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Abstract

In many practical learning scenarios, there is
a small amount of labeled data along with
a large pool of unlabeled data. Many su-
pervised learning algorithms have been de-
veloped and extensively studied. We present
a new “co-training” strategy for using un-
labeled data to improve the performance
of standard supervised learning algorithms.
Unlike much of the prior work, such as the
co-training procedure of Blum and Mitchell
(1998), we do not assume there are two re-
dundant views both of which are sufficient for
perfect classification. The only requirement
our co-training strategy places on each super-
vised learning algorithm is that its hypothe-
sis partitions the example space into a set of
equivalence classes (e.g. for a decision tree
each leaf defines an equivalence class). We
evaluate our co-training strategy via experi-
ments using data from the UCI repository.

1. Introduction

In many practical learning scenarios, there is a small
amount of labeled data along with a large pool of unla-
beled data. Many supervised learning algorithms (e.g.
ID3 and HOODG) have been developed and exten-
sively studied. Can unlabeled data be used to improve
their accuracy? Intuitively, one would expect two dif-
ferent supervised learning algorithms to complement
each other since they use different representations for
their hypotheses and use the provided labeled data in
different ways. Hence, you would expect the two algo-
rithms to “notice” different patterns in the data and
thus be able to label some unlabeled data for the other.
This is the motivation behind our co-training strategy.

In this paper, we present a new co-training strategy for
using unlabeled data to improve the performance of
standard supervised learning algorithms. Unlike much
of the prior work, such as the co-training procedure

of Blum and Mitchell (1998), we do not assume there
are two redundant views both of which are sufficient
for perfect classification. In our co-training algorithm,
there are two different supervised learning algorithms
which are each originally trained on the provided la-
beled data. Then using statistical techniques, each
learner can select some of the unlabeled data to label
for the other learner. We repeat this process as long
as more data is selected to be labeled. Finally, we
combine the two resulting hypotheses to obtain our fi-
nal hypothesis. The only requirement our co-training
strategy places on each supervised learning algorithm
is that 1ts hypothesis partitions the example space into
a set of equivalence classes (e.g. for a decision tree each
leaf defines an equivalence class).

There are two key issues we had to resolve in design-
ing our co-training algorithm. First we present, a sim-
ple technique based on statistical confidence intervals,
for combining the hypothesis from each of the super-
vised learning algorithms to obtain our final hypothe-
sis. The aim 1is for this hypothesis to correctly classify
the portions of the instance space that are correctly
classified by either of the two hypotheses that are be-
ing combined. Hence, its error rate can be better than
that of both hypotheses that were combined. Second,
we present a methodology for deciding when one su-
pervised learning algorithm should label data for the
other. That is, how confident should a learning algo-
rithm be about its prediction when it labels data for
the other? Since neither of the two learning algorithms
are 100% sure about their predictions (in fact, their
hypotheses may both have significant error rates), ad-
ditional care has to be taken to ensure a sufficiently
low classification noise rate (i.e. noise in the labels)
while the training data sets are expanded.

We evaluate our co-training strategy via experimen-
tal results using data from the UCI repository using
ID3 (Quinlan, 1986) and HOODG (Kohavi, 1994) as
our two supervised learning algorithms. Both ID3
and HOODG are trained using only the labeled data
whereas our co-training strategy also makes use of



a provided pool of unlabeled data. The results are
very promising. Over 24 different runs (across 8 dif-
ferent data sets), our co-training strategy yielded a
27.4% improvement over 1D3, a 37.0% improvement
over HOODG, and a 15.6% improvement over an al-
gorithm that omnisciently picks the better of ID3 and
HOODG for each individual run.

The remaining of this paper is organized as follows.
Section 2 outlines the related work of using unlabeled
data to improve the performance of the supervised
learning algorithms. In Section 3, we present our co-
training algorithm and describe the theoretical foun-
dations behind our techniques. Section 4 presents our
empirical results. Finally, in Section 5, we present our
conclusions and discuss directions for future work.

2. Related Work

Many different approaches have been studied for using
unlabeled data for improving the performance of su-
pervised learning algorithms. Most classic methods of
learning with unlabeled data use a generative model
for the classifier and use Expectation-Maximization
(EM) of Dempster, Laird, and Rubin (1977) or other
approaches to model the label estimation or parameter
estimation for the general model (Nigam, McCallum,

Thrun, Mitchell, 2000; Wu & Huang, 1999).

Some work uses the distribution of unlabeled data to
define a metric or a kernel function which is used fur-
ther to perform a sanity check or used for the Support
Vector Machine trained from the labeled data (Schuur-
mans, 1997; Hofmann, 1999; Zhang, 1999). The idea
of large margin classification and transductive infer-
ence also inspires the use of unlabeled data (Shawe-
Taylor, 1999). Large margin classification algorithms
favor the decision rules that achieve large classification
margins which creates dependencies between the un-
labeled data and the parameters of the function class

(Jaakkola, Meila, & Jebara, 1999).

Other approaches make use of unlabeled data for
probability estimation which, together with the tar-
get weight estimated from the labeled data, is substi-
tuted for the estimates of the probabilities in a Stas-
tical Query (Kearns, 1993) learning algorithm as done
by De Comite, Denis, and Letouzey (1999).

Another related area of research that has very differ-
ent goals is that of active learning (Dagan & Engel-
son, 1995; Liere & Tadepalli, 1997; Lewis, 1995) where
the algorithm repeatedly selects an unlabeled example,
asks an expert (e.g. a human) to provide the correct
label, and then rebuilds its hypothesis. In the field
of query learning, unlabeled data are used for label

querying (Campbell, Cristianini, & Smola, 2000). An
important component of active/query learning is in the
selection of the unlabeled example. In our co-training
technique, we assume there is no expert available to
provide labels. However, some of the techniques we
introduce could be useful for active learning.

Our study is built on the initial work performed by
Blum and Mitchell (1998). They show that unlabeled
data can be used to augment labeled data provided
that an instance space can be represented using two
different views (i.e. two independent and redundant
sets of attributes). For example, if you are learning
to classify web pages as high or low quality you could
look at the links from the page or the links into the
page. They make the strong assumption that either
view of the example would be sufficient if there were
enough labeled data. As in our work, their goal is
to use a large set of unlabeled data to augment a
much smaller set of labeled examples. They present
a very different co-training strategy for this situation
and gave both empirical and theoretical results show-
ing that such a strategy can work under this setting.
(See also, Craven et. al (1998) for additional results on
using co-training for classifying web pages.) The idea
of co-training with the assumption of natural redun-
dancy in the data is also used by Collins and Singer
(1999). There has been significant work studying ap-
plications to the area of text classification. For ex-
ample, Riloff and Jones (1999) consider the task of
learning to classify a noun phrase as a positive or neg-
ative example of a “location.” Here, the two redun-
dant sufficient features come from looking at the noun
phrase itself and the linguistic context in which the
noun phrase appears. Yarowsky (1995) uses a similar
co-training approach to disambiguate word sense (e.g.
to determine if the word “plant” refers to a manufac-
turing plant or a botanical plant).

While there are settings such as these in which
there are two independent (and sufficiently redundant
views), there are also many settings in which such re-
dundant views are not available. In this paper, we
present a co-training procedure can be used in general
situations where there are not such redundant views.

3. Our Co-training Method

We now describe our co-training algorithm and pro-
vide some theoretical basis for our design. We assume
that we have two different supervised learning algo-
rithms A and B which both output a hypothesis that
defines a partition of the instance space. For example,
a decision tree partitions the instance space with one
equivalence class defined per leaf. We maintain a set



U of unlabeled data, L of the original labeled data, a
set La which is data that B labeled for A (initially
empty), and a set Lp which is data that A labeled for
B (initially empty). We also keep an estimate w4 (re-
spectively, wg) of the number of examples in L, (re-
spectively, Lp) that are mislabeled. In making these
estimates, we bias them towards overestimating the
errors causing our co-training to be conservative in la-
beling data. Hence, we often refer to our estimates as
conservative estimates.

Our co-training algorithm repeats the following steps
until both L4 and Lp do not change during an itera-
tion. At the start of each iteration, we train algorithm
A on the labeled examples L U L4 to obtain the hy-
pothesis H 4. Similarly, we train B on LU Lp to obtain
Hp. Each algorithm considers each of its equivalence
classes and decides which ones to use to label data
from U for the other algorithm. There are two tests
that must be satisfied before labeling data. The first
ensures that the equivalence class used to label data
has an accuracy that is at least as good as the accu-
racy of the other hypothesis. The second test is to
help prevent a degradation in performance due to the
increased noise in the labels. For all data from U that
is in any equivalence class from H 4 that passes both
tests, A labels the data and places it in Lg. B labels
data for A in the same manner. This completes one
round of our procedure.

Detailed pseudo-code for our combining method is
given in Table 1 and detailed pseudo-code for our co-
training algorithm is given in Table 2. We now discuss
the two key aspects of our co-training algorithm: com-
bining H4 and Hp to get an overall hypothesis and
selecting which data each algorithm should label for
the other in each round.

3.1 Combining

In this section, we describe how the two hypotheses
H, and Hp are combined. To estimate the accu-
racy of Hy and Hp we use a 95%-confidence interval
for a binomial parameter (e.g. See Larson and Marx
(1986)). For each hypothesis and for each equivalence
class within the two hypotheses we use 10-fold cross
validation to compute how many correct predictions
are made. Then we compute the 95%-confidence in-
terval which we denote here by [£, h]. Then to make a
prediction for example z, we compare the (£ + h)/2 of
the confidence intervals for A, B, the equivalence class
of A that contains z, and the equivalence class of B
that contains z. We predict according to the hypoth-
esis that corresponds to the maximum of these four
quantities. While sometimes, for example, the mean

of the confidence interval for the equivalence class of
H 4 containing z may be lower than the mean of the
confidence interval for the equivalence class of Hg con-
taining z, we still predict according to H,4 if Ha has
the highest overall confidence since we want to be cau-
tious about not predicting with the better of H4 and
Hp. It 1s only when the confidence interval mean for
the equivalence class of Hp containing z is higher than
that of H4’s overall hypothesis, that we instead pre-
dict according to Hp.

When performing the cross validation, we could either
use the originally labeled data or all the labeled data
(i.e. including that labeled by the other algorithm).
Based on earlier tests, we use the originally labeled
data. The advantage of using only the originally la-
beled data is that the confidence interval will be more
accurate since the data has less labeling errors. How-
ever, when computing the confidence interval estimate
for the equivalence classes, by just using the original
labeled data there are often some equivalence classes
with no data. If an equivalence class of A (for example)
has no data and the mean of A’s confidence interval
is larger than the maximum of B’s overall and leaf
confidence intervals by more than 0.1, then we predict
according to A regardless of the confidence of B’s leaf.

3.2 Choosing What Examples to Label

When should algorithm A take an unlabeled example
from U and place it in Lp, labeled according to H4?
Intuitively, A should only consider placing example z
in Lp if A’s confidence in the validity of its label for x
is better than B’s confidence in the validity of its label
for £ AND the amount of data labeled is sufficient to
compensate for the increased classification noise it will
cause for training in future rounds.

We first address the question of how A will decide
which examples it has sufficient confidence in its pre-
diction to label them for B (and vice versa). As with
our combining method, we use a 95%-confidence in-
terval for a binomial parameter. First, for the overall
hypothesis of algorithm B, Hg, we use L to compute
the 95%-confidence interval denoted by [¢5, hp]. Next,
for each equivalence class z defined by H4 we use L
to compute the 95%-confidence interval [£,, h,]. If the
high end, h, of the confidence interval for the equiva-
lence class z of H 4 is higher than the low end, ¢p of
Hp then all examples from U which are in equivalence
class z pass our first test for being added to Lp.

We now describe the second test which is designed to
control the classification noise rate when labeling ex-
amples. This test is based on the following relationship
between the hypothesis worst-case accuracy (1 — ¢),



Table 1. Our technique to combine H4 and Hp to create our hypothesis.

Combine(H 4, Hp)

For each example z in the instance space

If (EA —|—hA)/2 > (EB +hB)/2
If z is empty

Else predict with Hp(z)
Else predict with Hp(z)
If 2/ is empty

Else predict with H 4(z)

Else predict with H4(z)

\\H4 and Hpg are the hypotheses being combined

Use L for 10-fold cross validation to compute the 95%-confidence interval [£4, ha] for H 4
Use L for 10-fold cross validation to compute the 95%-confidence interval [¢g, hg] for Hp

Let z be the equivalence class of H4 containing z
Use L for 10-fold cross validation to compute the 95%-confidence interval [£;, h,] for exs in z

Let 2z’ be the equivalence class of Hp containing =
Use L for 10-fold cross validation to compute the 95%-confidence interval [,/ h,/] for exs in 2z’

\\ Ha is more accurate overall than Hpg
If (ba + ha)/2 —max{({p + hp)/2, (L2 + h;)/2} > 0.1) then predict with H4(z)
Else If (€a+ ha)/2> (b +hs)/2) V ((£s + h2)/2 > (€5 + hy)/2) then predict with H4(z)
Else \\ Hp is more accurate overall than H 4
If (b + hp)/2 — max{(£a + ha)/2, (£: + h;)/2} > 0.1) then predict with Hp(z)

Else If (g + hp)/2> (L2 + hs)/2) V (£ + hs)/2 > (£ + h)/2) then predict with Hp(x)

sample size (m) and classification noise rate (1) where
we assume that the other parameters are held constant

(e.g. Angluin and Laird (1988)):

c : ¢
m—= m , or equivalently e= m

for ¢ a constant. We use this relationship to decide if
the amount of additional data labeled is sufficient to
compensate for the increase in the classification noise
rate. To simplify our computation, we let ¢ in the
above formula be 1 and compute the square of the in-
verse of the error. More specifically, in each co-training
round, algorithm A chooses which data to label for al-
gorithm B as follows. For B’s current hypothesis we
have the following values for m, the number of (la-
beled) training examples and 7, the classification noise
rate: m = |L U Lp| and our conservative estimate for
n is wg/|L U Lg|. Hence our estimate for 1/¢% is
'ZwB

2
g = |LU Lg| <1 -2 <m)) . If our first test
(i.e. hy > {p) was passed, then we compute U, the set
of examples from U that hs maps to equivalence class
z. Also using the low-end of the 95%-confidence inter-
val, £,, we conservatively estimate the number of ex-
amples from U, that are mislabeled, w, = (1—4£,)|U,|.
We can then compute our estimate for what the square
of the inverse of the error would be if the examples in

U, were labeled for B:
2(wp + w;) )2

L= |LULpUU,|[1— 20
4: =LV Ls |< [LULp UU,|

Finally, if g, > gp, indicating a belief that Hp will be
improved if the examples in U, (as labeled by H4) are
added to Lp, we update Lp and wg accordingly. The
corresponding method is used for B to select data to
label for A. Since our co-training procedure enables
each algorithm to label a significant amount of data in
each round, it tends to require very few iterations.

4. Evaluation

We now describe our experimental results. For our
two supervised algorithms (referred to as A and B in
our general technique), we used ID3 (Quinlan, 1986), a
decision tree algorithm and HOODG (Kohavi, 1994),
a decision graph algorithm. These algorithms were se-
lected simply because they were available as part of
MLC++. Thus we view them as two arbitrary algo-
rithms which satisfy the property that their hypothe-

ses form a partition of the data.

4.1 ID3 and HOODG

ID3 (Quinlan, 1986) is a top-down induction decision
tree algorithm. The criteria for splitting the tree is




Table 2. Our co-training method.

\\ ——— Initialization ————

L = given labeled data set
U = given unlabeled data set

La=10 \\ data labeled by B for use by A

wy =0 \\ conservative estimate for # of mislabeled examples in L4
L =10 \\ data labeled by A for use by B

wp =0 \\ conservative estimate for # of mislabeled examples in Lp
\\ ————— Main Co-Training Loop ———-

Use L for 10-fold cross validation to compute the 95%-confidence interval [£4,h ] for H 4
Use L for 10-fold cross validation to compute the 95%-confidence interval [{g, hg] for Hp

Repeat until L4 and Lp do not change \\each iteration is a co-training round

Run algorithm A on labeled data L U L 4 to obtain hypothesis H 4
QwA

=|LUL 1-2 —
7= A'( (|LULA|

Run algorithm B on labeled data L U Lp to obtain hypothesis Hp
QU)B

=|LUL 1-2 ——
= v sl (1-2 (5
\\——— Choose data for A to label for B ——

For each equivalent class z defined by H 4
let U, be the examples from U that map to z
Use L for 10-fold cross validation to compute the 95%-confidence interval [£,, h,] for z

2
)) \\conservative estimate for (1/e4)?

2
)) \\conservative estimate for (1/ep)?

if h, > ¥p \\First test passed for labeling examples in U, for B
w; = (1 —4£,)|Us] \\conservative estimate for # exs in U, mislabeled by H 4
2(wp + w;) 2
,=|LULgUU,||{]l - ———
¢ =|LULs |< |LULBUUZ|)
if ¢, > qB \\ estimated error rate for B would decrease if A labeled exs in U,
let L, be examples in U, as labeled by H 4
Lp=LgUL,
wp = Wp + W;
\\——— Choose data for B to label for A ———

For each equivalent class z’ defined by Hpg
let U,: be the examples from U that map to 2’
Use L for 10-fold cross validation to compute the 95%-confidence interval [£,:, h,/] for 2/
ifhy, > £, \\First test passed for labeling examples in U, for A
wyr = (1= £,)|U,] \\conservative estimate for # exs in U, mislabeled by Hpg

2 )\
qz/:|LULAUUz/|<1 ('lUA+'LU ))

C|LULaUU|
if g0 > qa \\ estimated error rate for A would decrease if B labeled exs in U,
let L, be examples in U, as labeled by Hp
Lao=LoUL,
Wh = W4 + Wy
\\ ——— Final Hypothesis ———

Predict according to Combine(H 4, Hp)




Table 3. Test data characteristics and a summary of our results. For each data set we show the number of test points
that are misclassified by ID3 (DT), HOODG (DG), and our co-training algorithm (COM) for the one of the three runs
that had the median overall performance. The average improvement is the improvement in the error rate over the best of

DT, DG, and COM at round 0.

Data Number of Errors After Round # Avg. Run
Set Attributes Alg. 0 1 2 3 4 5 Improv. # |L| | U]
DT 12 12 6 1 214 | 298
THREEOF9 9 DG 51 6 6 40.3% 2 253 | 259
(RUN 1 SHOWN) COM | 12 5 6 3 282 | 230
DT 64 49 47 45 1 100 | 152
BREAST-CANCER 9 DG 64 66 56 56 17.0% 2 100 | 152
(RUN 2 SHOWN) COM | 64 56 51 51 3 100 | 152
DT 29 29 1 18 142
CORRAL 6 DG 30 31 0.0% 2 18 | 142
(RUN 2 SHOWN) COM | 29 29 3 18 | 142
DT 168 151 145 147 147 145 1 199 | 867
FLARE 10 DG 153 147 147 147 143 143 6.1% 2 238 | 828
(RUN 3 SHOWN) COM | 153 147 147 146 143 143 3 283 | 783
DT 136 108 108 103 1 126 | 432
MONK?2 6 DG 80 80 53 53 27.4% 2 144 | 432
(RUN 1 SHOWN) COM | 77 83 59 59 3 145 | 432
DT 18 18 8 1 46 82
MUX6 6 DG 8 8 8 0.0% 2 48 80
(RUN 2 SHOWN) COM | 18 8 8 3 52 | 76
DT 37 37 29 1 27 | 408
VOTE 16 DG 87 23 23 24.7% 2 28 | 407
(RUN 3 SHOWN) COM | 37 31 22 3 29 | 406
DT 5 2 1 384 | 589
XD6 9 DG 2 0 100.0% 2 384 | 589
(RUN 1 SHOWN) COM | 2 0 3 384 | 589

based on the information gain of the attributes. An
attribute with the lowest average entropy (highest in-
formation gain) is made the root of the current subtree.
The rest of the tree is built recursively.

HOODG (Kohavi, 1994) stands for hill-climbing obliv-
ious decision graph. In MLC++, HOODG is an inducer
for building oblivious decision graphs bottom-up. Un-
like ID3, HOODG does have replication (duplication
of subtrees in disjunctive concepts) and fragmentation
(partitioning of data into fragments) problems.

4.2 Experimental Results

We now present our experimental results. The eight
data sets we used were from the UCI Machine Learning
Database (Merz & Murphy, 1998). For all eight data
sets we choose to reduce the amount of labeled data
provided, using the rest as unlabeled data. We picked
the size of the labeled data set L so that the supervised
learning algorithms had mediocre performance since
this is the setting for which our co-training algorithm
is designed. Namely, it is intended for a setting where
there i1s not enough labeled data to make highly accu-

rate predictions but for which there is enough labeled
data for the bootstrapping process of our co-training
procedure.

To increase the size of U, the provided labeled data
that was not put in L is placed (without labels) along
with the test data to form U. For each data set, we
performed three independent runs, each using a dif-
ferent random selection of labeled data to use for L.
Table 3 shows some relevant characteristics of the data
sets we used for our empirical tests as well as a sum-
mary of our results.

Figure 1 shows the results from one of our runs us-
ing the Flare data in graphical form. For this data
set HOODG performed better than ID3 when using
just the initial labeled data (i.e. round 0). Our co-
training procedure helped both algorithms to improve
their performance.

Figure 2 shows the results from one of our runs using
the breast cancer data set. In this data set ID3 had
the better performance. Again (as we generally see),
both hypotheses were improved by the co-training.



Table 4. Summary of Results.

_+ |1D3
0.24
- Hoodg
0.23 _a_  Conbined

Error rate

ALGORITHM AvaG. ERROR RATE
ID3 16.4%
HOODG 18.9%
BeTTER OF ID3 aAnD HOODG 14.1%
Our ALGORITHM (COM) 11.9%

0

Figure 1. Results for the FLARE data set (run 2).
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Figure 2. Results for the BREAST-CANCER data set (run 3).

While the eight different data sets (with three inde-
pendent runs used for each) showed different charac-
teristics in terms of how ID3 and HOODG interact, in
17 of the 24 runs, our co-training method reduced the
error rate from both that of ID3 and HOODG. In 6
of the 24 runs, we obtained the result of the better of
ID3 and HOODG. In only 1 run did the performance
go down by a small amount (in that case the error went
from 8/261 to 9/261). In all three runs on xd6, our
co-training procedure was able to reduce the error rate
to 0. The summary of the reduction of error rates we
obtained with co-training are shown in Table 4. The
average number of co-training rounds (where round 0
is included as a round) was 3.33.

5. Conclusions and Future Work

In this paper, we presented a new co-training strategy
for learning with both labeled data and unlabeled data
for settings in which there are not two redundant views
of the data. Our empirical results demonstrate that
two standard supervised learning algorithms can be
used to successfully label data for each other.

There are many interesting directions for future re-
search. Currently we are using a standard 95%-
confidence interval for a binomial parameter. In our
tests we also tried other (e.g. 99%) confidence inter-
vals. Too high of a confidence interval does not allow

data to be labeled, whereas using too low of a confi-
dence label allows too much data to be labeled. We
also tried using the confidence-rated boosting proce-
dure from Schapire and Singer (1998). However, in
general, A and B are trained on different data sets (of
different sizes). This technique did not work well since
the confidence rating is only relative to hypotheses ob-
tained from training on the same data. Exploring ways
to improve the estimation of the confidence interval 1s
an important direction for future work.

One variation of our co-training procedure that we
studied is as follows. In each iteration, one could have
each algorithm label only the examples from an equiv-
alence class with the highest confidence level. How-
ever, along with significantly increasing the number
of co-training rounds, the overall error rates were not
as good using this approach. We also considered in-
creasing the number of equivalence classes for HOODG
(which is currently two) by breaking the decision graph
at one level higher (i.e. uses as the leaves the internal
nodes which are direct ancestors of the 0 and 1 leaf).
However, this did not improve our performance.

Clearly, there are many additional variations to our
specific co-training technique that would be interesting
to explore and we believe that further improvements
are possible. We also plan to perform additional em-
pirical studies using real data from several application
areas in which there are not two redundant set of fea-
tures. In addition, we plan on running test in which
we use different supervised learning algorithms (be-
sides TD3 and HOODG). Another interesting research
direction is to explore how our techniques could be
used in active learning to help decide which examples
would be most valuable to be labeled.

Along with performing more empirical studies, we
hope to develop a theory about our co-training pro-
cedure so we can better understand when it will be
appropriate and how to improve it.
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