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Abstract

Gaussian process regression allows a simple analytical treatment of exact
Bayesian inference and has been found to provide good performance, yet
scales badly with the number of training data. In this paper we compare exper-
imentally three of the leading approaches towards scaling Gaussian processes
regression to large data sets: the subset of representers method, the reduced
rank approximation, and the Bayesian committee machine. Furthermore we
provide theoretical insight into some of our experimental results. We found
that subset of representers methods can give good and particularly fast predic-
tions for data sets with high and medium noise levels. On low noise data sets,
the Bayesian committee machine achieves significantly better accuracy, yet at
a higher computational cost for large test data sets.

1 Introduction

Gaussian process regression (GPR) has demonstrated excellent performance in a number of ap-
plications. One unpleasant aspect of GPR is its scaling behavior with the size of the training
data set N. In direct implementations, training time increases as O(N3) whereas memory foot-
print and prediction time are proportional to training data size. The subset of representer method
(SRM), the reduced rank approximation (RRA) and the Bayesian committee machine (BCM)
are three related approaches which solve the scaling problems based on a finite dimensional
approximation to the typically infinite dimensional Gaussian process.

The focus of this paper is on providing a unifying view on the methods and analyze their dif-
ferences, both from an experimental and a theoretical point of view. A major difference of the
methods discussed here is that the BCM performs transduction, i.e. it exploits knowledge about
the location of the test data in its approximation. As a consequence, the BCM approximation is
calculated when the inputs to the test data are known. On the other hand, RRA and SRM methods
perform induction style learning, which means that the model parameters are calculated solely
based on the training data. In this paper we complete the picture and also formulate induction
for the BCM and transduction both for RRA and SRM methods. We examine asymptotical and
actual runtime of the different approaches and investigate the accuracy versus speed trade-off. In
Sec. 2 we will briefly introduce Gaussian process regression (GPR). Sec. 3 presents the various
approaches to scaling GPR to large data sets. Sec. 4 follows with an experimental comparison of
the described approaches. In Sec. 5 we analyze the experimental results and discuss the concepts
of induction and transduction, followed by Sec. 6 with conclusions.



2 Gaussian Processes

In a Bayesian treatment of Gaussian process regression (GPR), one assumes that data are gener-
ated based on an unknown function f, where a Gaussian prior distribution P(f) over the space of
functions is assumed. As a consequence of the Gaussian assumption, a priori functional values
f(x;) on points {xi}iN=1 are jointly Gaussian distributed, with zero mean and covariance matrix

KN. The covariance matrix (or Gram matrix) KN itself is given by the kernel (or covariance)
function k(- -), with K = k(x;,X;).

For GPR, we assume a set of training data D = {(xi,yi)}i'\‘zl, where targets are generated from
f viay; = f(xi) +&. Here, g is independent additive Gaussian noise with variance o2 We
denote the vector of observations y; by y = (y1,...,yn) T. The Bayes optimal estimator f x) =
E(f(x)|D) takes on the form of a weighted combination of kernel functions [4] on training points
Xi

N
fx) = wik(x,x;). @
2
The weight vector w = (wy,...,wy) " is the solution to the system of linear equations

KN+ )w=y )

where 1 denotes a unit matrix. Mean and covariance of the GP prediction f* on a set of test
points xj,...,X} can be written conveniently as

E(f*|D) = K*Nw and cov(f*|D) = K* — K*N(KN 4+ ¢21)~1(K*N) T, (3)

with Ki*jN = k(x{,xj). EQ. (2) shows clearly what problem we may expect with large training

data sets: The solution to a system of N linear equations requires O(N ) operations, and the size
of the Gram matrix KN may easily exceed the memory capacity of an average work station.

3 Approximation Methods for GPR

3.1 Bayesian Committee Machine (BCM)

In the BCM [8], the training data 9 are partitioned into M disjoint sets D1, ..., DM of approx-
imately same size (“modules™), and M learning systems are trained on their respective training
data set. The BCM calculates the unknown responses at a number of test points x;...x} at the
same time. Let f* = (f(x}),..., f(x}) be the vector of these response variables at the T test
points. The underlying assumption of the BCM is that

P(D'|f*, D\ D) =~ P(D'|f*) i=1,...,M

meaning that individual parts 9' of the data are independent given f*. This is a good assump-
tion if (1) the test set contains many points, since these points are sufficient to define the map f
and make all data independent, or (2) if each portion of data ' is large, which increases their
independence from each other on average, or (3) if each D' contains data that is spatially sepa-
rated from other training data, since spatially separated data points tend to be independent even
unconditionally.

Under the above independence assumption, one obtains an estimate of f * at the test data as

E(f*|D) = C_licov(f*|2)i)_lE(f*|Q)i) @)

M

with C = cov(f*|D)~? —(M—=1)(K") 1+ zicov(f*m)i)‘l. (5)



Here, K* is the T x T prior covariance matrix at the test points. E(f*|2") and cov(f*|D') are
obtained from Gaussian process regression on module D' via Eq. (3).

Eq. (4) has the form of a committee machine where the predictions of the committee members at
all T test points are used to form the prediction of the committee at those points. The prediction
of each module i is weighted by the inverse covariance of its prediction. An intuitively appealing
effect of this weighting scheme is that modules which are uncertain about their predictions are
automatically weighted less than modules that are certain about their predictions. Note that the
BCM is a transductive method, in that it only can be applied once the test patterns are known.
To emphasize this, we will refer this method as BCM Trans.

In previous work on the BCM, data was partitioned randomly into modules D'. In this paper
we report for the first time results where data were assigned via k-means clustering, thereby
improving the independence assumption of Eq. (3.1), see the above remark (3). Later on, we
will refer to this method as BCM TransClust.

We may also use the BCM for induction style learning (BCM Ind) by, in the training stage,
inferring the functional values & for a set of B basis points {x?} chosen out of the training data
D. In the test stage, one can project from basis points to test points {xi*}iT=1 using Eq. (7.1) of
[8] and obtain for the functional values f* on the test points

E(F*D) = K*B(K®)~1E(f% D) (6)

with KB = k(x;,x®) and K = k(xP,x5).

3.2 Reduced Rank Approximation (RRA)

Reduced rank approximations focus on ways of efficiently solving the system of linear equations
Eq. (2), by replacing the kernel matrix KN with some suitable approximation KN. One suitable
form for KN can be obtained from a truncated eigendecomposition

KN~ KN=UAUT

where U is an N x B matrix containing B eigenvectors of KN and A is a diagonal matrix with B
eigenvalues.

Williams and Seeger [10] use the Nystrom method to calculate an approximation to the first
B eigenvalues and eigenvectors of KN, Essentially, the Nystrom method performs an eigen
decomposition of the B x B covariance matrix K B, obtained from a set of B basis points selected
at random out of the training data. Based on this decomposition, B eigenvectors and eigenvalues
of KN are estimated. Using the matrix inversion lemma, one obtains an approximate solution for
the weight vector w in Eq. (1) as

WS é (1_ KN\B [(KNB)TKNB+ GZ(KB)—l] _1(KNB)T> y.

We refer to this method as RRA Nyst. Here, KNB is the kernel matrix of training points versus
base points. In this form, only matrices of size B x B need to be inverted, with usually B < N,
instead of the N x N matrices in the direct computation. Mind that the decomposition of KN is
only used to obtain an efficient way of solving the linear system Eq. (2), the covariance of the
Gaussian process is left unchanged. The prediction obtained with the Nystrom method still has
the form of a superposition of all N kernel functions, as given in Eq. (1).

3.3 Subset of Representers Method (SRM)

The starting point for the SRM is a decomposition of the covariance function of the form

k(xi,X;j) ~ KMB(KB)~H(KIBYT,



Here, KB is the Gram matrix for a subset of B basis points and KB is the vector of covariances
between x; and the basis points. It is well known that, if such a decomposition exists, a Gaussian
process is equivalent to a system with fixed basis functions, where the fixed basis functions are
given by kernels at the training points k(-,x;). For such a system of fixed basis functions, (K B)~*
is the covariance of a Gaussian prior distribution for the weights on the basis functions (see, for
example, [8]). In other words, by using the approximation Eq. (3.3) we have transformed the
original infinite dimensional Gaussian process into a system with B fixed basis functions, where
predictions can be calculated as

B
f(x) =3 Bik(x,xi)
i; 1 1
with an optimal weight vector
B — (O.ZKB+ (KNB)TKNB)_l(KNB)Ty. (7)

In practical implementation, one may expect different performance depending on the choice of
the B basis points X1, ..., xg. Different approaches for basis selection have been used in literature,
we will discuss them in turn.

Obviously, one may select the basis points at random (SRM Rand) out of the training set. While
this produces no computational overhead, the prediction outcome may be suboptimal.

In the sparse greedy matrix approximation (SRM SGMA, [6]) a subset of B basis kernel functions
is selected such that all kernel functions on the training data can be well approximated by linear
combinations of the selected basis kernels. If proximity in the associated reproducing kernel
Hilbert space (RKHS) is chosen as the approximation criterion, one obtains exactly the form
of kernel function given in Eq. (3.3). Smola and Schélkopf [6] introduce a greedy algorithm
that finds a near optimal set of basis functions, where the algorithm has the same (asymptotic)
computational complexity O(NB?) as the SRM Rand method.

Whereas the SGMA basis selection desribed above focuses only on the representation power
of kernel functions, one can also design a basis selection scheme that takes into account the
full likelihood model of the Gaussian process. The underlying idea of the greedy posterior
approximation algorithm SRM GP [7] is to compare the log posterior of the subset of representers
method and the full Gaussian process log posterior. One thus can select basis functions in such
a fashion that the SRM log posterior best approximates? the full GP log posterior, while keeping
the total number of basis functions B minimal. As for the case of SGMA, this algorithm can be
formulated such that its asymptotical computational complexity is O(NB?2), where B is the total
number of basis functions selected.

Finally, one can devise a transductive method (SRM Trans) by using the test points as basis
points. Mind that for transduction, the SRM and the RRA Nyst methods give identical predic-
tions.

3.4 Computational Cost

Table 1 shows the asymptotic computational cost for all approximation methods we have de-
scribed in Sec. 3.1 through 3.3. The subset of representers methods (SRM) show the most fa-
vorable cost for the prediction stage, since the resulting model consists only of B basis functions
with associated weight vector. Note that the O(-) notation is hiding constant factors, therefore
methods with the same asymptotical complexity may exhibit significantly different time con-
sumption in practice.

IHowever, Rasmussen [5] noted that Smola and Bartlett [7] falsely assume that the additive constant terms
in the log likelihood remain constant during basis selection.



Memory consumption Computational cost

Method Initialization  Prediction Initialization  Prediction
Exact GPR O(N?) O(N) O(N3) O(N)
BCM Trans — O(N+B?) — O(NB)
BCM Ind O(N+B?) o(B) O(NB?) 0(B)
SRM Rand, SRM SGMA, O(NB) 0(B) O(NB?) 0(B)
SRM GP, SRM Trans

RRA Nyst O(NB) O(N) O(NB?) O(N)

Table 1: Asymptotic computational cost and memory consumption different GP approximation
methods with N training data points and B basis points, B <« N. For the BCM and its
variants, we assume here that training and test data are partitioned into modules of size
B. All costs for predictions show the cost per test point.

4 Experimental Comparison

In this section we will present a comparison of the different approximation methods discussed
in Sec. 3. In the ABALONE data set [1] with 4177 examples, the goal is to predict the age of
Abalones based on 8 inputs. The KINSNM data set? represents the forward dynamics of an 8
link all-revolute robot arm, based on 8192 examples. The goal is to predict the distance of the
end-effector from a target, given the twist angles of the 8 links as features. KIN40K represents
the same task, yet has a low noise level (as compared to KINSNM with medium noise level) and
contains 40.000 examples. Data set ART with 50000 examples was used extensively in [8] and
describes a nonlinear map with 5 inputs with a small amount of Gaussian additive noise.

For all data sets, we used a squared exponential kernel of the form k(xi,xj) =
exp (—ﬁlznxi—xj”z), where the kernel parameter d was optimized individually for each

method. To allow a fair comparison, the subset selection methods SRM SGMA and SRM GP
were forced to select a given number B of basis functions (instead of using the stopping criteria
proposed by the authors of the respective methods). Thus, all methods form their predictions as
a linear combination of exactly B basis functions.

Table 2 shows the average variance explained® in a 10-fold cross validation procedure on all data
sets. For each of the methods, we have run experiments with different kernel width d, in Table 2
we list only the results obtained with optimal d for each method.

On the ABALONE data set (very high level of noise), all of the tested methods achieved almost
identical performance. For all other data sets, significant performance differences were observed.
Out of the inductive methods (SRM SGMA, SRM Rand, SRM GP, RRA Nyst, BCM Ind) best
performance was always achieved with SRM GP. Using the results in a paired t-test showed that
this was significant at a level of 99% or above. The inductive BCM Ind can not be recommended
in its current form, since its performance is inferior to other inductive methods. Furthermore,
we observed certain problems with the RRA Nyst method. On all but the ABALONE data set,
weights w took on values in the range of 102 or above, leading to poor performance. Details on
that observation will be given in Sec. 5.2.

Comparing induction and transduction methods, we see that the transductive BCM performs
significantly better in most cases. In particular, the BCM TransClust method with pre-clustered
training data, achieved very good performance on the low noise data sets KIN40K and ART.

2From the DELVE archive http://www.cs.toronto.edu/~delve/

. . MSE . . .
Svariance explained = 1 — W%%I' where MSEmean is the MSE obtained from using the mean of

training data mean as a constant predictor. This gives a measure of performance that is independent of
data scaling.



Abalone KINSNM KIN40K ART

Method 200 1000 200 1000 200 1000 200 1000
SRM GP 57.19 57.19 86.21 9216 90.51 97.64 96.09 98.88
SRM SGMA 5717 5719 78.16 91.30 81.68 95.75 9438 98.21
SRM Random 57.14 57.18 77.66 90.99 81.23 95.61 94.13 98.21
BCM Ind 57.21 57.19 73.08 90.34 7573 94.83 93.62 97.98
RRA Nyst 57.02 56.90 N/A NA NA NA NA NA
BCM TransClust ~ 57.14 57.19 89.68 91.69 97.19 99.17 99.73 99.80
BCM Trans 57.13 57.20 86.96 91.37 91.22 97.89 97.31 99.09
SRM Trans 57.03 57.21 78.05 90.21 83.53 95.75 94.85 98.36

Table 2: Variance explained, obtained with different GPR approximation methods on four data
sets, with different number of basis functions selected (200 or 1000). Variance explained
is given in per cent, averaged over 10-fold cross validation. Marked in bold are results
that are significantly better (with a significance level of 99% or above in a paired t-test)
than any of the other methods

Here, the average MSE obtained with BCM TransClust was only a fraction (25-30%) of the aver-
age MSE of the best inductive method. By a paired t-test we confirmed that the BCM TransClust
method is significantly better than all other methods on the KIN4OK and ART data sets, with
significance level of 99% or above. On the KIN8NM data set (medium noise level) we observed
a case where SRM GP performed best. We attribute this to the fact that k-means clustering was
not able to find good spatially separated clusters, thus weakening the independence assumptions
in the BCM. We further noticed that, on the KIN4OK and ART data sets, SRM Trans consis-
tently outperformed SRM Random, despite of SRM Trans being the most simplistic tranductive
method.

As mentioned above, we did not make use of the stopping criterion proposed by Smola and
Bartlett [7] for the SRM GP method, namely the relative gap between SRM log posterior and the
log posterior of the full Gaussian process model. In Smola and Bartlett [7], the authors suggest
that the gap is indicative of the generalization performance of the SRM model and use a gap
of 2.5% in their experiments. In contrast, we did not observe any correlation between the gap
and the generalization performance in our experiments. For example, selecting 200 basis points
out of the KIN40K data set gave a gap of ~ 1%, indicating a good fit. As shown in Table 2, a
significantly better error was achieved with 1000 basis functions (giving a gap of ~ 3.5-10 —4).
Thus, the question of choosing an appropriate basis set size B remains open.

It is also interesting to consider not only the asymptotic complexity, but the actual runtime as
well. For one (out of 10) cross validation runs on KIN40K (36000 training examples, 4000 test
patterns, B = 1000 basis functions), SRM Rand and RRA Nyst took about 3 minutes, the BCM
methods on the order of 30 minutes, SRM SGMA on the order of 6 hours, and SRM GP took about
10 hours. Of course, all SRM methods have significant advantages in terms of runtime once the
basis set is selected. We thus consider the time spent for basis selection as the bottleneck for
SRM methods with larger number of basis functions.

5 Discussion of the Results

5.1 Transduction versus |nduction

Our experimental results have shown that, except for one case, transduction using the BCM
gives better results than any of the inductive methods. We can gain insight by considering the
decomposition P(f*, D) = P(f*)P(D|f*), where P(f*) is the Gaussian process prior for functional
values at the test points. Based on this decomposition the GPR prediction Eg. (3) can now be



written as
-1
E(FD) = K* (K + K™Neov(yl) (K™ T) K ™Neov(ylf) Ty (@®)
where  cov(y[f*) = KN+ 0?1 — (K™N)T(K*)~1K™N 9)

Note, that in Eq. (8), data are weighted by the inverse covariance of the Gaussian distribution
cov(y|f*) of the data given the functional values at the test points. Eq. (9) reveals that those data
points are weighted less (i.e. have a higher effective variance), which cannot be predicted well
from the functional values of the test points. As a result, data points which are in this sense closer
to the test points (in that they can be predicted better) obtain a higher weight than data which
are remote from the test points. By comparing Eq. (7) and Eq. (8) one can see that the latter is
identical to SRM Trans, if we set cov(y|f*) = g?1. Thus, transduction with SRM performs an
approximation by replacing the proper weighting by a constant weighting on all training data.

On the other hand, it can be shown that the BCM Trans performs a block diagonal approximation
of cov(y|f*), thus computing a test set dependent weighting of training data. The block diagonal
approximation works well if blocks are large (i.e. module size is large) and if the number of
test points T is large since then cov(y|f*) tends to be diagonal. It is also apparent that data
partitioning through clustering is beneficial. Although one is actually interested in arranging
cov(y|f*) to be block diagonal, a similar effect can be achieved by clustering the training data,
leading to a block diagonal KN. In the relevant case where data points can not well predicted
from f*, the two remaining terms in Eq. (9) cancel and a block diagonal KN results in a block
diagonal cov(y|f*). Summing up, transduction in the form of the BCM works, since the solution
weights training data that is close to test data more heavily. A drawback is of course that this is
a test data dependent approximation, in that it needs to be re-calculated each time new test data
arrive.

5.2 Problemswith the RRA

As mentioned in Sec. 4, we observed that weights W tend to have unreasonably large values,
sometimes in the range of 103 or above, on data sets KINSNM, KIN40K and ART. We might
explain that by considering the perturbation of linear systems. RRA Nyst solves Eq. (2) with an
approximate KN instead of KN, thus calculating an approximate W instead of the true w. A result
from matrix perturbation theory states that the relative error of the approximate W is bounded by

[[W —w]]

< (KN +0%1)~1E (10)
W II¢ ) Ell

with perturbation matrix E = (KN 4 021) — (KN + ¢21). In the above equation we have used
[|-]| for both matrix and vector norm, where—for the bound to hold—the two norms must be
consistent (see for example [2], chapter 5).

Consistent norms are for example the Euclidean norm for vectors and the spectral norm for
matrices. Using these norms, we can write the above bound as

[ — w| I = Al
< max =
([ A+ 02

where A; and A; denote eigenvalues of KN resp. KN.

By its nature, the Nystrom approximation is able to estimate at most B eigenvalues of the Gram
matrix K, where B is the number of basis points. In an optimistic setting we may assume that
the largest B eigenvalues have been correctly estimated and that eigen values are sorted by mag-
nitude. Then
W—w[| _ Apta
Iwl|  — o?




If the eigenvalue Ap1 < 02 at the “cut-off point” B+ 1, we may expect the Nystrém method to
work correctly. Otherwise, for slowly decaying eigenvalues and/or small o2, the weight vector
w may be far off its correct values.

A closer look at the Nystrém approximation [9] revealed that already for moderately complex
data sets, such as KIN8NM, it tends to underestimate eigenvalues of the Gram matrix, unless a
very high number of basis points is used. If in addition a rather low noise variance is assumed,
we obtain a high value for the error bound in Eq. (5.2), confirming our observations in the
experiments.

6 Conclusions

Our results indicate that, depending on the computational resources and the desired accuracy, one
may select methods as follows: If the major concern is speed of prediction, one is well advised
to use the subset of representers method with basis selection by greedy posterior approximation
(SRM GP). This method may be expected to give results that are significantly better than other
(inductive) methods. While being painfully slow during basis selection, the resulting models are
compact, easy to use and accurate.

On the other hand, if accurate predictions are the major concern, one may expect best results with
the Bayesian committee machine. On large low noise data sets (such as KIN4OK and ART) we
observed significant advantages in terms of prediction accuracy, giving an average mean squared
error that was only a fraction (25-30%) of the error achieved by the best inductive method. For
the BCM, one must take into account that it is a transduction scheme, thus prediction time and
memory consumption are larger than those of SRM methods.

We observed that reduced rank approximation with Nystrom is not recommendable in its cur-
rent form. We have provided some theoretical insight into problems with Nystrom, methods to
overcome these problems are currently investigated [9].

Although all discussed approaches scale linearly in the number of training data, they exhibit
significantly different runtime in practice. For the experiments we had done in this paper (run-
ning 10-fold cross validation on given data) the Bayesian committee machine is on the order
of one magnitude slower than an SRM method with random basis, SRM with greedy posterior
approximation is again an order of magnitude slower than the BCM.
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