# Implementing Tensor Methods: Application to Community Detection

#### Anima Anandkumar

U.C. Irvine

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

#### **Recap: Basic Tensor Decomposition Method**

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

#### Toy Example in MATLAB

- Simulated Samples: Exchangeable Model
- Whiten The Samples Second Order Moments Matrix Decomposition
- Orthogonal Tensor Eigen Decomposition Third Order Moments Power Iteration

## Simulated Samples: Exchangeable Model

#### Model Parameters

- Hidden State:  $h \in \text{basis } \{e_1, \dots, e_k\}$ k = 2
- Observed States:  $x_i \in \text{basis } \{e_1, \dots, e_d\}$ d = 3
- Conditional Independency:  $x_1 \perp x_2 \perp x_3 | h$ Transition Matrix: A
- Exchangeability:  $\mathbb{E}[x_i|h] = Ah, \forall i \in 1, 2, 3$



▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

## Simulated Samples: Exchangeable Model

#### Model Parameters

- Hidden State:  $h \in \text{basis} \{e_1, \dots, e_k\}$ k = 2
- Observed States:  $x_i \in \text{basis } \{e_1, \dots, e_d\}$ d = 3
- Conditional Independency:  $x_1 \perp x_2 \perp x_3 | h$ Transition Matrix: A
- Exchangeability:  $\mathbb{E}[x_i|h] = Ah, \forall i \in 1, 2, 3$

#### Generate Samples Snippet

```
for t = 1: n
  \% generate h for this sample
  h_category=(rand()>0.5) + 1;
  h(t,h_category)=1;
  transition_cum=cumsum(A_true(:,h_category));
  \% generate x1 for this sample | h
  x_category=find(transition_cum> rand(),1);
  \times 1(t, x_category) = 1;
  \% generate x2 for this sample | h
  x_category=find(transition_cum >rand(),1);
  \times 2(t, x_category) = 1;
  \% generate x3 for this sample | h
  x_category=find(transition_cum > rand(),1);
  x3(t,x_category)=1;
  end
```

## Whiten The Samples

#### Second Order Moments

•  $M_2 = \frac{1}{n} \sum_t x_1^t \otimes x_2^t$ 

#### Whitening Matrix

• 
$$W = U_w L_w^{-0.5}$$
,  
 $[U_w, L_w] = \text{k-svd}(M_2)$ 

#### Whiten Data

• 
$$y_1^t = W^\top x_1^t$$

#### Orthogonal Basis

• 
$$V = W^{\top}A \rightarrow V^{\top}V = I$$

#### Whitening Snippet



## **Orthogonal Tensor Eigen Decomposition**

#### Third Order Moments

$$T = \frac{1}{n} \sum_{t \in [n]} y_1^t \otimes y_2^t \otimes y_3^t \approx \sum_{i \in [k]} \lambda_i v_i \otimes v_i \otimes v_i, \quad V^\top V = I$$

Gradient Ascent

$$T(I, v_1, v_1) = \frac{1}{n} \sum_{t \in [n]} \langle v_1, y_2^t \rangle \langle v_1, y_3^t \rangle y_1^t \approx \sum_i \lambda_i \langle v_i, v_1 \rangle^2 v_i = \lambda_1 v_1.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

•  $v_i$  are eigenvectors of tensor T.

### **Orthogonal Tensor Eigen Decomposition**

$$T \leftarrow T - \sum_{j} \lambda_{j} v_{j}^{\otimes^{3}}, \quad v \leftarrow \frac{T(I, v, v)}{\|T(I, v, v)\|}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

#### Power Iteration Snippet

```
V = zeros(k,k); Lambda = zeros(k,1);
for i = 1:k
  v_old = rand(k,1); v_old = normc(v_old);
  for iter = 1 : Maxiter
    v_new = (y1'* ((y2*v_old).*(y3*v_old)))/n;
    if i > 1
    % deflation
      for i = 1: i-1
         v_new=v_new-(V(:,j)*(v_old'*V(:,j))2)* Lambda(j);
      end
    end
    lambda = norm(v_new);v_new = normc(v_new);
    if norm(v_old - v_new) < TOL
      fprintf('Converged at iteration %d.', iter);
      V(:,i) = v_new; Lambda(i,1) = lambda;
      break:
    end
    v_old = v_new:
  end
end
```

## **Orthogonal Tensor Eigen Decomposition**

$$T \leftarrow T - \sum_{j} \lambda_{j} v_{j}^{\otimes^{3}}, \quad v \leftarrow \frac{T(I, v, v)}{\|T(I, v, v)\|}$$

#### Power Iteration Snippet

```
V = zeros(k,k); Lambda = zeros(k,1);
for i = 1:k
  v_old = rand(k,1); v_old = normc(v_old);
  for iter = 1 \cdot Maxiter
    v_new = (y1'* ((y2*v_old).*(y3*v_old)))/n;
    if i > 1
    % deflation
      for i = 1: i-1
         v_new=v_new-(V(:,j)*(v_old'*V(:,j))2)* Lambda(j);
      end
    end
    lambda = norm(v_new);v_new = normc(v_new);
    if norm(v_old - v_new) < TOL
      fprintf('Converged at iteration %d.', iter);
      V(:,i) = v_new; Lambda(i,1) = lambda;
      break:
    end
    v_old = v_new:
  end
end
```



#### Red: Estimation at each iteration

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

## **Resources for this talk**

Agenda

- Applying tensor methods for learning hidden communities in networks.
- Issues in implementation and results on real datasets.

#### Papers

- "Fast Detection of Overlapping Communities via Online Tensor Methods" by F. Huang, U. N. Niranjan, M. U. Hakeem, A., Preprint, Sept. 2013.
- "Tensor Decompositions on REEF," F. Huang, S. Matusevych, N. Karampatziakis, P. Mineiro, A., under preparation.

#### Code

- GPU and CPU codes: github.com/FurongHuang/ Fast-Detection-of-Overlapping-Communities-via-Online-Tens
- REEF code will be released soon.

# Outline

#### Recap: A Toy Example via MATLAB

#### 2 Community Detection through Tensor Methods

- Whitening
- Tensor Decomposition
- Code Optimization
- Experimental Results

#### Implementing In the Cloud

#### 4 Conclusion



# Social Networks & Recommender Systems





#### Social Networks

- Network of social ties, e.g. friendships, co-authorships
- Hidden: communities of actors.

#### Recommender Systems

- Observed: Ratings of users for various products.
- Goal: New recommendations.
- Modeling: User/product groups.





• How are communities formed? How do communities interact?



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで







• How are communities formed? How do communities interact?



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

## Mixed Membership Model (Airoldi et al)

- k communities and n nodes. Graph  $G \in \mathbb{R}^{n \times n}$  (adjacency matrix).
- Fractional memberships:  $\pi_x \in \mathbb{R}^k$  membership of node x.

$$\Delta^{k-1} := \{ \pi_x \in \mathbb{R}^k, \pi_x(i) \in [0,1], \sum_i \pi_x(i) = 1, \quad \forall \, x \in [n] \}.$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

• Node memberships  $\{\pi_u\}$  drawn from Dirichlet distribution.

## Mixed Membership Model (Airoldi et al)

- k communities and n nodes. Graph  $G \in \mathbb{R}^{n \times n}$  (adjacency matrix).
- Fractional memberships:  $\pi_x \in \mathbb{R}^k$  membership of node x.

$$\Delta^{k-1} := \{ \pi_x \in \mathbb{R}^k, \pi_x(i) \in [0,1], \sum_i \pi_x(i) = 1, \quad \forall \, x \in [n] \}.$$

- Node memberships  $\{\pi_u\}$  drawn from Dirichlet distribution.
- Edges conditionally independent given community memberships:  $G_{i,j} \perp G_{a,b} | \pi_i, \pi_j, \pi_a, \pi_b.$
- Edge probability averaged over community memberships

$$\mathbb{P}[G_{i,j}=1|\pi_i,\pi_j]=\mathbb{E}[G_{i,j}|\pi_i,\pi_j]=\pi_i^\top P\pi_j.$$

•  $P \in \mathbb{R}^{k \times k}$ : average edge connectivity for pure communities.

Airoldi, Blei, Fienberg, and Xing. Mixed membership stochastic blockmodels. J. of Machine Learning Research, June 2008.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Stochastic Block Model



 $\alpha_0 = 0$ 

Stochastic Block Model

Mixed Membership Model







 $\alpha_0 = 1$ 

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Stochastic Block Model

Mixed Membership Model



 $\alpha_0 = 0$ 



 $\alpha_0 = 10$ 

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Stochastic Block Model

Mixed Membership Model





▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

#### Unifying Assumption

• Edges conditionally independent given community memberships



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで



▲□▶ ▲□▶ ★ 国▶ ★ 国▶ - 国 - のへぐ



3-star counts sufficient for identifiability and learning of MMSB

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで



3-star counts sufficient for identifiability and learning of MMSB

#### 3-Star Count Tensor

$$\begin{split} \tilde{M}_3(a,b,c) &= \frac{1}{|X|} \# \text{ of common neighbors in } X \\ &= \frac{1}{|X|} \sum_{x \in X} G(x,a) G(x,b) G(x,c). \\ \tilde{M}_3 &= \frac{1}{|X|} \sum_{x \in X} [G_{x,A}^\top \otimes G_{x,B}^\top \otimes G_{x,C}^\top] \end{split}$$



э

(日)

## **Multi-view Representation**

- Conditional independence of the three views
- $\pi_x$ : community membership vector of node x.



• Linear Multiview Model:

$$\mathbb{E}[G_{x,A}^{\top}|\Pi] = \Pi_A^{\top} P^{\top} \pi_x = U \pi_x.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々ぐ

#### Second and Third Order Moments

• 
$$\hat{M}_2 := \frac{1}{|X|} \sum_x Z_C G_{x,C}^\top G_{x,B} Z_B^\top - \text{shift}$$
• 
$$\hat{M}_3 := \frac{1}{|X|} \sum_x \left[ G_{x,A}^\top \otimes Z_B G_{x,B}^\top \otimes Z_C G_{x,C}^\top \right] - \text{shift}$$

Symmetrize Transition Matrices

• Pairs<sub>C,B</sub> := 
$$G_{X,C}^{\top} \otimes G_{X,B}^{\top}$$

• 
$$Z_B := \operatorname{Pairs}(A, C) (\operatorname{Pairs}(B, C))^{\top}$$

•  $Z_C := \operatorname{Pairs}(A, B) (\operatorname{Pairs}(C, B))^{\dagger}$ 



• Linear Multiview Model:  $\mathbb{E}[G_{x,A}^{\top}|\Pi] = U\pi_x.$ 

$$\mathbb{E}[\hat{M}_2|\Pi_{A,B,C}] = \sum_i \frac{\alpha_i}{\alpha_0} u_i \otimes u_i, \quad \mathbb{E}[\hat{M}_3|\Pi_{A,B,C}] = \sum_i \frac{\alpha_i}{\alpha_0} u_i \otimes u_i \otimes u_i.$$

## **Overview of Tensor Method**

- Whiten data via SVD of  $\hat{M}_2 \in \mathbb{R}^{n \times n}$ .
- Estimate the third moment  $\hat{M}_3 \in \mathbb{R}^{n \times n \times n}$  and whiten it implicitly to obtain T.
- Run power method (gradient ascent) on T.
- Apply post-processing to obtain communities.
- Compute error scores and validate with ground truth (if available).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

## Outline

#### 1 Recap: A Toy Example via MATLAB

# Community Detection through Tensor Methods Whitening

- Tensor Decomposition
- Code Optimization
- Experimental Results

#### 3 Implementing In the Cloud





#### Symmetrization: Finding Second Order Moments $M_2$

$$\hat{M}_{2} = \boxed{Z_{C}} \operatorname{Pairs}_{C,B} \boxed{Z_{B}^{\top}} - \operatorname{shift}$$
$$= \boxed{\left(\operatorname{Pairs}_{A,B} \operatorname{Pairs}_{C,B}^{\dagger}\right)} \operatorname{Pairs}_{C,B} \boxed{\left(\operatorname{Pairs}_{B,C}^{\dagger}\right)^{\top} \operatorname{Pairs}_{A,C}^{\top}} - \operatorname{shift}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Challenges:  $n \times n$  objects,  $n \sim$ millions or billions

#### Symmetrization: Finding Second Order Moments $M_2$

$$\hat{M}_{2} = \boxed{Z_{C}} \operatorname{Pairs}_{C,B} \boxed{Z_{B}^{\top}} - \operatorname{shift}$$
$$= \left( \operatorname{Pairs}_{A,B} \operatorname{Pairs}_{C,B}^{\dagger} \right) \operatorname{Pairs}_{C,B} \left( \operatorname{Pairs}_{B,C}^{\dagger} \right)^{\top} \operatorname{Pairs}_{A,C}^{\top} - \operatorname{shift}$$

Challenges:  $n \times n$  objects,  $n \sim$ millions or billions

Order Manipulation: Low Rank Approx. is the key, avoid  $n \times n$  objects

#### Symmetrization: Finding Second Order Moments $M_2$

$$\hat{M}_{2} = \boxed{Z_{C}} \operatorname{Pairs}_{C,B} \boxed{Z_{B}^{\top}} - \operatorname{shift}$$
$$= \boxed{\left(\operatorname{Pairs}_{A,B} \operatorname{Pairs}_{C,B}^{\dagger}\right)} \operatorname{Pairs}_{C,B} \boxed{\left(\operatorname{Pairs}_{B,C}^{\dagger}\right)^{\top} \operatorname{Pairs}_{A,C}^{\top}} - \operatorname{shift}$$

Challenges:  $n \times n$  objects,  $n \sim$ millions or billions

Order Manipulation: Low Rank Approx. is the key, avoid  $n \times n$  objects



n=1M, k=5K: Size(Matrix  $_{n \times n}$ )=58TB vs Size(Matrix  $_{n \times k}$ )= 3.7GB. Space Complexity O(nk)

#### Symmetrization: Finding Second Order Moments $M_2$

$$\hat{M}_{2} = \boxed{Z_{C}} \operatorname{Pairs}_{C,B} \boxed{Z_{B}^{\top}} - \operatorname{shift}$$
$$= \left( \operatorname{Pairs}_{A,B} \operatorname{Pairs}_{C,B}^{\dagger} \right) \operatorname{Pairs}_{C,B} \left( \operatorname{Pairs}_{B,C}^{\dagger} \right)^{\top} \operatorname{Pairs}_{A,C}^{\top} - \operatorname{shift}$$

Challenges:  $n \times n$  objects,  $n \sim$ millions or billions

Order Manipulation: Low Rank Approx. is the key, avoid  $n \times n$  objects

n=1M, k=5K: Size(Matrix  $_{n \times n}$ )=58TB vs Size(Matrix  $_{n \times k}$ )= 3.7GB. Space Complexity O(nk)
#### Symmetrization: Finding Second Order Moments $M_2$

$$\hat{M}_{2} = \boxed{Z_{C}} \operatorname{Pairs}_{C,B} \boxed{Z_{B}^{\top}} - \operatorname{shift}$$
$$= \left( \operatorname{Pairs}_{A,B} \operatorname{Pairs}_{C,B}^{\dagger} \right) \operatorname{Pairs}_{C,B} \left( \operatorname{Pairs}_{B,C}^{\dagger} \right)^{\top} \operatorname{Pairs}_{A,C}^{\top} - \operatorname{shift}$$

Challenges:  $n \times n$  objects,  $n \sim$ millions or billions

Order Manipulation: Low Rank Approx. is the key, avoid  $n \times n$  objects

n=1M, k=5K: Size(Matrix  $_{n \times n}$ )=58TB vs Size(Matrix  $_{n \times k}$ )= 3.7GB. Space Complexity O(nk)

Orthogonalization: Finding Whitening Matrix W

 $W^T M_2 W = I$  is solved by k-svd $(M_2)$ 

Challenges:  $n \times n$  Matrix SVDs,  $n \sim$ millions or billions

Orthogonalization: Finding Whitening Matrix W

 $W^T M_2 W = I$  is solved by k-svd $(M_2)$ 

Challenges:  $n \times n$  Matrix SVDs,  $n \sim$ millions or billions

Randomized low rank approx. (GM 13', CW 13')

- Random matrix  $S \in \mathbb{R}^{n imes \tilde{k}}$  for dense  $M_2$
- Column selection matrix: random signs  $S \in \{0,1\}^{n \times k}$  for sparse  $M_2$ .

- $Q = \operatorname{orth}(M_2S), \ Z = (M_2Q)^\top M_2Q$
- $[U_z, L_z, V_z] = \mathsf{SVD}(Z)$  %  $Z \in \mathbb{R}^{k imes k}$
- $V_{M_2} = M_2 Q V_z L_z^{-\frac{1}{2}}, \ L_{M_2} = L_z^{\frac{1}{2}}$

Orthogonalization: Finding Whitening Matrix W

 $W^T M_2 W = I$  is solved by k-svd $(M_2)$ 

Challenges:  $n \times n$  Matrix SVDs,  $n \sim$ millions or billions

Randomized low rank approx. (GM 13', CW 13')

- Random matrix  $S \in \mathbb{R}^{n imes \tilde{k}}$  for dense  $M_2$
- Column selection matrix: random signs  $S \in \{0,1\}^{n \times k}$  for sparse  $M_2$ .
- $Q = \operatorname{orth}(M_2S), \ Z = (M_2Q)^\top M_2Q$

• 
$$[U_z, L_z, V_z] = \mathsf{SVD}(Z)$$
 %  $Z \in \mathbb{R}^{k imes d}$ 

• 
$$V_{M_2} = M_2 Q V_z L_z^{-\frac{1}{2}}$$
,  $L_{M_2} = L_z^{\frac{1}{2}}$ 

#### Computational Complexity

• For exact rank-k SVD of  $n \times n$  matrix:  $O(n^2k)$ .

• For randomized SVD with c cores and sparsity level s per row of  $M_2$ : Time Complexity  $O(nsk/c + k^3)$ 

# Outline

### Recap: A Toy Example via MATLAB

# Community Detection through Tensor Methods Whitening

- Tensor Decomposition
- Code Optimization
- Experimental Results

#### 3 Implementing In the Cloud





### Using Whitening to Obtain Orthogonal Tensor



▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

#### Multi-linear transform

- $M_3 \in \mathbb{R}^{n \times n \times n}$  and  $T \in \mathbb{R}^{k \times k \times k}$ .
- $T = M_3(W, W, W) = \sum_i w_i (W^{\top} a_i)^{\otimes 3}.$
- $T = \sum_{i \in [k]} w_i \cdot v_i \otimes v_i \otimes v_i$  is orthogonal.
- Dimensionality reduction when  $k \ll n$ .

### **Batch Gradient Descent**

Power Iteration with Deflation

$$T \leftarrow T - \sum_{j} \lambda_{j} v_{j}^{\otimes^{3}}, \quad v_{i} \leftarrow \frac{T(I, v_{i}, v_{i})}{\|T(I, v_{i}, v_{i})\|}, j < i$$

Alternating Least Squares

$$\min_{\sigma,A,B,C} \left\| T - \sum_{i=1}^k \lambda_i A(:,i) \otimes B(:,i) \otimes C(:,i) \right\|_F^2$$

such that  $A^{\top}A = I$ ,  $B^{\top}B = I$  and  $C^{\top}C = I$ .

Challenges:

Requires forming the tensor/passing over data in each iteration

### Stochastic (Implicit) Tensor Gradient Descent

Whitened third order moments:

 $T = M_3(W, W, W).$ 

Objective:

$$\arg\min_{\mathbf{v}} \left\{ \left\| \theta \sum_{i \in [k]} v_i^{\otimes^3} - \sum_{t \in X} T^t \right\|_F^2 \right\},\$$

where  $v_i$  are the unknown tensor eigenvectors,  $T^t = g^t_A \otimes g^t_B \otimes g^t_C - \text{shift}$  such that  $g^t_A = W^\top G_{\{x,A\}}, \ldots$ 

### Stochastic (Implicit) Tensor Gradient Descent

Whitened third order moments:

 $T = M_3(W, W, W).$ 

Objective:

$$\arg\min_{\mathbf{v}} \left\{ \left\| \theta \sum_{i \in [k]} v_i^{\otimes^3} - \sum_{t \in X} T^t \right\|_F^2 \right\},\$$

where  $v_i$  are the unknown tensor eigenvectors,  $T^t = g_A^t \otimes g_B^t \otimes g_C^t$ -shift such that  $g_A^t = W^\top G_{\{x,A\}}$ , ...

Expand the objective:

$$\theta \Big\| \sum_{i \in [k]} v_i^{\otimes^3} \Big\|_F^2 - \big\langle \sum_{i \in [k]} v_i^{\otimes^3}, T^t \big\rangle$$

Orthogonality cost vs Correlation Reward

# Stochastic (Implicit) Tensor Gradient Descent

Updating Equation

$$v_i^{t+1} \leftarrow v_i^t - 3\theta\beta^t \sum_{j=1}^k \left[ \left\langle v_j^t, v_i^t \right\rangle^2 v_j^t \right] + \beta^t \left\langle v_i^t, g_A^t \right\rangle \left\langle v_i^t, g_B^t \right\rangle g_C^t + \dots$$

Orthogonality cost vs Correlation Reward



Never form the tensor explicitly; multilinear operation on implicit tensor.

Space:  $O(k^2)$ , Time:  $O(k^3/c) \times$  iterations with c cores.

# Unwhitening

### Post Processing for memberships

- $\Lambda$ : eigenvalues.  $\Phi$ : eigenvectors.
- G: adjacency matrix,  $\gamma$ : normalization.
- W: Whitening Matrix.

$$\hat{\Pi}_{A^c} = \operatorname{diag}(\gamma)^{1/3} \operatorname{diag}(\Lambda)^{-1} \Phi^\top W^\top G_{A,A^c},$$

where  $A^c := X \cup B \cup C$ .

• Threshold the values.

Space Complexity O(nk)

Time Complexity O(nsk/c) with c cores.

# Computational Complexity $(k \ll n)$

- n = # of nodes • k = # of communities

• N = # of iterations • m = # of sampled node pairs (variational)

| Module | Pre              | STGD        | Post     | Var    |
|--------|------------------|-------------|----------|--------|
| Space  | O(nk)            | $O(k^2)$    | O(nk)    | O(nk)  |
| Time   | $O(nsk/c + k^3)$ | $O(Nk^3/c)$ | O(nsk/c) | O(mkN) |

Variational method:  $O(m \times k)$  for each iteration

 $O(n \times k) < O(m \times k) < O(n^2 \times k)$ 

Our approach:  $O(nsk/c + k^3)$ 

# Computational Complexity $(k \ll n)$

- n = # of nodes • k = # of communities

• N = # of iterations • m = # of sampled node pairs (variational)

| Module | Pre              | STGD        | Post     | Var    |
|--------|------------------|-------------|----------|--------|
| Space  | O(nk)            | $O(k^2)$    | O(nk)    | O(nk)  |
| Time   | $O(nsk/c + k^3)$ | $O(Nk^3/c)$ | O(nsk/c) | O(mkN) |

Variational method:  $O(m \times k)$  for each iteration

 $O(n \times k) < O(m \times k) < O(n^2 \times k)$ 

Our approach:  $O(nsk/c + k^3)$ 

In practice STGD is extremely fast and is not the bottleneck

# Outline

### 1 Recap: A Toy Example via MATLAB

#### 2 Community Detection through Tensor Methods

- Whitening
- Tensor Decomposition
- Code Optimization
- Experimental Results
- Implementing In the Cloud





# **GPU/CPU Implementation**

GPU (SIMD)

- GPU: Hundreds of cores; parallelism for matrix/vector operations
- Speed-up: Order of magnitude gains
- Big data challenges: GPU memory  $\ll$  CPU memory  $\ll$  Hard disk



Storage hierarchy

Partitioned matrix

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

# **GPU/CPU Implementation**

GPU (SIMD)

- GPU: Hundreds of cores; parallelism for matrix/vector operations
- Speed-up: Order of magnitude gains
- Big data challenges: GPU memory  $\ll$  CPU memory  $\ll$  Hard disk



### CPU

- CPU: Sparse Representation, Expandable Memory
- Randomized Dimensionality Reduction

### **Scaling Of The Stochastic Iterations**





• STGD is iterative: device code reuse buffers for updates.

### Scaling Of The Stochastic Iterations





 STGD is iterative: device code reuse buffers for updates.



## **Scaling Of The Stochastic Iterations**



SAC

Ground-truth membership available

 $\bullet$  Ground-truth membership matrix  $\Pi$  vs Estimated membership  $\widehat{\Pi}$ 

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

#### Ground-truth membership available

 $\bullet$  Ground-truth membership matrix  $\Pi$  vs Estimated membership  $\widehat{\Pi}$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Problem: How to relate  $\Pi$  and  $\widehat{\Pi}?$ 

#### Ground-truth membership available

 $\bullet$  Ground-truth membership matrix  $\Pi$  vs Estimated membership  $\widehat{\Pi}$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- Problem: How to relate  $\Pi$  and  $\widehat{\Pi}?$
- Solution: *p*-value test based soft- "pairing"

#### Ground-truth membership available

- Ground-truth membership matrix  $\Pi$  vs Estimated membership  $\widehat{\Pi}$
- Problem: How to relate  $\Pi$  and  $\widehat{\Pi}?$
- Solution: *p*-value test based soft- "pairing"



▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

 $\hat{\Pi}_1$ 

### **Evaluation Metrics**

• Recovery Ratio: % of ground-truth com recovered

• Error Score: 
$$\mathcal{E} := \frac{1}{nk} \sum \{ \text{paired membership errors} \}$$
  
=  $\frac{1}{k} \sum_{(i,j)\in E_{\{\text{Pval}\}}} \left\{ \frac{1}{n} \sum_{x\in|X|} |\widehat{\Pi}_i(x) - \Pi_j(x)| \right\}$ 

Insights

•  $l_1$  norm error between  $\widehat{\Pi_i}$  and the corresponding paired  $\Pi_j$ 

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

• false pairings penalization

too many falsely discovered pairings, error > 1

# Outline

### 1 Recap: A Toy Example via MATLAB

#### 2 Community Detection through Tensor Methods

- Whitening
- Tensor Decomposition
- Code Optimization
- Experimental Results
- Implementing In the Cloud





### **Summary of Results**













DBLP(sub)  $n \sim 1$  million( $\sim 100k$ )

Error ( $\mathcal{E}$ ) and Recovery ratio ( $\mathcal{R}$ )

| Dataset         | $\hat{k}$ | Method      | Running Time | ${\mathcal E}$ | $\mathcal{R}$ |
|-----------------|-----------|-------------|--------------|----------------|---------------|
| Facebook(k=360) | 500       | ours        | 468          | 0.0175         | 100%          |
| Facebook(k=360) | 500       | variational | 86,808       | 0.0308         | 100%          |
|                 |           |             |              |                |               |
| Yelp(k=159)     | 100       | ours        | 287          | 0.046          | 86%           |
| Yelp(k=159)     | 100       | variational | N.A.         |                |               |
|                 |           |             |              |                |               |
| DBLP sub(k=250) | 500       | ours        | 10,157       | 0.139          | 89%           |
| DBLP sub(k=250) | 500       | variational | 558,723      | 16.38          | 99%           |
| DBLP(k=6000)    | 100       | ours        | 5407         | 0.105          | 95%           |
|                 |           |             |              |                |               |

Thanks to Prem Gopalan and David Mimno for providing variational code. < ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

### **Experimental Results on Yelp**

#### Lowest error business categories & largest weight businesses

| Rank | Category       | Business                  | Stars | Review Counts |
|------|----------------|---------------------------|-------|---------------|
| 1    | Latin American | Salvadoreno Restaurant    | 4.0   | 36            |
| 2    | Gluten Free    | P.F. Chang's China Bistro | 3.5   | 55            |
| 3    | Hobby Shops    | Make Meaning              | 4.5   | 14            |
| 4    | Mass Media     | KJZZ 91.5FM               | 4.0   | 13            |
| 5    | Yoga           | Sutra Midtown             | 4.5   | 31            |

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

# **Experimental Results on Yelp**

#### Lowest error business categories & largest weight businesses

| Rank | Category       | Business                  | Stars | Review Counts |
|------|----------------|---------------------------|-------|---------------|
| 1    | Latin American | Salvadoreno Restaurant    | 4.0   | 36            |
| 2    | Gluten Free    | P.F. Chang's China Bistro | 3.5   | 55            |
| 3    | Hobby Shops    | Make Meaning              | 4.5   | 14            |
| 4    | Mass Media     | KJZZ 91.5FM               | 4.0   | 13            |
| 5    | Yoga           | Sutra Midtown             | 4.5   | 31            |

### Bridgeness: Distance from vector $[1/\hat{k}, \dots, 1/\hat{k}]^{\top}$

#### Top-5 bridging nodes (businesses)

| Business             | Categories                                                              |
|----------------------|-------------------------------------------------------------------------|
| Four Peaks Brewing   | Restaurants, Bars, American, Nightlife, Food, Pubs, Tempe               |
| Pizzeria Bianco      | Restaurants, Pizza, Phoenix                                             |
| FEZ                  | Restaurants, Bars, American, Nightlife, Mediterranean, Lounges, Phoenix |
| Matt's Big Breakfast | Restaurants, Phoenix, Breakfast& Brunch                                 |
| Cornish Pasty Co     | Restaurants, Bars, Nightlife, Pubs, Tempe                               |

# Outline

#### Recap: A Toy Example via MATLAB

### 2 Community Detection through Tensor Methods

- Whitening
- Tensor Decomposition
- Code Optimization
- Experimental Results

#### Implementing In the Cloud

### 4 Conclusion

▲□> 
▲□> 
■> 
■> 
■> 
●

# **Review of linear algebra**

#### Tensor Modes

- Analogy to Matrix Rows and Matrix Columns.
- For an order-d tensor  $A \in \mathbb{R}^{n_1 \times n_2 \dots n_d}$ :

mode-1 has dimension  $n_1$ , mode-2 has dimension  $n_2$ , and so on.

#### Tensor Unfolding

In a mode-k unfolding, the mode-k fibers are assembled to produce an  $n_k\text{-by-}N/n_k$  matrix where  $N=n_1\dots n_d.$ 



### **Tensor Decomposition In The Cloud**

• Tensor decomposition is equivalent to

$$\min_{\sigma,A,B,C} \left\| T - \sum_{i=1}^k \sigma_i A(:,i) \otimes B(:,i) \otimes C(:,i) \right\|_F^2$$

### **Tensor Decomposition In The Cloud**

• Tensor decomposition is equivalent to

$$\min_{\sigma,A,B,C} \left\| T - \sum_{i=1}^k \sigma_i A(:,i) \otimes B(:,i) \otimes C(:,i) \right\|_F^2$$

• Alternating Least Square is the solution:

$$A' \leftarrow T_a f(C, B) \left( C^\top C \star B^\top B \right)^{\dagger}$$
$$B' \leftarrow T_b f(C, A') \left( C^\top C \star {A'}^\top A' \right)^{\dagger}$$
$$C' \leftarrow T_c f(B', A') \left( {B'}^\top B' \star {A'}^\top A' \right)^{\dagger}$$

where  $T_a$  is the mode-1 unfolding of T,  $T_b$  is the mode-2 unfolding of T, and  $T_c$  is the mode-3 unfolding of T.

#### Low Rank Structure: Hidden Dimension < Observable Dimension

# Challenges I

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

How to parallelize?

- Observations:  $A'(\mathbf{i},:) \leftarrow T_a(\mathbf{i},:)f(C,B)(C^{\top}C \star B^{\top}B)^{\dagger}$
- $T_a \in \mathbb{R}^{k \times k^2}$ , B and  $C \in \mathbb{R}^{k \times k}$

# Challenges I

How to parallelize?

- Observations:  $A'(i,:) \leftarrow T_a(i,:)f(C,B)(C^{\top}C \star B^{\top}B)^{\dagger}$
- $T_a \in \mathbb{R}^{k \times k^2}$ , B and  $C \in \mathbb{R}^{k \times k}$

### Update Rows Independently



# Challenges II

### Communication and System Architecture Overhead

#### • Map-Reduce Framework



 Overhead: Disk reading, Container Allocation, Intense Key/Value Design

# Challenges II

### Solution: REEF

- Big data framework called REEF (Retainable Evaluator Execution Framework)

   Disk Read
   ALS
   ALS
   Mode a
   ALS
   Mode b
   Mode c
   Mode c
   Mode c
- Advantage: Open source distributed system with one time container allocation , keep the tensor in memory
## Correctness

**Evaluation Score** 

$$\mathsf{perplexity} := \exp\left(-\frac{\sum_i \mathsf{log-likelihood in doc } i}{\sum_i \mathsf{words in doc } i}\right)$$

## New York Times Corpus

- Documents n = 300,000
- Vocabulary d = 100,000
- Topics k = 100

|            | Stochastic Variational Inference | Tensor Decomposition |
|------------|----------------------------------|----------------------|
| Perplexity | 4000                             | 3400                 |

### SVI drawbacks:

- Hyper parameters
- Learning rate
- Initial points

## **Running Time**

### Computational Complexity

| Complexity            | Whitening | Tensor Slices $(1, \ldots, k)$ | ALS      |
|-----------------------|-----------|--------------------------------|----------|
| Time                  | $O(k^3)$  | $O(k^2)$ per slice             | $O(k^3)$ |
| Space                 | O(kd)     | $O(k^2)$ per slice             | $O(k^2)$ |
| Degree of Parallelism | $\infty$  | $\infty$ per slice             | k        |
| Communication         | O(kd)     | $O(k^2)$                       | $O(k^2)$ |

|           | SVI     | 1 node Map Red  | 1 node REEF | 4 node REEF |
|-----------|---------|-----------------|-------------|-------------|
| overall   | 2 hours | 4 hours 31 mins | 68 mins     | 36 mins     |
| Whiten    |         | 16 mins         | 16 mins     | 16 mins     |
| Matricize |         | 15 mins         | 15 mins     | 4 mins      |
| ALS       |         | 4 hours         | 37 mins     | 16 mins     |

## Outline

#### Recap: A Toy Example via MATLAB

## 2 Community Detection through Tensor Methods

- Whitening
- Tensor Decomposition
- Code Optimization
- Experimental Results

#### 3 Implementing In the Cloud





# Conclusion

## Guaranteed Learning of Latent Variable Models

- Guaranteed to recover correct model
- Efficient sample and computational complexities
- Better performance compared to EM, Variational Bayes etc.
- Tensor approach: mixed membership communities, topic models, latent trees...

## In practice

- Scalable and embarrassingly parallel: handle large datasets.
- Efficient performance: perplexity or ground truth validation.

Theoretical guarantees and promising practical performance

