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Abstract

This paper analyzes the effect of unlabeled training data in
generative classifiers. We are interested in classification per-
formance when unlabeled data are added to an existing pool
of labeled data. We show that unlabeled data can degrade the
performance of a classifier when there are discrepancies be-
tween modeling assumptions used to build the classifier and
the actual model that generates the data; our analysis of this
situation explains several seemingly disparate results in the
literature.

Introduction

The purpose of this paper is to discuss the performance of
generative classifiers that are built with labeled and unla-
beled records. Such classifiers have received attention in the
machine learning literature due to their potential in reduc-
ing the need for expensive labeled data (Nigam et al. 2000;
Seeger 2001). Applications such as web search, text classi-
fication, genetic research and machine vision are examples
where we can find an abundance of cheap unlabeled data in
addition to a pool of more expensive labeled data.

We show that there are cases where unlabeled data can de-
grade the performance of a classifier. We show that such a
degradation can happen in common classification problems,
and it is not a consequence of numerical instabilities, nor of
outliers or other serious differences between assumed and
actual models for data. Even minor modeling inaccuracies
can lead to degradation from unlabeled data. We present an
analysis of the labeled-unlabeled data problem, and demon-
strate how unlabeled data can sometimes improve and some-
times degrade classification performance. Our analysis clar-
ifies several seemingly disparate results that have been re-
ported in the literature, and also explains existing but un-
published experiments in the field. The results offer insights
on how to handle and use unlabeled data for classification
and learning.
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L abeled-unlabeled data

The goal here is to label an incoming vector of features X.
Each instantiation of X is a record. We assume that there
exists a class variable C'; the values of C are the labels. We
want to build classifiers that receive a record x and generate
a label ¢é(x) (notation follows (Friedman 1997)). Classifiers
are built from a combination of existing labeled and unla-
beled records.

If we knew exactly the joint distribution p(C,X), we
could design the optimal classification rule to label an in-
coming record x (Friedman 1997). Instead of storing the
whole joint distribution p(C,X), we could simply store
the posterior distribution p(C|X). This strategy is usually
termed a diagnostic one (for example, diagnostic procedures
are often used to “train” neural networks). In a statisti-
cal setting, diagnostic procedures may be cumbersome as
they require a great number of parameters — essentially the
same number of probability values as required to specify the
joint distribution p(C, X). An alternative strategy is to store
the class distribution p(C) and the conditional distributions
p(X|C) and then, as we observe x, compute p(C|X = x)
using Bayes rule. This strategy is usually called genera-
tive. An advantage of generative methods is that unlabeled
data do relate to some portions of the model (namely, the
marginal distribution p(X)). If instead we focus solely on
p(C|X), there is no obvious and principled way to han-
dle unlabeled data (Cohen, Cozman, & Bronstein 2002;
Seeger 2001; Zhang & Oles 2000). For this reason, we em-
ploy generative schemes in this paper, and leave other ap-
proaches for future work.

So, we are interested in estimation of p(C) and p(X|C).
Note that it is possible for a classifier to have small estima-
tion error and large classification error and vice-versa (Fried-
man 1997).

To build a classifier, we normally adopt a set of model-
ing assumptions. For example, we can assume a fixed num-
ber of labels. Or we assume a set of independence relations
among variables; we call the set assumptions concerning in-
dependence relations the structure of a classifier. Once we
fix our modeling assumptions, we estimate the parameters
of the classifier. We assume here that all variables (class and
features) have a known and fixed number of values, and that
the structure that generates the data is fixed but not known.
When the assumed structure matches the structure that gen-



erates the data, we say the structure is “correct.”

The labeled-unlabeled data problem is a combination of
both supervised and unsupervised problems (Duda & Hart
1973). Suppose that we have a classifier with modeling
assumptions that exactly match the model generating data.
Early work has proved that unlabeled data can lead to im-
proved maximum likelihood estimates even in finite sam-
ple cases (Castelli & Cover 1996). (Shahshahani & Land-
grebe 1994) emphasize the variance reduction caused by un-
labeled data under the assumption that bias is zero; their
conclusion is that unlabeled data must help classification
(similar conclusion in (Zhang & Oles 2000)). In general,
unlabeled data can help in providing information for the
marginal distribution p(X) (Cohen, Cozman, & Bronstein
2002). Castelli and Cover have investigated the value of
unlabeled data in an asymptotic sense, with the assumption
that the number of unlabeled records goes to infinity, and do
so faster than the number of labeled records (Castelli 1994;
Castelli & Cover 1995; 1996). They prove that, assuming
modeling assumptions are correct, for the classifier, clas-
sification error decreases exponentially with the number of
labeled records, and linearly with the number of unlabeled
records® (similar analysis in (Ratsaby & Venkatesh 1995)).
The message of previous work is that unlabeled data must
help as long as modeling assumptions are correct.

On top of the theoretical work just described, several em-
pirical investigations have suggested that unlabeled train-
ing data do improve classification performance. (Shahsha-
hani & Landgrebe 1994) describe classification improve-
ments with spectral data; Mitchell and co-workers report
a number of approaches to extract valuable information
from unlabeled data, from variations of maximum likeli-
hood estimation (Nigam et al. 2000) to co-training algo-
rithms (Mitchell 1999). Other publications report on EM-
like algorithms (Baluja 1998; Bruce 2001; Miller & Uyar
1996) and co-training approaches (Collins & Singer 2000;
Comité et al. 1999; Goldman & Zhou 2000). There have
also been workshops on the labeled-unlabeled data problem
(at NIPS1998, NIPS1999, NIPS2000 and IJCAI2001).

Overall, these publications and meetings advance an op-
timistic view of the labeled-unlabeled data problem, where
unlabeled data can be profitably used whenever available. A
more detailed analysis of current results does reveal some
puzzling aspects of unlabeled data. In fact, the workshop
held at 1JCAI2001 witnessed a great deal of discussion on
whether unlabeled data are really useful.?

Three results are particularly interesting:

1. Shahshahani and Landgrebe describe experiments that
demonstrate how unlabeled data can help mitigate the
“Hughes phenomenon” (degradation of performance
when features are added), but they also report situations

ICastelli and Cover assume identifiability, a property that may
fail when features are discrete, as in many machine learning appli-
cations (Duda & Hart 1973). Lack of identifiability does not seem
to be a crucial matter in the labeled-unlabeled problem, as we made
extensive tests with discrete models and observed behavior consis-
tent with Gaussian (identifiable) models.

2This fact was communicated to us by George Forman.

where unlabeled data degrade performance. They at-
tribute such cases to deviations from modeling assump-
tions; for example, “outliers, ..., and samples of unknown
classes” — they even suggest that unlabeled records
should be used with care, and only when the labeled data
alone produce a poor classifier.

2. (Baluja 1998) used Naive Bayes (Friedman 1997) and

TAN classifiers (Friedman, Geiger, & Goldszmidt 1997)
to obtain excellent classification results, but there were
cases where unlabeled data degraded performance.

3. In work aimed at classification of documents, (Nigam et

al. 2000) used Naive Bayes classifiers with fixed struc-
ture and a large number of features. Nigam et al actu-
ally discuss situations where unlabeled data degrade per-
formance, and propose several techniques to reduce the
observed degradation. Nigam et al do not attempt to com-
pletely explain the reasons for degradation, but suggest
that the problem might have been a mismatch between
the natural clusters in feature space and the actual labels.

The present paper can be understood as a natural sequence
on Nigam et al investigation, where we verify and explain
the conditions that lead to degradation with unlabeled data.
In fact, intrigued by these existing results, we conducted a
series of experiments aimed at understading the value of un-
labeled data (Cohen, Cozman, & Bronstein 2002). In short,
the experiments do indicate that unlabeled data can have a
deleterious effect in some situations. Consider Figure 1,
which shows two typical results. Here we estimated the pa-
rameters of Naive Bayes classifiers with 10 features using
the EM algorithm (Dempster, Laird, & Rubin 1977). Fig-
ure 1 shows classification performance when the underlying
model actually has a Naive Bayes structure (left), and when
the underlying model follows a TAN model (right). The re-
sult is clear: when we estimate a Naive Bayes classifier with
data from a Naive Bayes model, more unlabeled data help;
when we estimate a Naive Bayes classifier with data that do
not come from a corresponding structure, more unlabeled
data can degrade performance.

The previous discussion raises some questions: Can unla-
beled data actually degrade performance, and if so, how, and
why?

The effect of unlabeled data

In this section we discuss the effect of unlabeled data on
classification error. To visualize the effect of unlabeled
data, we propose a new strategy for graphing performance
in the labeled-unlabeled data problem. Instead of fixing the
number of labeled records and varying the number of unla-
beled records, we propose to fix the percentage of unlabeled
records among all training records. We then plot classifica-
tion error against the number of training records. Call such
a graph a LU-graph. We introduce LU-graphs with an ex-
ample.

Consider a situation where we have a class variable C
with labels ¢¢ and ¢, and probability p(co) = 0.4017. We
also have two real-valued features X; and X, with distribu-
tions:

p(Xileo) = N(2,1), p(Xi|er) =N (3,1),
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Figure 1: Naive Bayes classifier from data generated from a Naive Bayes model (left) and a TAN model (right). Each point
summarizes 10 runs of each classifier on testing data; bars cover 30 to 70 percentiles.

p(Xzlco,z1) = N(2,1), p(Xaler,21) = N(1+ 2z1,1),

where N (u,o?) denotes a Gaussian distribution with mean
w and variance o2. The problem is identifiable, and there is
dependency between X, and X; (X, depends on X; when
C = c¢1). Suppose we build a Naive Bayes classifier for
this problem. Figure 2 shows LU-graphs for 0% unlabeled
records, 50% unlabeled records and 99% unlabeled records.
The LU-graphs for 50% and 99% unlabeled data have an in-
teresting property: their asymptotes do not converge to the
same value, and they are both different from the asymptote
for labeled data. Suppose then that we started with 50 la-
beled records as our training data. Our classification error
would be about 7.8%, as we can see in the LU-graph for
0% unlabeled data. Suppose we added 50 labeled records,
and we reduced classification error to about 7.2%. Now sup-
pose we added 100 unlabeled records. We would move from
the 0% LU-graph to the 50% LU-graph. Classification error
would increase to 8.2%! And if we then added 9800 unla-
beled records, we would move to the 99% LU-graph, with
classification error about 16.5% — more than twice the error
we had with just 50 labeled records.

The fact that classification error has different asymptotes,
for different levels of unlabeled data, can lead to a degrada-
tion of performance from the addition of unlabeled data. By
moving from one LU-graph to another, we can either see an
increase or a decrease on classification error, depending on
the slopes of the particular LU-graphs.

It should be noted that in difficult classification prob-
lems, where LU-graphs decrease very slowly, unlabeled data
should improve classification performance (unless we have
large amounts of labeled data available). Problems with a
large number of features and parameters should require more
training data, so we can expect that such problems benefit
more consistently from unlabeled data. Examples discussed
by (Nigam et al. 2000) seem to fit this description exactly
— while they suggest that adding features can worsen the
effect of unlabeled data, the opposite should be expected.
This observation also agrees with the empirical findings of
(Shahshahani & Landgrebe 1994), where unlabeled data are
useful as more and more features are used in classifiers.

To understand why and when do unlabeled data produce
asymptotic differences between LU-graphs, we must visual-
ize the geometry of estimation and adopt some assumptions
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Figure 2: LU-graphs for the example with two Gaussian fea-
tures. Each point in each graph is the average of 100 trials;
classification error was obtained by testing in 10000 labeled
records drawn from the correct model.

regarding the problem. We simplify the analysis by concen-
trating on the two extreme LU-graphs, for fully labeled data
and for fully unlabeled data — we should expect that any
asymptotic gap of performance between these two graphs
will be filled by a continuum of LU-graphs (just as the mid-
dle graph in Figure 2).

In general, if we do not have the correct modeling as-
sumptions for a classifier, we can obtain a model that only
approximates p(C, X), regardless of the estimation proce-
dure we employ. We can imagine a set of probability distri-
butions K (C, X) that represents the models compatible with
modeling assumptions; we are assuming that p(C,X) ¢
K(C,X). Itis easy to imagine such a set of distributions as
a polytope in a high-dimensional space, even though mod-
eling assumptions may induce a more complex set. Fig-
ure 3 shows the set K(C,X) and the “correct” distribution
p(C, X) outside of K(C,X). We can also imagine a dif-
ferent set, K'(X), obtained by pointwise marginalization of
K (C,X). Figure 3 also shows this other set and the distri-
bution p(X) obtained by marginalization of p(C, X).

Our first assumption is that the closest distribution to



Figure 3: Sets of distributions induced by modeling assump-
tions, and distributions generated by estimation.

p(C,X) in K(C,X) (which we denote by p;(C, X)) does
not correspond to the closest distribution to p(X) in K(X)
(which we denote by p,,(X)). Here “closeness” between dis-
tributions is induced by the estimation procedure, and it need
not be a true norm. To illustrate this assumption, take maxi-
mum likelihood estimation in discrete models. Consider first
the maximum likelihood estimate for p(C, X) in K (C, X).
As the number of training records grows without bound, the
empirical distribution converges to p(C, X), so asymptot-
ically we will choose the distribution in K(C,X) that is
closest to p(C, X) with respect to the Kullback-Leibler di-
vergence (Friedman, Geiger, & Goldszmidt 1997).

Suppose now we compute the maximum likelihood esti-
mate for p(X) subject to the choices in K (X), the maximum
likelihood solution for unlabeled data. We obtain the clos-
est distribution to p(X) in K (X) with respect to Kullback-
Leibler divergence. Note that p,(X) induces estimates
Pu(C,X). As Kullback-Leibler divergence and marginal-
ization do not commute, p;(C, X) and p,,(C, X) need not be
equal — and we must focus exactly on the situation where
they are different.®

An additional argument is needed to understand the ef-
fect of unlabeled data: We must appreciate the difference
between classification and estimation. Even though adding
more data (labeled and unlabeled) leads to better overall
estimation (with respect to various global measures such
as likelihood, squared-error, variance, Fisher information),
the improvement may be uneven amongst the estimated pa-
rameters. Note that for classification, only p(C|X) matters
(Friedman 1997); if the bias in p,,(C|X) is larger than the
bias in p;(C|X), the asymptotic classification performance

3Note that when we have correct modeling assumptions,
p(C,X) € K(C,X), and then both estimates must be equal as-
suming identifiability.

for unlabeled data is smaller than for labeled data. When
this performance gap is present, then unlabeled data can de-
grade performance and the LU-graphs can be used to capture
this phenomenon. Basically, the fact that estimation error
is the guiding factor in building a classifier leads us to use
estimates that are not optimal with respect to classification
error.*

The preceeding discussion indicates that missing labels
are different from missing feature values. Both forms of
missing data degrade estimation performance, but unlabeled
data also affects classification performance directly by in-
troducing bias in the critical parameters p(C|X). This in-
sight clarifies questions on missing/unlabeled data raised by
(Seeger 2001).

Conclusion

The message of this paper is that unlabeled training data can
degrade classification performance if we have modeling as-
sumptions for a classifier. There have been reports that unla-
beled data can produce such a degradation, but explanations
offered so far suggest that degradation should occur in some-
what extreme circunstances. The main point of this paper is
that the type of degradation produced by unlabeled data can
occur under common assumptions and can be explained by
fundamental differences between classification and estima-
tion errors. We propose LU-graphs as an excellent visualiza-
tion of this phenomenon. An important point for future in-
vestigation is the asymptotic classification performance for
various percentages of unlabeled data. Another point is the
search for other possible sources of performance degrada-
tion, particularly when there are severe mismatches between
actual and assumed models.

It certainly seems that some creativity must be exercised
when dealing with unlabeled data. As discussed in the lit-
erature (Seeger 2001), currently there is no coherent strat-
egy for handling unlabeled data with diagnostic classifiers,
and generative classifiers are likely to suffer from the effects
described in this paper. More general, or simply different,
approaches could be welcome (Jaakkola, Meila, & Jebara
1999). Future work should investigate whether unlabeled
data can degrade performance in different classification ap-
proaches, such as decision trees and co-training. Regardless
of the approaches that are used, unlabeled data are affected
by modeling assumptions, and we can use unlabeled data
to help our search for a correct modeling assumptions. The
present paper should be helpful as a first step in the under-
standing of unlabeled data and their peculiarities in machine
learning.
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