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Abstract

We introduce a semi-supervised support vector machine (S3VM)
method. Given a training set of labeled data and a working set
of unlabeled data, S3VM constructs a support vector machine us-
ing both the training and working sets. We use S3VM to solve
the transduction problem using overall risk minimization (ORM)
posed by Vapnik. The transduction problem is to estimate the
value of a classification function at the given points in the working
set. This contrasts with the standard inductive learning problem
of estimating the classification function at all possible values and
then using the fixed function to deduce the classes of the working
set data. We propose a general S3VM model that minimizes both
the misclassification error and the function capacity based on all
the available data. We show how the S3VM model for 1-norm lin-
ear support vector machines can be converted to a mixed-integer
program and then solved exactly using integer programming. Re-
sults of S3VM and the standard 1-norm support vector machine
approach are compared on eleven data sets. Our computational
results support the statistical learning theory results showing that
incorporating working data improves generalization when insuffi-
cient training information is available. In every case, S3VM either
improved or showed no significant difference in generalization com-
pared to the traditional approach.

∗This paper has been accepted for publication in Proceedings of Neural Information
Processing Systems, Denver, 1998.



1 INTRODUCTION

In this work we propose a method for semi-supervised support vector machines
(S3VM). S3VM are constructed using a mixture of labeled data (the training set)
and unlabeled data (the working set). The objective is to assign class labels to the
working set such that the “best” support vector machine (SVM) is constructed.
If the working set is empty the method becomes the standard SVM approach to
classification [20, 9, 8]. If the training set is empty, then the method becomes a
form of unsupervised learning. Semi-supervised learning occurs when both training
and working sets are nonempty. Semi-supervised learning for problems with small
training sets and large working sets is a form of semi-supervised clustering. There
are successful semi-supervised algorithms for k-means and fuzzy c-means clustering
[4, 18]. Clustering is a potential application for S3VM as well. When the training
set is large relative to the working set, S3VM can be viewed as a method for solving
the transduction problem according to the principle of overall risk minimization
(ORM) posed by Vapnik at the NIPS 1998 SVM Workshop and in [19, Chapter 10].

S3VM for ORM is the focus of this paper.

In classification, the transduction problem is to estimate the class of each given
point in the unlabeled working set. The usual support vector machine (SVM) ap-
proach estimates the entire classification function using the principle of statistical
risk minimization (SRM). In transduction, one estimates the classification func-
tion at points within the working set using information from both the training and
working set data. Theoretically, if there is adequate training data to estimate the
function satisfactorily, then SRM will be sufficient. We would expect transduction
to yield no significant improvement over SRM alone. If, however, there is inad-
equate training data, then ORM may improve generalization on the working set.
Intuitively, we would expect ORM to yield improvements when the training sets are
small or when there is a significant deviation between the training and working set
subsamples of the total population. Indeed,the theoretical results in [19] support
these hypotheses.

In Section 2, we briefly review the standard SVM model for structural risk minimiza-
tion. According to the principles of structural risk minimization, SVM minimize
both the empirical misclassification rate and the capacity of the classification func-
tion [19, 20] using the training data. The capacity of the function is determined by
margin of separation between the two classes based on the training set. ORM also
minimizes the both the empirical misclassification rate and the function capacity.
But the capacity of the function is determined using both the training and work-
ing sets. In Section 3, we show how SVM can be extended to the semi-supervised
case and how mixed integer programming can be used practically to solve the re-
sulting problem. We compare support vector machines constructed by structural
risk minimization and overall risk minimization computationally on eleven prob-
lems in Section 4. Our computational results support past theoretical results that
improved generalization can be obtained by incorporating working set information
during training when there is a deviation between the working set and training
set sample distributions. In three of ten real-world problems the semi-supervised
approach, S3VM , achieved a significant increase in generalization. In no case did
S3VM ever obtain a significant decrease in generalization. We conclude with a
discussion of more general S3VM algorithms.
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Figure 1: Optimal plane maximizes margin.

2 SVM using Structural Risk Minimization

The basic SRM task is to estimate a classification function f : RN → {±1} using
input-output training data from two classes

(x1, y1), . . . , (x`, y`) ∈ Rn × {±1}. (1)

The function f should correctly classify unseen examples (x, y), i.e. f(x) = y if (x, y)
is generated from the same underlying probability distribution as the training data.
In this work we limit discussion to linear classification functions. We will discuss
extensions to the nonlinear case in Section 5. If the points are linearly separable,
then there exist an n-vector w and scalar b such that

w · xi − b ≥ 1 if yi = 1, and
w · xi − b ≤ −1 if yi = −1, i = 1, . . . , `

(2)

or equivalently
yi[w · xi − b] ≥ 1, i = 1, . . . , `. (3)

The “optimal” separating plane, w · x = b, is the one which is furthest from the
closest points in the two classes. Geometrically this is equivalent to maximizing the
separation margin or distance between the two parallel planes w · x = b + 1 and
w · x = b − 1 (see Figure 1.)

The “margin of separation” in Euclidean distance is 2/ ‖w‖
2

where ‖w‖
2

=
∑n

i=1
w2

i is the 2-norm. To maximize the margin, we minimize ‖w‖
2
/2 subject

to the constraints (3). According to structural risk minimization, for a fixed em-
pirical misclassification rate, larger margins should lead to better generalization
and prevent overfitting in high-dimensional attribute spaces. The classifier is called
a support vector machine because the solution depends only on the points (called
support vectors) located on the two supporting planes w ·x = b−1 and w ·x = b+1.

In general the classes will not be separable, so the generalized optimal plane (GOP)
problem (4) [9, 20] is used. A slack term ηi is added for each point such that if the
point is misclassified, ηi ≥ 1. The final GOP formulation is:

min
w,b,η

C
∑̀

i=1

ηi +
1

2
‖w‖

2

s.t. yi[w · xi − b] + ηi ≥ 1
ηi ≥ 0, i = 1, . . . , `

(4)

where C > 0 is a fixed penalty parameter. The capacity control provided by the
margin maximization is imperative to achieve good generalization [21, 19].

The Robust Linear Programming (RLP) approach to SVM is identical to GOP
except the margin term is changed from the 2-norm ‖w‖

2
to the 1-norm, ‖w‖

1
=



∑n
j=1

|wj|. The problem becomes the following robust linear program (RLP) [2, 7,

1]:

min
w,b,s,η

C
∑̀

i=1

ηi +

n
∑

j=1

sj

s.t. yi[w · xi − b] + ηi ≥ 1
ηi ≥ 0, i = 1, . . . , `
−sj <= wj <= sj , j = 1, . . . , n.

(5)

The RLP formulation is a useful variation of SVM with some nice characteristics.
The 1-norm weight reduction still provides capacity control. The results in [13] can
be used to show that minimizing ‖w‖1 corresponds to maximizing the separation
margin using the infinity norm. Statistical learning theory could potentially be
extended to incorporate alternative norms. One major benefit of RLP over GOP
is dimensionality reduction. Both RLP and GOP minimize the magnitude of the
weights w. But RLP forces more of the weights to be 0 due to the properties of
the 1-norm. Another benefit of RLP over GOP is that it can be solved using linear
programming instead of quadratic programming. Both approaches can be extended
to handle nonlinear discrimination using kernel functions [8, 12]. Empirical compar-
isons of the approaches have not found any significant difference in generalization
between the formulations [5, 7, 3, 12].

3 Semi-supervised support vector machines

To formulate the S3VM , we start with either SVM formulation, (4) or (5), and then
add two constraints for each point in the working set. One constraint calculates
the misclassification error as if the point were in class 1 and the other constraint
calculates the misclassification error as if the point were in class −1. The objective
function calculates the minimum of the two possible misclassification errors. The
final class of the points corresponds to the one that results in the smallest error.
Specifically we define the semi-supervised support vector machine problem (S3VM)
as:

min
w,b,η,ξ,z

C





∑̀

i=1

ηi +

`+k
∑

j=`+1

min(ξj , zj)



 + ‖ w ‖

subject to yi(w · xi + b) + ηi ≥ 1 ηi ≥ 0 i = 1, . . . , `
w · xj − b + ξj ≥ 1 ξj ≥ 0 j = ` + 1, . . . , ` + k

−(w · xj − b) + zj ≥ 1 zj ≥ 0

(6)

where C > 0 is a fixed misclassification penalty.

Integer programming can be used to solve this problem. The basic idea is to add
a 0 or 1 decision variable, dj, for each point xj in the working set. This variable
indicates the class of the point. If dj = 1 then the point is in class 1 and if dj = 0
then the point is in class −1. This results in the following mixed integer program:

min
w,b,η,ξ,z,d

C





∑̀

i=1

ηi +

`+k
∑

j=`+1

(ξj + zj)



 + ‖ w ‖

subject to yi(w · xi − b) + ηi ≥ 1 ηi ≥ 0 i = 1, . . . , `
w · xj − b + ξj + M (1 − dj) ≥ 1 ξj ≥ 0 j = ` + 1, . . . , ` + k
−(w · xj − b) + zj + Mdj ≥ 1 zj ≥ 0 dj = {0, 1}

(7)

The constant M > 0 is chosen sufficiently large such that if dj = 0 then ξj = 0 is
feasible for any optimal w and b. Likewise if dj = 1 then zj = 0. A globally optimal



Figure 2: Left = solution found by RLP; Right = solution found by S3VM

solution to this problem can be found using CPLEX or other commercial mixed
integer programming codes [10] provided computer resources are sufficient for the
problem size. Using the mathematical programming modeling language AMPL [11],
we were able to express the problem in thirty lines of code plus a data file and solve
it using CPLEX.

4 S3VM and Overall Risk Minimization

An integer S3VMcan be used to solve the Overall Risk Minimization problem. Con-
sider the simple problem given in Figure 20 of [19]. Using RLP alone on the training
data results in the separation shown in Figure 1. Figure 2 illustrates what happens
when working set data is added. The training set points are shown as transparent
circles and hexagons. The working set points are shown as filled circles. The left
picture in Figure 2 shows the solution found by RLP. Note that when the working
set points are added, the resulting separation has very a small margin. The right
picture shows the S3VM solution constructed using the unlabeled working set. Note
that a much larger and clearer separation margin is found. These computational
solutions are identical to those presented in [19].

We also tested S3VM on ten real-world data sets (eight from [14] and the bright and
dim galaxy sets from [15]). There have been many algorithms applied successfully to
these problems without incorporate working set information. Thus it was not clear
a priori that S3VM would improve generalization on these data sets. For the data
sets where no improvement is possible, we would like transduction using ORM to
not degrade the performance of the induction via SRM approach. For each data set,
we performed 10-fold cross-validation. For the three starred data sets, our integer
programming solver failed due to excessive branching required within the CPLEX
algorithm. On those data sets we randomly extracted 50 point working sets for
each trial. The same C parameter was used for each data set in both the RLP and
S3VM problems1. In all ten problems, S3VM never performed significantly worse
than RLP. In three of the problems, S3VM performed significantly better. So ORM
did not hurt generalization and in some cases it helped significantly. We would
expect this based on ORM theory. The generalization bounds for ORM depend on
the difference between the training and working sets. If there is little difference, we
would not expect any improvement using ORM.

1The formula for C was C =
(1−λ)
λ(`+k)

with λ = .001, ` is the size of training set, and k

is the size of the working set. This formula was chosen because it worked well empirically
for both methods.



Table 1: RLP vs S3VM Average Testing Error

Data Set Dim Points CV-size RLP S3VM p-value
Bright 14 2462 50* 0.02 0.018 0.343
Cancer 9 699 70 0.036 0.034 0.591

Cancer(Prognostic) 30 569 57 0.035 0.033 0.678
Dim 14 4192 50* 0.064 0.054 0.096
Heart 13 297 30 0.173 0.160 0.104

Housing 13 506 51 0.155 0.151 0.590
Ionosphere 34 351 35 0.109 0.106 0.59

Musk 166 476 48 0.173 0.173 0.999
Pima 8 769 50* 0.220 0.222 0.678
Sonar 60 208 21 0.281 0.219 0.045

5 Conclusion

We introduced a semi-supervised SVM model. S3VM constructs a support vector
machine using all the available data from both the training and working sets. We
show how the S3VM model for 1-norm linear support vector machines can be con-
verted to a mixed-integer program. One great advantage of solving S3VM using in-
teger programming is that the globally optimal solution can be found using packages
such as CPLEX. Using the integer S3VM we performed an empirical investigation
of transduction using overall risk minimization, a problem posed by Vapnik. Our
results support the statistical learning theory results that incorporating working
data improves generalization when insufficient training information is available. In
every case, S3VM either improved or showed no significant difference in generaliza-
tion compared to the usual structural risk minimization approach. Our empirical
results combined with the theoretical results in [19], indicate that transduction via
ORM constitutes a very promising research direction.

Many research questions remain. Since transduction via overall risk minimization
will be better than the basic induction via structural risk minimization. some of
the time, can we identify a priori problems likely to benefit from transduction? The
best methods of constructing S3VM for the 2-norm case and for nonlinear functions
are still open questions. Kernel based methods can be incorporated into S3VM.
The practical scalability of the approach needs to be explored. We were able to
solve moderately-sized problems with on the order of 50 working set points using a
general purpose integer programming code. The recent success of special purpose
algorithms for support vector machines [16, 17, 6] indicate that such approaches
may produce improvement for S3VM as well.
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