The Value of Unlabeled Data for Classification Problems

Tong Zhang
Mathematical Sciences Department,
IBM T.J. Watson Research Center,
Yorktown Heights, NY 10598 USA

tzhang@watson.ibm.com

Abstract

Recently, there has been increasing interest in using unlabeled data for classifica-
tion. However, whether these unlabeled data are truly useful is still under debate. In
order to have a better understanding of relevant issues, it is worthwhile to precisely
formulate the problem and carefully analyze the value of unlabeled data under certain
learning models. In this paper, we approach this problem from the statistical point of
view, where we assume that a correct model of the underlying distribution is given.
We demonstrate that Fisher information matrices can be used to judge the asymp-
totic value of unlabeled data. We apply this methodology to both “passive partially
supervised learning” and “active learning”, and draw conclusions from this analysis.
Experiments will be provided to support our claims.

1 Introduction

In today’s world, an enormous amount of information is available in electronic form. In
order to process these data, it is very useful to organize them so that similar data are
grouped together. It is also very desirable that the data can be organized automatically by a
computer program. This leads to a classification problem. Typically, a human has to set up
the categories and assign labels to each data point. A supervised machine learning algorithm
will then be employed to construct an underlying classification rule from the labeled data so
that future unlabeled data can be automatically categorized. In order to obtain a desirable
machine-constructed categorizer under this scenario, the required human labeling effort can
be extremely tedious and time consuming. It is thus very important to reduce this human
labeling effort as much as we can.

Since in many applications, enormous amounts of unlabeled data are available with little
cost, it is therefore natural to ask the question that in addition to human labeled data,
whether one can also take advantage of the unlabeled data in order to improve the effective-
ness of a machine-learned categorizer.

There are two existing approaches to this problem. In the first approach, one trains
a classifier(s) based on the labeled data as well as unlabeled data. Typically, the label
of an unlabeled data point is imputed by certain means based on the current state of the



classifier(s). The now augmented “labeled” data is then used to retrain the classifier(s).
Two key issues in this approach are how to impute labels of unlabeled data and how to
use the augmented labeled data to retrain the classifier(s). Examples of this approach are
[1,2,7,10, 13, 12]. The second approach does not impute labels for the unlabeled data in the
training phase. Instead, one first trains a classifier(s) based only on the labeled data. Then
based on the current state of the classifier(s), one selects some of the “most informative”
data so that knowing labels of the selected data is likely to greatly enhance the construction
of the classifier(s). The selected data will then be labeled by a human or an oracle, and be
added to the training set (to retrain the classifier(s)). This procedure can be repeated, and
our goal is to label as little data as possible to achieve a certain performance. Examples of
this approach are [3, 5, 8, 9, 11]. This second approach is usually called active learning in
the literature. In order to distinguish from it, we shall thus call the first approach passive
partially supervised learning in this paper.

Although there have been many previous studies on enhancing classification performance
by using unlabeled data, the existing efforts are mostly related to mixture models and en-
semble methods in one form or another. In particular, there has been little analysis on the
value of unlabeled data under a relatively general learning model, ¢.e. whether the unlabeled
data can be truly helpful at all (under a certain learning model), and more importantly, how
much it helps and what is the underlying characteristics of the model that determines the
usefulness of unlabeled data. This paper addresses some aspects of this question under a
probabilistic framework. Although we do not intend to provide a direct solution under other
learning models, our analysis provides valuable insights into those methods so that the useful-
ness of unlabeled data can be characterized. Since this work is motivated from our research
on text document categorization where an enormous amount of unlabeled data is available
with little cost, it is therefore natural for us to provide experiments on text-categorization
problems in order to illustrate the theoretical analysis.

2 Problem formulation

For clarity, we shall only discuss binary classification problems: that is, we would like to
predict the label y € {—1,1} for a given data z. We view this problem in a probabilistic
framework, where we would like to find a distribution parameter a so that the joint distri-
bution is p(z,y) = p(z,y|a). The effect of unlabeled data on the efficiency of parameter
estimation will be analyzed using statistical methods. As we shall see later, in this context,
it is very important to distinguish the following two types of joint probability distribution
models:

type 1 parametric model: p(z,y|a) = p(z|a)p(y|z, e), where both p(z|a) and p(y|z, ) have
known functional forms. p(z|a) has a non-trivial dependency on c.

type 2 semi-parametric model: p(z,y|a) = p(z)p(y|z, ), where the conditional probability
p((y|z, @) still has a known functional form, but the data probability p(z), decoupled
from p(y|z, ), can have an unknown (or non-parametric) functional form independent
of a.



Models of type 1 include mixture models such as mixtures of Gaussians and Naive
Bayesian models where the latter have been intensively applied to text categorization with
reasonable results:

p(z,yla) = pyp(z|ay)
p(zla) = poip(zla_i)+ pip(z]on).

Models of type 2 include the logistic model:

p(z,yla) = (1 + exp(—a’zy)) "p(z), (1)

where the functional form of p(z) is non-important. In theory, one can use the mazimum-
likelihood estimate (MLE) to determine the model parameter:

& = argmin E,, In(1 4 exp(—a’zy), (2)

where FE, indicates the empirical expectation over n observed data. In practice, the MLE
formulation is ill-conditioned. It is therefore necessary to employ the following regularized
logistic regression with appropriate chosen A:

& = arg n}xin E,In(1 4+ exp(—aTzy) + Ao (3)

Recently, the regularized logistic regression has been applied to text categorization problems
[14] with a performance comparable to the linear support vector machine [6, 4] which is
generally considered as a state of the art method for text-categorization. This is actually
not surprising since logistic regression and support vector machines have very similar loss
functions — hence they should have comparable performances.

Due to the recent popularization of SVM, it is very desirable for us to analyze it in
the probabilistic framework. In this paper, we use the logistic model as an approximate
probability model for SVM. Our analysis and conclusions on logistic regression can then
be applied to SVM. Note that there are different ways to modify an SVM as a normalized
probability model. Some might have a very weak o dependency in p(z) which is actually
non-essential. In our opinion, it is useful to relate an SVM to a probability model of type 2
in order to understand its behavior.

3 Asymptotic efficiency

In this paper, we judge the value of unlabeled data by evaluating its impact on the efficiency
of parameter estimation. It is well-known from the standard Cramér-Rao lower-bound that
for any unbiased estimator ¢, of a based on n i.i.d. samples from p(z,y|a), the covariance
of t,, satisfies:

cov(t,) > lI(oz)_l,

3

where

52
I(a) = _/P($7y|a)@1np(w,y|a)d:cdy
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is the Fisher information matrix. Since (under quite general conditions) the maximum likeli-
hood estimate achieves this lower bound and is unbiased asymptotically, therefore maximum
likelihood estimate is the asymptotically most efficient (unbiased) estimator. Its efficiency
can be measured by the Fisher information that is intrinsic to the probability model.

In the following, our discussion will emphasize the design of appropriate maximum likeli-
hood estimates using the full information of unlabeled data. Accordingly, the value of unla-
beled data can be evaluated by the gain on the corresponding Fisher information matrices.
Note that this specific analysis does not capture the different behavior of the non-regularized
logistic regression (2) from its regularized version (3). However, it is possible to generalize
the analysis by either using a Bayesian approach where we regard the regularization term
as a prior or using the traditional ill-posed system approach where the data space of z can
be infinite dimensional and the inverse of the Fisher information operator /() is considered
unbounded. For text-categorization problems, since the data dimension can be much more
than the number of the data points, it is very reasonable to regard it as infinite dimensional
so that the ill-posed system point of view becomes appropriate.

In the following, we shall only consider the standard MLE /Fisher information analysis for
clarity. The extended analysis for regularized formulation will be more carefully discussed in
the full paper. However, the conclusions of the extended analysis will be the same of those
from the MLE analysis. One reason is that we shall see shortly that the most important dif-
ference comes from the type (1 or 2) of the probability model. Note that a data independent
prior does not change a model’s type.

Even though we use the Fisher information argument to draw conclusions, the analysis
itself should only be regarded as a guide that reveals important characteristics of the under-
lying model assumption that have significant impact on the value of unlabeled data. This
indicates that the characteristics of the model assumption revealed by the Fisher information
analysis can provide valuable insights even when we only have an approximate probability
model. We shall mention that the Fisher information argument has also been applied in [12]
to study passive partially supervised learning. However, their derivation was very vague and
there was confusion about asymptotic results versus small sample results as well as confusion
about the data generation mechanism. In addition, the functional form of Fisher information
associated with unlabeled data was not even given in [12]. Consequently, there exist some
loopholes in their arguments (see [10]).

4 Passive partially supervised learning

In this section, we shall derive a maximum-likelihood estimate that utilizes the unlabeled data
and compute its Fisher information. The value of unlabeled data can then be quantitatively
evaluated as the gain on the Fisher information. Throughout this paper, we shall assume
that our model has a finite positive definite Fisher information and the appropriate MLE is

both consistent and Fisher efficient which is valid under quite mild assumptions *.

1A simple well-known example for the inconsistency of MLE is the mixture model density estimation
allowing the variance of a mixture component to approach 0. In this case, an MLE can over-fit any particular
data point leading to an infinite likelihood. Such pessimistic models will be excluded in this paper.



In order to obtain an eflicient MLE, we shall consider the following model of data gen-
eration. There is an unknown ratio v € [0, 1] which is drawn from an unknown distribution
P(y). We draw n independent samples z: with probability 7, we give it a known label
y € {—1,1}; with probability 1 — +, the label is unknown. In the case of unknown label, we
identify the data with y = 0. Now, the joint data distribution is a mixture of

m@yziwoz/}@mmwwwwzm@mww
and
M%yzomri/Mﬂ®ﬂ—WMPWN=Mﬂ®O—W%

where 4 = [ydP(y) is the expectation of 7.
For a probability model of type 1, we now assume that an oracle knows 4. With this
knowledge, the asymptotically most efficient estimator is MLE which becomes

G5 = arg sgp Z In[p(z;, ys| )] + Z In[p(z;|e)(1 — )],

where the index 2 goes over labeled data and the index ; goes over unlabeled data. This
asymptotically most efficient estimator of a under the assumption of knowing the extra
knowledge of 7 is exactly the same estimate as

& = arg sup Zlnp(mi,yi|a) + Zlnp(:cj|a)

J

of a without knowing 4. The Fisher information of this estimator (which depends on ¥) is
given by

Ilabeled—}—unlabeled (Oﬁ)
2

_ 9° _ d
— 7 [ bla,yle) 505 ple,yla)dedy — (1~ 7) [ plala) 55 Inplola)de
- Ilabeled(a) + Iunlabeled(a)-

Since for models of type 1, when 4 < 1, the Fisher information Iunabeiea() is non-zero,
therefore including unlabeled data always helps. Note that if 4 = 0, then @ may not be
fully determined even if I is positive definite at the optimal parameter. The reason is that
the standard (and obvious) regularity condition for the consistency of MLE (in fact, for any
estimator) that “the probability distribution by any two different values of o are distinct”
may be violated for certain models (see related discussions in [2, 10]).

For a semi-parametric probability model of type 2, we consider the maximum likelihood
estimate corresponding to an oracle that knows the precise distribution p(z) as well as 5. By
similar arguments outlined above, this optimal MLE is the same as the following estimator
without any knowledge of either p(z) or ¥:

& — argsup Y Inplufa, o),
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where index 1 goes over labeled data. The corresponding Fisher information is

Ilabeled—}-unlabeled (OA)

82
= -7 / p(z,yle) 5 =5 Inp(yle, z)dzdy = liapetea(e)-

This indicates that for models of type 2, unlabeled data does not help (at least asymptot-
ically). This conclusion is not surprising since for a model of type 2, the data distribution
p(z) does not carry any parameter information. Therefore including data points without
labels clearly won’t have any effect on parameter estimation.

Due to the relationship between the logistic regression which is a probability model of type
2, and the support vector machine, an important consequence from our analysis implies that
transductive SVM in its current form is unlikely to be very helpful in general. This statement
contradicts some earlier studies (although there are also supports for similar conclusions),
most noticeably [7]. Therefore we would like to investigate this issue further.

As mentioned before, in order for unlabeled data to have an impact on the parameter
estimation, the data distribution p(z) should be parameter dependent. In the case of logis-
tic regression and SVM, a strong parameter dependency of p(z) is not necessary for these
methods to work well in the supervised setting. The success of these methods only indi-
cates that there exists a reasonably large margin between in-class and out-of-class members.
However, in the passive partially supervised setting, the basic data distribution assumption
of a transductive SVM is that p(z) (without any knowledge of the data labels) should have
an artificial margin that is as large as possible, so that labels can be imputed according
to this artificially determined margin. There is insufficient evidence so far (both in theory
and in practice) to indicate that this artificial margin indeed has much to do with the true
separation between classes, especially for problems containing multiple clusters (and thus
multiple possible large margin separations) typically observed in practice.

In order to support our analysis, we have implemented a version of transductive support
vector machine and applied it to the text categorization problem investigated in [7]. We use
the Mod-Apte split of the Reuters-21578 dataset availabel from
hitp://www.research.att.com/~lewis/reuters21578.html. In our experiments, we use word
stemming without any stop-word removal or feature selection. Although in some specific
setups, there might be some improvement (especially if the parameters are tuned in favor of
transduction), we have found no statistically significant evidence that transduction is helpful
in the general situation.

To understand what really happened in our experiments, we report the result from one
run over the category “earn” in Reuters. We select (randomly) 20 data from the 9603 training
data in the Mod-Apte split to label. In the case shown in Figure 1, we have 5 in-class members
and 15 out-of-class members. We use the rest 9583 training data points as unlabeled data
to train a transductive version of SVM. The top line in Figure 1 contains the histograms of
the projection (by inner products) of the 9603 training data to the computed linear classifier
weight from the supervised SVM by using labeled data only, where the projections of the
in-class data, out-of-class data, and the combination of the two are plotted separately. The
middle line in Figure 1 contains the corresponding histograms with the weight computed from
a transductive SVM by using both labeled and unlabeled data. The bottom line contains



the scatter plots of the unlabeled in-class data, unlabeled out-of-class data, as well as the
labeled data, where x-axis is the projection to the weight from the supervised SVM and the
y-axis is the projection to the weight from the transductive SVM. In the bottom right scatter
plot, each labeled in-class data is marked by a triangle and each labeled out-of-class data is
marked by a circle. It can be seen that the labeled data has been perfectly separated with
both the supervised SVM and the transductive SVM.

Taking the perfect separation of labeled data into consideration, without any prior knowl-
edge of the labels for unlabeled data, the histogram from the transductive SVM looks much
more appealing since there is a significant margin that separates two Gaussian like compo-
nents for the unlabeled data. Unfortunately, after we look at the true labels, it becomes clear
that the large margin achieved by the transductive SVM is accomplished by pushing many
(unlabeled) in-class data to the wrong direction. In fact, the generalization performance of
the transductive SVM evaluated on the unlabeled data is worse than that of the supervised
SVM despite of the seemingly more appealing unlabeled margin distribution.

It is clear that in practice, the standard transductive argument may mislead the clas-
sifier into maximizing the “wrong margin”. To our knowledge, this issue has not yet been
addressed in any of the current proposed forms of using an SVM like classifier (related to
probability model of type 2 which is discriminative in nature) for passive partially super-
vised learning. This suggests that the success reported in the literature is likely due to their
specific experimental setups rather than the general advantage of a transductive SVM versus
a fully supervised SVM. In order to take advantage of unlabeled data for a discriminative
model, it is necessary to impose a generally suitable parameter dependent data model p(z),
which is still not available yet (unfortunate, margin maximization itself does not seem to be
a very reliable data model for this purpose).

5 Active learning

Interestingly, while probability models of type 1 are suitable for passive partially supervised
learning, probability models of type 2 are suitable for active learning. This is because the
consistency of a parameter estimation procedure for the latter does not depend on the data
distribution p(z), while the efficiency can vary with different choices of p(z). It is therefore
possible for us to change the data distribution to achieve a better efficiency on the parameter
estimation.

On the other hand, it is only possible to apply active learning to probability models of
type 1 indirectly, since a change of p(z) may affect the model parameter or even violate
the model assumption. However, by using a sufficient number of unlabeled data, we can
eliminate the part of parameter o that is p(z) dependent. Active learning can then be
applied to determine the part of the parameter that is invariant to a change of distribution
p(z).

In order to apply the Fisher information criterion to analyze active learning for proba-
bility models of type 2, we shall consider a resample g(z) of the unlabeled data so that the
asymptotic efliciency of estimating o measured by the Fisher information

o) = - [ atelde [ plviea) 2 nptyl, 2)dy
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i1s “maximized”. A natural question is the criterion to determine which I, is better. One
can use the mean squared error of the estimated parameter, which is often not fully corre-
lated with the classification error. Although the expected classification error itself can be
used, it often leads to a more complicated form than the expected log-likelihood which is
asymptotically given by (the proof will be skipped in this abstract):

E, [ seds [ 1028 p(yja, )y = () ).

p(y|a, ) n

where F, is the expectation over n independently resampled data from ¢(z); &, is the
maximum likelihood estimate from the resampled data; a denotes the true parameter; I,
and I, denotes the Fisher information with respect to the original data distribution p(z) and
the resampled data distribution g(z) respectively. The Cramér-Rao lower-bound implies
that the maximum likelihood estimate based on the resampled distribution g that minimizes
tr(I,(a) ' I,(a)) is the asymptotically most efficient parameter estimate of o (as far as its
expected log-likelihood is concerned) among all estimators based on some resampling of the
data distribution.

To apply this result to active learning, we assume that we have a good estimate & of
and then replace a by & to estimate the optimal resampled distribution:

G = arginf tr(I (&) 1L (&)). (4)
a
More samples can then be drawn from ¢(z) and we re-estimate & as well as the optimal
sample distribution ¢q. This procedure can be repeated.

In a related work [3], the authors considered active learning with the squared loss in a
regression setting. Interestingly they tried to apply the framework to mixture models (note
that for classification problems, passive partially supervised learning should already be very
suitable for such models). Their statistical analysis based on the bias-variance trade-off is
very related to our analysis based on the Fisher information. For example, they assume that
the sample selection mechanism won’t affect the bias which corresponds to our assumption
that the probability model is of type 2. Their criterion is to minimize the variance which
corresponds to the maximization of Fisher information in our analysis. Although given an
exact probability model, our argument based on the Fisher information is already general,
we can further extend this argument to a non maximum likelihood estimate (such as a
support vector machine) with a probability confident measure. The main reason to use a non
maximum likelihood estimate is that the distribution model is usually not exact in practice,
therefore the asymptotic optimality of MLE is not important. The general formulation for
active learning with non maximum likelihood estimates will be given in the full paper.

As an example for (4), we consider the logistic regression, where the Fisher information
is given by

1
L) = [ e

If I, is estimated from the empirical data with the number of data points less than the

zxTq(z)dz.

dimension, then I, is singular. In this case, a regularization term has to be added. Another



practical issue is that the optimization problem in (4) is usually difficult to solve. Monte
Carlo simulation was employed in [3]. In this paper, we propose to identify the key factors in
the optimal sampling strategy based on insights provided by the Fisher information analysis,
so that (4) is heuristically optimized. This should work well in practice since a precise model
is usually not available and hence the exact minimization (4) is non-essential.

For logistic regression, to maximize the Fisher information I,(a), we shall favor an unla-
beled data point z so that its contribution to the Fisher information

1 T
At 1) ° (5)

T7 is small

is significant. This indicates that we prefer a data z such that its projection «
(margin is small) and its size is large (z7z is large). To prefer a data that has a small margin
is quite intuitive based on previous studies of committee based algorithms such as [5, 11]:
the label of the most uncertain data is likely to reveal most important information. To prefer
large z is less intuitive at the first glance. However, this criterion is also quite natural since
in a logistic model, if z is small (the extreme case is z = 0), it is inherent uncertain so that
its label does not reveal any useful deterministic information (e.g. for all o, the label of
z = 0 is completely random: P(y = £1) = 0.5). This important consideration is not an
issue in the query by committee formulation [11] since they assume that perfect classification

is always achievable. In general, the following two principles are implications from (4):

e Choose an unlabeled data of low confidence with the estimated parameter such that it
can have a potentially significant increase in confidence with the true (or re-estimated)
parameter.

e Choose an unlabeled data that shall not be redundant with other choices (or data
already chosen).

As another good example to show that low confidence of a data itself is an insufficient
indicator, we consider the mixture of two one dimensional unit-variance Gaussians with
unknown centers at +1. Since this model is of type 1, we can use the passive partially
supervised learning to obtain the centers at +1 [2]. Note that the problem has a symmetry,
therefore the remaining problem is to determine which label corresponds to which center.
Since the p(z) dependency has been removed in the passive partially supervised learning
stage, we can use active learning to determine the label correspondence for this remaining
problem. With a flat prior knowledge, any data is completely non-confident since its label
is +1 with probability 0.5. However, in an active learning setting, we would like to label a
data corresponding to the extreme tail of the joint distribution since this gives the greatest
potential of enhancing its confidence non-randomly.

Returning to the logistic regression formulation: in the following, we study the perfor-
mance of active learning on text categorization problem. Again, we use the Reuters dataset
for illustration. It is interesting to observe from our experiments that the size of z is less
relevant than its margin o’z as a criterion of good sample. That is, using (5) rather than
simply favoring data with smaller margins seems to give a slightly poorer performance (al-
though both methods are significantly better than random sampling). We conjecture the
following two explanations. One is that the effect of z has to be discounted by I,(&) in
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2. Another reason is that the logistic model

(4), which we don’t consider in the heuristics
assumption is only approximate for text categorization problems, and hence using margin is
more robust than using (5) which requires the exact validity of the logistic model.

For active learning, we start with 100 randomly chosen labeled samples. We then use the
margin criterion to pick more samples to label: each time, the sample size is increased by 50%
(up to the predetermined sample size to be labeled). The parameter is then re-estimated,
and the procedure repeated until the predetermined label size is achieved. We compare this
scheme with randomly chosen samples. In text categorization, the performance is usually

measured by precision and recall rather than classification error:

o true positive
precision = — —— x 100
true positive + false positive

t 1t1
recall = .r.ue POSTAYe — x 100
true positive + false negative

Since a linear classifier contains a threshold parameter that can be adjusted to trade-off
the precision and the recall, it is typical to report the break-even point, where precision
equals recall. Since each document in the Reuters dataset can be multiply categorized, it is
common to study the dataset as separate binary classification problems, each corresponding
to a category. The overall performance can be measured by the micro-averaged precision,
recall and the break-even point computed from the overall confusion matrix defined as the
sum of individual confusion matrices corresponding to the categories.

We use the top ten categories (the remaining categories are typically very small) for
this study. Note that for active learning, the sample selection mechanism is based on each
individual binary classification problem. Although this is sufficient for our purpose as a
demonstration of principle for our analysis, it is not suitable for practical purposes where
the sample selection mechanism should be the same for all categories. Our analysis and
sample selection method can be modified to deal with such situation and still achieves a
significant performance enhancement. These results will be reported in the full paper.

Figure 2 compares the performance of active learning vs. random sampling measured
by micro-averaged break-even points as a function of labeled training samples, evaluated
on the standard Mod-Apte testset consisted of 3299 documents. Each data point in the
plot corresponds to ten random runs. The center is the mean, and the size of the error-
bar is the standard deviation. The break-even point achieved by logistic regression with all
9603 training data is 91.9 which is comparable with an enhanced version of support vector
machine [4] (also see [14] for more comparisons). For active learning, this performance
is already achieved with about 1000 samples. As a comparison, with even 5000 random
samples, the performance of 91.9 is not yet achieved. Also note that active learning tends
to give a smaller variance due to the following two reasons: 1. it tends to select some fixed
informative samples; 2. the performance of active learning in our model is achieved through
variance reduction. We also list the detailed comparisons of active learning vs. random
sampling for the top ten categories at 1000 labeled sample size in 1. It is clear that active
learning performs consistently better than random sampling for all categories.

for example, if a component z; of z is irrelevant so that a; = 0, then z; should not be counted in the

dot product zTz. Note that this is automatically discounted in a”z.
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6 Discussions

In this paper, we have investigated the possibility of using unlabeled data for supervised
learning under the probabilistic framework. We apply the Fisher information criterion to
analyze the asymptotic value of unlabeled data when our probability model assumption is
exact. However, this analysis also provides valuable insights into situations when our model
assumption is not exact. This point has been illustrated in the paper through our analysis
of the support vector machine.

Although we have emphasized classification problems, the analysis is also suitable for
other learning problems where we want to predict certain variable y based on observed
variable z (such as regression). In all such cases, it is important to distinguish probability
models of type 2 from probability models of type 1. Specifically, probability models of type
1 are suitable for passive partially supervised learning while probability models of type 2 are
suitable for active learning. Intuitively, a probability model of type 1 tends to be a generative
model (like mixture models) in that each class parameter is defined by class members alone.
A probability model of type 2 tends to be a discriminative model in that the model parameter
is not for the purpose of generating the class members, but rather of discriminating in-class
members from out-of-class members through maximizing the log-likelihood of the conditional
probability.

A specific but important conclusion from our analysis is that support vector machines in
its current form are not particularly suitable for passive partially supervised learning. Our
experiments confirm with this analysis. Although this seems to contradict some previous
claims, we believe that the earlier reported success might be due to specific experimental set-
ups. In particular, the issue of “maximizing the wrong margin” observed in our experimental
study was not addressed at all in any previous approach of using unlabeled data for passive
partially supervised learning with a support vector machine like classifier. We believe that
it is important to carefully analyze the previous studies in order to understand how to avoid
this phenomenon of “maximizing the wrong margin”. If we can indeed identify some key
factors that helped those experiments to alleviate the problem we have encountered, then
the current standard approach can be reformulated in a more appropriate form so that real
progress can be made.

It is also important to note that from our analysis, support vector machines are very suit-
able for active learning in its current form. This has also been confirmed in our experiments.
Not surprisingly, the very reason that active learning works for SVM also supports the claim
that passive partially supervised learning is not suitable for SVM. This is because an un-
labeled data point with a small margin is very likely to cause a large change in parameter
estimation once its label is known. The label itself is intrinsically highly non-deterministic,
therefore any attempt to push such an unlabeled data point to a deterministic state (e.g.
by margin maximization) will fail unless a better probability model containing information
not captured by the Fisher information in the standard SVM model is used. This argument
again demonstrates why it is important to refine the current SVM model so as to use it for
passive partially supervised learning.
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Figure 1: Supervised SVM (20 labeled data) vs. transductive SVM (20 labeled + 9583

unlabeled data) on the Reuters “earn” category.
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Figure 2: Break-even points of logistic regression as a function of labeled sample size: active

I
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I I I
2000 3000 4000

learning = ’solid’; random sampling = 'dashed’.

I
5000 6000

category random sampling | active learning
earn 97.7 £ 0.3 98.6 +£ 0.1
acq 93.1 £ 0.7 94.9 £+ 0.3
money-fx 71.8 + 2.2 76.8 £ 1.1
grain 79.7 + 2.4 89.7 £ 0.3
crude 83.4 + 1.2 88.0 + 0.5
trade 742 +£ 3.0 76.9 £ 0.6
interest 71.3 £ 4.3 733+ 14
ship 76.0 + 3.2 84.8 + 0.6
wheat 75.3 + 3.5 82.8 +£ 0.6
corn 63.9 £ 4.6 86.8 £ 0.9
micro-average 88.8 +£ 0.4 91.9 £ 0.1

Table 1: Active learning vs. random sampling for the top ten Reuters categories (labeled

sample size = 1000).
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