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Abstract

Consider the problem of classifying a sample X, into one of two classes, using a training set Q. Let Q be composed of / labeled
samples { (X}, 8,), ..., (X, 6,)} and v unlabeled samples { X, ..., X}, where the labels 6; are i.i.d. Bernoulli(#) random variables
over the set {1, 2}, the observations {X,}/_, are distributed according to f; () and the unlabeled observations {X;}¥, are
independently distributed according to the mixture density fy (- ) =1/, (- )+ (1 =7)/(-). We assume that £, (-), /2() and  are
all unknown. Let f;(+) and f,(-) belong to a known family %, and assume that the mixtures of elements of # are identifiable.
Even when the number of unlabeled samples is infinite and the decision regions can therefore be identified, one still needs labeled
samples to label the decision regions with the correct classification. Letting R (/, #) denote the optimal probability of error for /
labeled and u unlabeled samples, and assuming that the pairwise mixtures of .# are identifiable, we obtain the obvious statements
RO, u)=R(0,00)=1/2, R(1,0)<2n7, R(co, u) =R*, and then prove R(1, co}=2R*(1 —R*), where R* is the Bayes proba-
bility of error, and R(/, cc) =R*+exp{—al/+o0(/} ;, where the exponent « is given by —log(2v’%f VN1 (x)f2(x) dx). Thus the
first labeled sample reduces the risk from 1/2 to 2R*(1 —R*) and subsequent labeled samples in the training set reduce the
probability of error exponentially fast to the Bayes risk.

1. Introduction

Machine learning is traditionally divided in two branches: supervised learning and unsupervised learning.
While unsupervised learning is usually associated with clustering, the main stream of work in pattern recogni-
tion focuses on supervised learning, the construction of classification rules based on labeled examples (Jain and
Chandrasekaran, 1992; Raudys and Jain, 1991; Vapnik, 1982; Devroye, 1988). In many practical cases, though,
labeled and unlabeled samples may be available at the same time. Some papers treat both labeled and unlabeled
observations in the construction of a classification scheme (Tolat and Peterson, 1990; Pao and Sobajic, 1992;
Kester, 1985; Greenspan et al., 1991; McLachlan, 1977; McLachlan and Ganesalingam, 1982; O’Neill, 1978;
Shahshahani and Landgrebe, 1992).

A problem of general interest is to determine the interplay of the number of labeled samples / and unlabeled
samples u in the resulting probability of error R(/, u), with the ultimate goal of finding the relative value of
labeled and unlabeled samples. This paper evaluates R(/, u) at the boundaries of the (/, ) region. A following
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paper will treat the determination of R(/, #) when /and u are in the interior. We show here that labeled samples
are exponentially valuable in reducing risk. Roughly speaking, it turns out that unlabeled samples are only po-
lynomially valuable, thereby setting up an anticipated result that labeled samples are exponentially more valu-
able than unlabeled samples in pattern recognition.

We assume the following framework. Let all the random variables be defined on a probability space (£, =,
P). The notation “Pr” will be used when we omit measure-theoretical details for sake of clarity. Let the training
set Q be composed of / labeled samples { (X}, 6,), ..., (X,, #;)} and co unlabeled samples { X}, X5, ...}. Let the
class labels {#,}/_, be independent and identically distributed (i.i.d.) random variables with P{f;=1}=1,
P{6,=2}=1—n=7, and let each observation X, be independently distributed according to f;,(x). Define 6, =1
if 6;=2, ;=2 if §,= 1. then the labeled samples are distributed according to

fx, 0)=[nfi(x) 1" =D[7f(x) ] =2, (1)

where the indicator function 1(6=1) is equal to | if §=1, and to 0 otherwise. The unlabeled samples {X;}72,
appear to be i.i.d. random variables distributed according to the mixture density >,/ (x, ) given by

So)YEnh()+0L0) .

Let ( Xy, 6p) be a new sample, distributed as the observations in the training set. We wish to guess the classi-
fication 6, from the observation X,
If£,(*), /() and n are known, an optimal classifier is given by the Bayes decision rule:

decide 05 =1 if f;(Xo)//(Xo) > /0,
decide 05 =2 if f,(X,)/f(Xo) <ii/n.
The corresponding probability of error, the Bayes risk R*, is given by
R*2Pr{f5 %65} = [ min{nfi (), 1)} de=min Pr{f(Xo) %0}, (2)

where the last minimum is taken over all measurable functions (- ) from R to {1, 2}.

Thus in this paper we assume that f;(-), £,(:) and # are unknown, that the training set contains an infinite
number of unlabeled samples, X, X%, ..., and a finite number of labeled samples, {(X\, 8,), ..., (X, €/)}. A new
sample ( Xy, 8,) is to be labeled based on the observation X,,.

2. Labeled and unlabeled samples in classification rules

Since f,(+) and f;(*) are both in %, the distribution fy.(-) =1/, (-) +7£(+) of the unlabeled samples belongs
to the family of mixtures

A2 () + () 81(), &()eZ,8()#&(+), Le(0, 1)} . 3)

We say that # is identifiable if the map (0, 1) X #X #F— #, induced by the class of probability measures that
assign total mass 1 to two distinct elements of %, is one 1o one.

The theory of mixtures of distributions has been extensively developed by Teicher in a series of papers (Teicher,
1960, 1963). A comprehensive treatment of mixture distributions, as well as a large bibliography, can be found
in McLachlan and Basford (1988).

The mixture fx.(- )21/ (-)+7/(-) can be estimated from the unlabeled samples. Labeled observations are
not needed for this purpose. If the family of mixtures # is identifiable, the measure on # that generates fy(-)
can be uniquely recovered from f.(-) itself. It follows that unlabeled data alone can be used to estimate the
single-component distributions and the mixing parameter consistently. Nevertheless, in the current framework,
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we cannot construct a classification rule relying only on the unlabeled samples. To see this, consider the case
u=oco and let /=0. Rewrite the mixture distribution as

So()=nh()+if()=(a()+{&(),

where g, (-) and g, () are conventional names (for instance call g, (- ) the distribution associated with the larger
mixing coefficient). A priori it is not known if g, (- ) is the distribution of samples of class 1 or the distribution
of samples of class 2. When we observe an infinite number of labeled samples, we can (almost surely) recover
fx:(+), and by identifiability we can decompose the mixture and thus obtain g, (), g»(+) and {. ! We cannot
tell, though, whether g, (- )=/, (-) and g,(-) =£5(+) or if the opposite holds. To formalize this statement, let the
random variable Z be defined by

Z=1 ifgi(\)=£(),&()=A()and (=7,
Z=2 ifgi(")=£(),&()=f()and{=7,
and assume P{Z=1}=P{Z=2}=1. It is easily checked that Z is independent of the unlabeled samples { X, ...,

X}, for all u. By rewriting Pr{fy=i | Xo, {X}}%,}, i=1, 2, in terms of the conditional expectation given Z we
conclude that

R(0,0)=R(0,u)=% forallu. (4)

Thus, the probability of error is equal to 1/2 if there are no labeled samples, even in the presence of an infinite
number of unlabeled samples. Incidentally, note that, when the training set is composed of one labeled obser-
vation (i.e., /=1, u=0), the probability of error of the test that decides 8,=0,, equals 2#7< 1/2, the inequality
being strict for n+#1/2. Thus R(1, 0) <297<1/2=R(0, u), V.

The natural interpretation of Eq. (4) in light of the preceding discussion is that from the unlabeled samples
we can recover the decision regions of an optimum test, but not the corresponding decisions. We can obtain the
decision regions using {X’}52,, but we need labeled samples to label them.

3. The value of labeled samples

We now show that the first labeled sample reduces the probability of error to 2R*(1 — R*), which is less than
twice the Bayes risk.

Theorem 1. Let the family of mixtures # be identifiable. Let the training set Q be composed of an infinite number
of unlabeled samples and of one labeled sample. The probability of error of the optimum classification rule is

R(1,00)=2R*(1—R*).

Proof. Let (X, 0,) be the labeled sample in the training set. Since the decision problem involves two simple
hypotheses, the likelihood ratio test is optimum, as shown in Lehmann (1991 ), and can be written as

Pr{60=1 | Xo, (X1, 01), {X;}ﬁl} >
Pr{eo =2 I XO’ (Xls 0] )a {Xj’}jo—o—:I }
Pr{fo=1] Xo, (X1, 0,), {X}} 2.1} <
Pr{fo=2| Xo, (X1, 6,), {X;}72:}

decide fp=1 if 1,

decide ,=2 if

l.

! Note that, once we agree on a convention for naming the densities, this decomposition is unique.
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Conditioning on the unlabeled samples is (a.s.) equivalent to knowing the mixture f.( - ) and, by identifiability,
its components. Thus we can remove the conditioning on {X}} %, and assume that {, g, () and g,(*) are known.
Trivially,

Prido=11Xo, (X1, 0))} _f(Xo| =1, (X, 61)) Pri=1] (X,6,)}
Prio=21 Xo, (Xi,01)} f(Xo| =2, (X1,61))Pr{fo=2] (Xi,0))}

The right-hand side can be evaluated by conditioning on Z and taking expectations, giving the numerator
f(Xo | Bo=1,(X,,8,)) Pr{6y=1]| (X, 6,)}
=f(Xo| 6o=1, (X1,6,),Z=1)Pr{bp=1]| (X,,6,),Z=1} Pr{Z=1| (X,, 6,)}
+AXo | Bo=1,(X,,0,), Z=2)Pr{fy=1| (X1, 6,), Z=2} Pr{Z=2 | (X}, 8,)}
={&1(Xo) Pr{Z=1 (X, 0)}+{g:(Xo) Pr{Z=2 | (X,,6,)}

_ Cgl(Xo)Calé’al(Xl) + C_gZ(XO)C_nge_I(X])
C@lgGI(X1)+C0lg5l(Xl) Cﬂlgﬂl(Xl)+C61g§1(X1) .

A similar expression holds for the denominator. Thus, the likelihood ratio becomes

Pr{f=1| Xo, (X, 0)} _ {81 (X0){o80(X1) +{8:(X0) {86 (X))
Pr{fo=2| Xo, (X1, 00)}  {g1(Xo)C086 (X1 ) +082(X0) 0,860 (X1)

and some algebra shows that the test can be rewritten as
decide fo =1 if {g (Xo) [{n 80 (X1) — (5,86, (X1) 1> {82(X0) [£0i 80, (X1) — {80 (X1

decide o =2 if {g(Xo) [{n 80 (X1) — 580 (X1) ] < (82(Xo) [Lni 8o (X1) —Laiga (X1) ] - (5)

Interpretation. Knowing an infinite number of unlabeled samples is equivalent to identifying the densities g,(-)
and g,(-) and the mixing parameter {. Therefore one can partition the sample space in two sets, 2;={x:
L (x)> g (- )} and &L={x: {g,(x) <L (- )}, using the infinite number of unlabeled samples in the training
set. Note that 2 and %; are the decision regions induced by the Bayes decision rule: if Z= 1, the Bayes decision
rule decides 6, =1 when X,e %] and 6,=2 when Xye 4. If Z=2 the decisions are reversed.

Test (5) is equivalent to a two-stage procedure.

Stage 1. Label the components of the partition by deciding that Z=1 if {4, g5, (X,) > Co g5, (X)) and Z=2 if the
inequality is reversed.

Stage 2. Assign the sample X, to 2, if (g, (X,) > {g:(Xy), or to X, if the inequality is reversed. Let 6, be the label
of the component of the partition to which X, is assigned.

A classification error occurs when either the first stage or the second stage yields an incorrect answer. When
both stages result in wrong answers, the mistakes cancel each other. The interpretation leads to a simple way of
calculating the probability of error associated with the optimal test (5). Define the event A2 {error in stage 1}.

R(1,00)=Pr{f, #0,} =Pr{f, # 0, | A}P{A}+Pr{f,#0, | A}P{A)}
=(1—R*)R*+R*(1—R*)=2R*(1—R*),

where P(A4)=R*, by the definition of A. Also Pr{#, # 6, | A} is the probability that stage 2 is correct and is equal
to 1 —R*. Similarly P(4)=1—R*and Pr{f, #6, | A}=R*, thus proving the theorem. [
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If there are an infinite number of labeled and unlabeled samples, it follows that f1(), £2(-) and 7 can be
determined a.s., and the Bayes decision rule can be used. Thus R (oo, o) = R*. We next ask how R(/, co) con-
verges to R*.

Theorem 2. Let the number of unlabeled samples u be infinite, assume that the densities in F have common
support and that the family of mixtures # is identifiable. The probability of error in classifying a new sample X,
converges exponentially fast to the Bayes risk and satisfies

- }ir:lolllog(R(l, o) —R*) = _log(z\/;ﬁj 00 f>(x) dx) . (6)

Note that the quantity —log([ /7, (x)f(x) dx) is the Bhattacharyya distance between the densities f; () and
AH().

Proof. The arguments for the first part of the proof of Theorem 1 imply that the optimum test is equivalent to
the following two-stage procedure.

Stage 1. Label the partitions by deciding that Z=1 if T1!_, {,,ga(X,)>T1'_, {sg5(X;) and by deciding that
Z =2 if the inequality is reversed.

Stage 2. Assign the sample X, to 7, if {g,(Xo) > {g>(Xy), or to Z; if the inequality is reversed. Let 6, be the label
of the component of the partition to which X is assigned.

Define 4V ={error in stage 1}, where the superscript (/) makes explicit the dependence of the event on the
number of labeled samples in the training set. The probability of error is
R(l,oo)=Pr{fy#0, | A} PridD} +Pr{f, £0, | AV} Pr{4")
=Pr{fo#0, | AV + (Pr{fy#0y | APV =Pr{f,#6, | A}) Pr{4 "}
=R*+ (1=2R*) Pr{4 " . (7)

Thus R(/, 00) — R*=(1—2R*) Pr{4 "}, where A" can be written in terms of the underlying densities as

I nefo (X)) 'Io,fe,(Xi)
A(l)—{fl:[l 'Io’.»fe‘,-(X,-) } { 121] N Ja ( Xi) <0}‘

From the distributional properties of the pairs { (X, 6;)} and from the assumption that the densities f, (*) and
£(+) have common support, it follows that the quantities Y, 2log(no,/5,(X:))/ (ls./5:(X;))) are i.i.d. random
variables. The expectation of Y is positive and is equal to

Mo fo(X)
Mo fo(x)

the rel_ative entropy between the joint distributions (X, @) and f(X, 8), where f(X, 6) is given in Eq. (1), and
F(X, )= [nfi(X) ' O=2 [7A(X)]1¢=1.

The large sample behavior of the average of i.i.d. random variables is governed by Cramer’s theorem. By a
standard large deviations argument (Cover and Thomas, 1991) it is easily seen that

DU 0) 1LAX 0= 3 [ nusito) tog 28
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- Ilim%log Pr{AD} = 4%(0) (8)
=~ inf (D) (9)
s nﬁ(x)) (nfz(x)) ]

B égglogl:-!.(’?fz( x) wh(x )dx+j nfi(x) fa(x) 8 (10
= —tog] 2 [ AR GO 0x] ()

where 4({) is the log-moment generating function of the random variable (X, 6), and A*(x) is the correspond-
ing Fenchel-Legendre transform (the rate function). Equality (8) follows directly from Cramer’s theorem by
the convexity of 4*(-), (9) follows from Lemma 2.2.5 of Dembo and Zeitouni (1993), (10) follows the defi-
nition of logarithmic moment generating function of the random variable log(#,/5(X)/ (75/5(X) ) ). The min-
imization that leads to (1) can be performed by differentiating under the integral sign, and is consistent with
the symmetry inherent in the problem. The theorem follows immediately from (7) and (11). O

4. Discussion and conclusions

The identifiability of the family of mixtures .# defined in Eq. (3) enables us to estimate the boundaries of
the decision regions from the unlabeled observations. Thus, if we have an infinite number of unlabeled samples,
we can find the partition of the sample space that corresponds to the Bayes decision rule with probability one.
Nevertheless, from the unlabeled samples { X} %2, we cannot infer the decisions associated with the components
of the partition. Thus

R(0,u)=R(0,00)=1 .

We need labeled samples to label the decision regions. The first labeled sample reduces the probability of error
from R(0,c0)=1/2t0

R(1,00)=2R*(1-R*),
where R* is the Bayes probability of error. (It is simply a coincidence that this equality is the same as the upper

bound for the nearest neighbor risk.)
When the number of labeled samples is equal to infinity,

R(oo, u)=R(co, c0)=R* .

The risk converges exponentially fast to the Bayes risk in the number / of labeled samples according to

R(l, o) _R*=exp{llog(2\/r7ﬁf 00 (x) dx)+0(/)} ,

where the exponent is the Bhattacharyya distance between the densities f;(x) and f;(x) plus a term equal to
log (2./77).

Thus labeled samples have an exponential value in reducing the probability of error. Their essential property,
which makes them qualitatively different from unlabeled samples, is the information that they carry about the
decisions associated with the decision regions. This property should be exploited in the construction of classifi-
cation rules when the cost of acquiring labeled observations for the training set is high compared with the cost
of obtaining unlabeled observations.
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