. The figure illustrates the decision boundary
between examples taken from a function that is piecewise linear and quadratic. Panel (a) shows the ML mixture decision
boundary; panel (b) shows the SDP decision boundary; panel (c) shows NSKC decision boundary; panel (d) shows the
NSKC kernel weight over the input space. NSKC is the only technique to separate the data. In the NSKC solution, note
the smoothness of the linear and quadratic regions and the sharp kinks at their intersection.

Table 1. Comparison of three benchmark data sets. Accuracy for three UCI dataset under six classification methods.
Mean and standard deviations of test set accuracy are shown across fifteen cross-validations (three-fold CV repeated five
times). The first three methods are SVMs trained with single kernels, followed by the SDP approach of (Lanckriet et al.,
2002), a maximum likelihood mixture of Gaussians classifier, and the NSKC method. In each row, the maximal mean
value is indicated in boldface.

Dataset quadratic RBF linear SDP ML NSKC
Breast 0.549 ± 0.091 0.628 ± 0.019 0.543 ± 0.087 0.816 ± 0.015 0.557 ± 0.03 0.831 ± 0.014

Sonar 0.814 ± 0.01 0.860 ± 0.009 0.730 ± 0.01 0.860 ± 0.009 0.682 ± 0.022 0.863 ± 0.008

Heart 0.614 ± 0.032 0.556 ± 0.01 0.524 ± 0.02 0.556 ± 0.01 0.536 ± 0.024 0.605 ± 0.016

polynomial or linear kernels. Nonetheless, these ker-
nels are useful to the combination techniques. Indeed,
both the SDP and NSKC methods gain significant ad-
vantage by combining kernels.

The sonar data set is the only data set that is separable
using each of the three kernels individually. The SDP
technique matches the accuracy of the best individual
kernel, the RBF. NSKC achieves a small additional
gain from nonstationarity.

For the heart data set, the best accuracy is achieved
using the polynomial of degree two, with which the
data set is not separable. The data is separable using
the kernel combination techniques. However, neither
SDP nor NSKC make full use of the polynomial kernel.
NSKC does seem to apply the polynomial over at least
part of the input space.

4.3. Yeast Protein Functional Classification

In a larger experiment, we applied our nonstationary
kernel combination to the problem of protein function
annotation from a collection of heterogeneous kernels.
We compare the latent MED method against SVMs
using single kernels and the SDP method in (Lanckriet
et al., 2004) using data from that study (noble.gs.

washington.edu/proj/yeast). We use three kernels,
representing gene expression, protein domain content,
and protein sequence similarity. We train one-versus-
all classifiers for 12 functional classes of yeast genes.
We randomly sample from the data set to reduce its
size to 500 genes and then perform three-fold cross-
validation, repeating the entire procedure five times.
For all methods, we use the regularization parameter
c = 10, as in (Lanckriet et al., 2004). With NSKC, we
(as usual) use one component per kernel per class.

Table 2 summarizes the mean AUCs over 15 trials for
all methods. NSKC has the highest accuracy for eight
of the twelve classes. We speculate NSKC’s advantage
over SDP in these experiments stems from its ability
to capture some of the latent structure in the data.
In particular, the 12 yeast functional classes represent
the top level of a MIPS functional hierarchy. Thus,
these 12 classes contain meaningful substructure and
subclasses which NSKC can exploit.

5. Discussion

In this paper we have presented a nonstationary
method for combining kernels, based on latent vari-
able modeling. The technique is motivated by the
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Table 2. Comparison of yeast protein function anno-

tation methods. The table lists, for each functional class
(row) and each classification method (column) the mean
AUC from five times three-fold cross-validation. The first
three columns correspond to SVMs trained on single ker-
nels (gene expression, protein domain content and sequence
similarity, respectively). The final two columns contain re-
sults for the SDP and nonstationary kernel combination
methods. For all methods, standard errors (not shown) are
generally on the order of 0.02, except for classes 2 (0.04)
and 9 (0.05).

Class Exp Dom Seq SDP NSKC
1 0.630 0.717 0.750 0.745 0.747
2 0.657 0.664 0.718 0.751 0.755

3 0.668 0.706 0.729 0.768 0.774

4 0.596 0.756 0.752 0.766 0.778

5 0.810 0.773 0.789 0.834 0.836

6 0.617 0.690 0.668 0.698 0.717

7 0.554 0.715 0.740 0.720 0.738
8 0.594 0.636 0.680 0.697 0.699

9 0.535 0.564 0.603 0.582 0.576
10 0.554 0.616 0.706 0.697 0.687
11 0.506 0.470 0.480 0.524 0.526

12 0.682 0.896 0.883 0.916 0.918

natural intuition that it may be useful for the ker-
nel combination weights to be a function of the input.
Our nonstationary kernel combination technique lever-
ages the power and flexibility of generative probabilis-
tic models, while providing the discriminative accuracy
of large margin parameter estimation.

We describe a large-margin discriminative optimiza-
tion for the latent variable model, carried out within
the maximum entropy discrimination framework. We
present a novel formulation in which each Gaussian
component can be implicitly mapped to a distinct fea-
ture space, via a Mercer kernel. We derive an efficient
implementation of the optimization, based on the se-
quential minimal optimization algorithm and we com-
pare the timing to a popular quadratic program solver.

To validate the technique, we present empirical results
on synthetic data, several benchmarks, and on a pro-
tein function annotation task. In general, our nonsta-
tionary kernel combination technique shows an advan-
tage over existing techniques.
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Sonnenburg, S., Rätsch, G., & Schafer, C. (2006). A gen-
eral and efficient multiple kernel learning algorithm. Ad-
vances in Neural Information Processing Systems.

Taskar, B., Guestrin, C., & Koller, D. (2003). Max mar-
gin markov networks. Advances in Neural Information
Processing Systems. Cambridge, MA: MIT Press.

Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Pog-
gio, T., & Vapnik, V. (2001). Feature selection for SVMs.
Advances in Neural Information Processing Systems 13.
Cambridge, MA: MIT Press.


