Implementing Tensor Methods: Application to Community Detection

Anima Anandkumar

U.C. Irvine
Recap: Basic Tensor Decomposition Method

Toy Example in MATLAB

- Simulated Samples: Exchangeable Model
- Whiten The Samples
 - Second Order Moments
 - Matrix Decomposition
- Orthogonal Tensor Eigen Decomposition
 - Third Order Moments
 - Power Iteration
Simulated Samples: Exchangeable Model

Model Parameters

- **Hidden State:**
 \[h \in \text{basis}\{e_1, \ldots, e_k\} \]
 \[k = 2 \]

- **Observed States:**
 \[x_i \in \text{basis}\{e_1, \ldots, e_d\} \]
 \[d = 3 \]

- **Conditional Independency:**
 \[x_1 \perp\!\!\!\perp x_2 \perp\!\!\!\perp x_3|h \]

- **Transition Matrix:** \[A \]

- **Exchangeability:**
 \[\mathbb{E}[x_i|h] = Ah, \ \forall i \in 1, 2, 3 \]
Simulated Samples: Exchangeable Model

Model Parameters

- **Hidden State:**
 \[h \in \text{basis } \{ e_1, \ldots, e_k \} \]
 \[k = 2 \]

- **Observed States:**
 \[x_i \in \text{basis } \{ e_1, \ldots, e_d \} \]
 \[d = 3 \]

- **Conditional Independency:**
 \[x_1 \perp \perp x_2 \perp \perp x_3 | h \]

- **Transition Matrix:** \(A \)

- **Exchangeability:**
 \[\mathbb{E}[x_i | h] = Ah, \ \forall i \in 1, 2, 3 \]

Generate Samples Snippet

```matlab
for t = 1 : n
    % generate h for this sample
    h_category=(rand()>0.5) + 1;
    h(t,h_category)=1;
    transition_cum=cumsum(A_true(:,h_category));
    % generate x1 for this sample | h
    x_category=find(transition_cum>rand(),1);
    x1(t,x_category)=1;
    % generate x2 for this sample | h
    x_category=find(transition_cum > rand(),1);
    x2(t,x_category)=1;
    % generate x3 for this sample | h
    x_category=find(transition_cum > rand(),1);
    x3(t,x_category)=1;
end
```
Whiten The Samples

Second Order Moments
- \(M_2 = \frac{1}{n} \sum_t x_1^t \otimes x_2^t \)

Whitening Matrix
- \(W = U_w L_w^{-0.5}, \)
 \[[U_w, L_w] = k\text{-svd}(M_2) \]

Whiten Data
- \(y_1^t = W^\top x_1^t \)

Orthogonal Basis
- \(V = W^\top A \rightarrow V^\top V = I \)
Orthogonal Tensor Eigen Decomposition

Third Order Moments

\[T = \frac{1}{n} \sum_{t \in [n]} y_1^t \otimes y_2^t \otimes y_3^t \approx \sum_{i \in [k]} \lambda_i v_i \otimes v_i \otimes v_i, \quad V^\top V = I \]

Gradient Ascent

\[T(I, v_1, v_1) = \frac{1}{n} \sum_{t \in [n]} \langle v_1, y_2^t \rangle \langle v_1, y_3^t \rangle y_1^t \approx \sum_{i} \lambda_i \langle v_i, v_1 \rangle^2 v_i = \lambda_1 v_1. \]

- \(v_i \) are eigenvectors of tensor \(T \).
Orthogonal Tensor Eigen Decomposition

\[T \leftarrow T - \sum_j \lambda_j v_j^3, \quad v \leftarrow \frac{T(I, v, v)}{\|T(I, v, v)\|} \]

Power Iteration Snippet

```matlab
V = zeros(k,k); Lambda = zeros(k,1);
for i = 1:k
    v_old = rand(k,1); v_old = normc(v_old);
    for iter = 1 : Maxiter
        v_new = (y1' * ((y2*v_old).*(y3*v_old)))/n;
        if i > 1
            % deflation
            for j = 1: i-1
                v_new = v_new - (V(:,j)*(v_old'*V(:,j))^2)* Lambda(j);
            end
        end
        lambda = norm(v_new); v_new = normc(v_new);
        if norm(v_old - v_new) < TOL
            fprintf('Converged at iteration %d.
', iter);
            V(:,i) = v_new; Lambda(i,1) = lambda;
            break;
        end
        v_old = v_new;
    end
end
```
Orthogonal Tensor Eigen Decomposition

\[T \leftarrow T - \sum_j \lambda_j v_j^3, \quad v \leftarrow \frac{T(I, v, v)}{\|T(I, v, v)\|} \]

Power Iteration Snippet

\[
V = \text{zeros}(k,k); \quad \text{Lambda} = \text{zeros}(k,1);
\]

\[
\text{for } i = 1:k
V_{old} = \text{rand}(k,1); \quad v_{old} = \text{normc}(v_{old});
\text{for } \text{iter} = 1 : \text{Maxiter}
\quad v_{new} = (y1' * ((y2 * v_{old}) .* (y3 * v_{old}))) / n;
\quad \text{if } i > 1
\quad \text{deflation}
\quad \text{for } j = 1: i-1
\quad \quad v_{new} = v_{new} - (V(:,j) * (v_{old}' * V(:,j))^2) * \text{Lambda}(j);
\quad \text{end}
\quad \text{end}
\quad \text{lambda} = \text{norm}(v_{new}); \quad v_{new} = \text{normc}(v_{new});
\quad \text{if } \text{norm} (v_{old} - v_{new}) < \text{TOL}
\quad \text{fprintf(’Converged at iteration %d.’, iter);
\quad V(:,i) = v_{new}; \quad \text{Lambda}(i,1) = \text{lambda};
\quad \text{break;}
\quad \text{end}
\text{v_{old} = v_{new};}
\text{end}
\text{end}
\]

Green: Groundtruth
Red: Estimation at each iteration
Resources for this talk

Agenda

- Issues in implementation and results on real datasets.

Papers

Code

- GPU and CPU codes: github.com/FurongHuang/
 Fast-Detection-of-Overlapping-Communities-via-Online-Tensor-Methods
- REEF code will be released soon.
Outline

1 Recap: A Toy Example via MATLAB

2 Community Detection through Tensor Methods
 - Whitening
 - Tensor Decomposition
 - Code Optimization
 - Experimental Results

3 Implementing In the Cloud

4 Conclusion
Social Networks & Recommender Systems

Social Networks
- Network of social ties, e.g. friendships, co-authorships
- Hidden: communities of actors.

Recommender Systems
- Observed: Ratings of users for various products.
- Goal: New recommendations.
- Modeling: User/product groups.
Network Community Models

How are communities formed? How do communities interact?
Network Community Models

How are communities formed? How do communities interact?
Network Community Models

How are communities formed? How do communities interact?
Network Community Models

How are communities formed? How do communities interact?
Network Community Models

- How are communities formed? How do communities interact?
Network Community Models

- How are communities formed? How do communities interact?
Mixed Membership Model (Airoldi et al)

- k communities and n nodes. Graph $G \in \mathbb{R}^{n \times n}$ (adjacency matrix).
- Fractional memberships: $\pi_x \in \mathbb{R}^k$ membership of node x.

$$\Delta^{k-1} := \{\pi_x \in \mathbb{R}^k, \pi_x(i) \in [0, 1], \sum_i \pi_x(i) = 1, \forall x \in [n]\}.$$

- Node memberships $\{\pi_u\}$ drawn from Dirichlet distribution.
Mixed Membership Model (Airoldi et al)

- k communities and n nodes. Graph $G \in \mathbb{R}^{n \times n}$ (adjacency matrix).
- Fractional memberships: $\pi_x \in \mathbb{R}^k$ membership of node x.

$$\Delta^{k-1} := \{\pi_x \in \mathbb{R}^k, \pi_x(i) \in [0, 1], \sum_i \pi_x(i) = 1, \forall x \in [n]\}.$$

- Node memberships $\{\pi_u\}$ drawn from Dirichlet distribution.
- Edges conditionally independent given community memberships: $G_{i,j} \perp \perp G_{a,b} | \pi_i, \pi_j, \pi_a, \pi_b$.
- Edge probability averaged over community memberships

$$\mathbb{P}[G_{i,j} = 1 | \pi_i, \pi_j] = \mathbb{E}[G_{i,j} | \pi_i, \pi_j] = \pi_i^{\top} P \pi_j.$$

- $P \in \mathbb{R}^{k \times k}$: average edge connectivity for pure communities.

Networks under Community Models
Networks under Community Models

Stochastic Block Model

\[\alpha_0 = 0 \]
Networks under Community Models

Stochastic Block Model

Mixed Membership Model

$\alpha_0 = 0$

$\alpha_0 = 1$
Networks under Community Models

Stochastic Block Model

Mixed Membership Model

$\alpha_0 = 0$

$\alpha_0 = 10$
Networks under Community Models

Stochastic Block Model

Mixed Membership Model

Unifying Assumption

Edges conditionally independent given community memberships
Subgraph Counts as Graph Moments
Subgraph Counts as Graph Moments
Subgraph Counts as Graph Moments

3-star counts sufficient for identifiability and learning of MMSB
Subgraph Counts as Graph Moments

3-star counts sufficient for identifiability and learning of MMSB

3-Star Count Tensor

\[\tilde{M}_3(a, b, c) = \frac{1}{|X|} \# \text{ of common neighbors in } X \]

\[= \frac{1}{|X|} \sum_{x \in X} G(x, a)G(x, b)G(x, c). \]

\[\tilde{M}_3 = \frac{1}{|X|} \sum_{x \in X} [G_{x,A}^\top \otimes G_{x,B}^\top \otimes G_{x,C}^\top] \]
Multi-view Representation

- Conditional independence of the three views
- π_x: community membership vector of node x.

3-stars

![3-stars diagram]

Graphical model

![Graphical model diagram]

Linear Multiview Model:

$$\mathbb{E}[G_{x,A}^\top | \Pi] = \Pi_A^\top P^\top \pi_x = U \pi_x.$$
Subgraph Counts as Graph Moments

Second and Third Order Moments

- \(\hat{M}_2 := \frac{1}{|X|} \sum_x Z_C G_{x,C}^T G_{x,B} Z_B^T \) – shift

- \(\hat{M}_3 := \frac{1}{|X|} \sum_x \left[G_{x,A}^T \otimes Z_B G_{x,B}^T \otimes Z_C G_{x,C}^T \right] \) – shift

Symmetrize Transition Matrices

- \(\text{Pairs}_{C,B} := G_{X,C}^\top \otimes G_{X,B}^\top \)

- \(Z_B := \text{Pairs} (A, C) (\text{Pairs} (B, C))^\dagger \)

- \(Z_C := \text{Pairs} (A, B) (\text{Pairs} (C, B))^\dagger \)

Linear Multiview Model: \(\mathbb{E}[G_{x,A}^\top | \Pi] = U \pi_x \).

\[\mathbb{E}[\hat{M}_2 | \Pi_{A,B,C}] = \sum_i \frac{\alpha_i}{\alpha_0} u_i \otimes u_i, \quad \mathbb{E}[\hat{M}_3 | \Pi_{A,B,C}] = \sum_i \frac{\alpha_i}{\alpha_0} u_i \otimes u_i \otimes u_i. \]
Overview of Tensor Method

- Whiten data via SVD of $\hat{M}_2 \in \mathbb{R}^{n \times n}$.
- Estimate the third moment $\hat{M}_3 \in \mathbb{R}^{n \times n \times n}$ and whiten it implicitly to obtain T.
- Run power method (gradient ascent) on T.
- Apply post-processing to obtain communities.
- Compute error scores and validate with ground truth (if available).
Outline

1. Recap: A Toy Example via MATLAB

2. Community Detection through Tensor Methods
 - Whitening
 - Tensor Decomposition
 - Code Optimization
 - Experimental Results

3. Implementing In the Cloud

4. Conclusion
Whitening Matrix Computation

Symmetrization: Finding Second Order Moments M_2

$$\hat{M}_2 = \begin{bmatrix} Z_C \end{bmatrix}_{Pairs_{C,B}} \begin{bmatrix} Z_B^T \end{bmatrix} - \text{shift}$$

$$= \begin{bmatrix} \left(Pairs_{A,B} Pairs_{C,B}^T \right) \end{bmatrix}_{Pairs_{C,B}} \begin{bmatrix} \left(Pairs_{B,C}^T \right)^T \end{bmatrix}_{Pairs_{A,C}} - \text{shift}$$

Challenges: $n \times n$ objects, $n \sim$ millions or billions
Whitening Matrix Computation

Symmetrization: Finding Second Order Moments M_2

$$\hat{M}_2 = \begin{bmatrix} Z_C \end{bmatrix} \text{Pairs}_{C,B} \begin{bmatrix} Z_B^\top \end{bmatrix} - \text{shift}$$

$$= \begin{bmatrix} (\text{Pairs}_{A,B} \text{Pairs}_{C,B}^\dagger) \end{bmatrix} \text{Pairs}_{C,B} \begin{bmatrix} (\text{Pairs}_{B,C}^\dagger)^\top \end{bmatrix} \text{Pairs}_{A,C}^\top - \text{shift}$$

Challenges: $n \times n$ objects, $n \sim$ millions or billions

Order Manipulation: Low Rank Approx. is the key, avoid $n \times n$ objects
Whitening Matrix Computation

Symmetrization: Finding Second Order Moments \hat{M}_2

\[
\hat{M}_2 = \begin{bmatrix} Z_C \end{bmatrix} \text{Pairs}_{C,B} \begin{bmatrix} Z_B^T \end{bmatrix} - \text{shift}
\]

\[
= \left(\begin{bmatrix} \text{Pairs}_{A,B} \end{bmatrix} \text{Pairs}_{C,B}^\dagger \right) \text{Pairs}_{C,B} \left(\begin{bmatrix} \text{Pairs}_{B,C}^\dagger \end{bmatrix}^T \text{Pairs}_{A,C}^T \right) - \text{shift}
\]

Challenges: $n \times n$ objects, $n \sim$ millions or billions

Order Manipulation: Low Rank Approx. is the key, avoid $n \times n$ objects

\[
\begin{bmatrix} |A| \\ |A| \end{bmatrix} = \begin{bmatrix} \text{Pairs}_{A,B} \end{bmatrix} \text{Pairs}_{C,B}^\dagger \left(\begin{bmatrix} \text{Pairs}_{B,C}^\dagger \end{bmatrix}^T \text{Pairs}_{A,C}^T \right)
\]

$n=1M$, $k=5K$: Size(Matrix $n \times n$) = 58TB vs Size(Matrix $n \times k$) = 3.7GB.

Space Complexity $O(nk)$
Whitening Matrix Computation

Symmetrization: Finding Second Order Moments M_2

\[\hat{M}_2 = \begin{bmatrix} Z_C \end{bmatrix}_{Pairs_{C,B}} \begin{bmatrix} Z_B^T \end{bmatrix} - \text{shift} \]

\[= \begin{bmatrix} \left(Pairs_{A,B} \right)\left(Pairs_{C,B}^\dagger \right) \end{bmatrix}_{Pairs_{C,B}} \begin{bmatrix} \left(Pairs_{B,C}^\dagger \right)^T \end{bmatrix}_{Pairs_{A,C}^T} - \text{shift} \]

Challenges: $n \times n$ objects, $n \sim$ millions or billions

Order Manipulation: Low Rank Approx. is the key, avoid $n \times n$ objects

\[n=1M, k=5K: \text{Size}(\text{Matrix } n \times n) = 58TB \text{ vs Size}(\text{Matrix } n \times k) = 3.7GB. \]

Space Complexity $O(nk)$
Whitening Matrix Computation

Symmetrization: Finding Second Order Moments M_2

\[
\hat{M}_2 = Z_C \text{Pairs}_{C,B} Z_B^\top - \text{shift}
\]

\[
= \left(\text{Pairs}_{A,B} \text{Pairs}_{C,B}^\dagger \right) \text{Pairs}_{C,B} \left(\text{Pairs}_{B,C}^\dagger \right)^\top \text{Pairs}_{A,C}^\top - \text{shift}
\]

Challenges: $n \times n$ objects, $n \sim$ millions or billions

Order Manipulation: Low Rank Approx. is the key, avoid $n \times n$ objects

n=1M, k=5K: Size(Matrix $n \times n$) = 58TB vs Size(Matrix $n \times k$) = 3.7GB.

Space Complexity $O(nk)$
Whitening Matrix Computation

Orthogonalization: Finding Whitening Matrix W

$W^T M_2 W = I$ is solved by $\text{k-svd}(M_2)$

Challenges: $n \times n$ Matrix SVDs, $n \sim$ millions or billions
Whitening Matrix Computation

Orthogonalization: Finding Whitening Matrix W

$W^T M_2 W = I$ is solved by $\text{k-svd}(M_2)$

Challenges: $n \times n$ Matrix SVDs, $n \sim$ millions or billions

Randomized low rank approx. (GM 13’, CW 13’)

- Random matrix $S \in \mathbb{R}^{n \times \tilde{k}}$ for dense M_2
- Column selection matrix: random signs $S \in \{0, 1\}^{n \times \tilde{k}}$ for sparse M_2.
- $Q = \text{orth}(M_2 S)$, $Z = (M_2 Q)^\top M_2 Q$
- $[U_z, L_z, V_z] = \text{SVD}(Z)$ \hspace{1em} \% $Z \in \mathbb{R}^{k \times k}$
- $V_{M_2} = M_2 Q V_z L_z^{-\frac{1}{2}}$, $L_{M_2} = L_z^{\frac{1}{2}}$
Whitening Matrix Computation

Orthogonalization: Finding Whitening Matrix W

$W^T M_2 W = I$ is solved by \textbf{k-svd}(M_2)

Challenges: $n \times n$ Matrix SVDs, $n \sim$ millions or billions

Randomized low rank approx. (GM 13', CW 13')

- Random matrix $S \in \mathbb{R}^{n \times \tilde{k}}$ for dense M_2
- Column selection matrix: random signs $S \in \{0, 1\}^{n \times \tilde{k}}$ for sparse M_2
- $Q = \text{orth}(M_2 S)$, $Z = (M_2 Q)^\top M_2 Q$
- $[U_z, L_z, V_z] = \text{SVD}(Z)$ \hspace{1cm} $\%$ $Z \in \mathbb{R}^{k \times k}$
- $V_{M_2} = M_2 Q V_z L_z^{-\frac{1}{2}}$, $L_{M_2} = L_z^{\frac{1}{2}}$

Computational Complexity

- For exact rank-k SVD of $n \times n$ matrix: $O(n^2 k)$.
- For randomized SVD with c cores and sparsity level s per row of M_2:

\begin{center}
Time Complexity $O(nsk/c + k^3)$
\end{center}
Outline

1 Recap: A Toy Example via MATLAB

2 Community Detection through Tensor Methods
 - Whitening
 - Tensor Decomposition
 - Code Optimization
 - Experimental Results

3 Implementing In the Cloud

4 Conclusion
Using Whitening to Obtain Orthogonal Tensor

Multi-linear transform

- $M_3 \in \mathbb{R}^{n \times n \times n}$ and $T \in \mathbb{R}^{k \times k \times k}$.
- $T = M_3(W, W, W) = \sum_i w_i (W^\top a_i)^\otimes 3$.
- $T = \sum_{i \in [k]} w_i \cdot v_i \otimes v_i \otimes v_i$ is orthogonal.
- Dimensionality reduction when $k \ll n$.

Tensor M_3 \hspace{1cm} Tensor T
Batch Gradient Descent

Power Iteration with Deflation

\[T \leftarrow T - \sum_j \lambda_j v_j \otimes^3, \quad v_i \leftarrow \frac{T(I, v_i, v_i)}{\|T(I, v_i, v_i)\|}, j < i \]

Alternating Least Squares

\[
\min_{\sigma,A,B,C} \left\| T - \sum_{i=1}^k \lambda_i A(:,i) \otimes B(:,i) \otimes C(:,i) \right\|_F^2 \\
\text{such that } A^\top A = I, B^\top B = I \text{ and } C^\top C = I.
\]

Challenges:

Requires forming the tensor/passing over data in each iteration
Stochastic (Implicit) Tensor Gradient Descent

Whitened third order moments:

\[T = M_3(W, W, W). \]

Objective:

\[
\arg \min_v \left\{ \| \theta \sum_{i \in [k]} v_i \otimes^3 - \sum_{t \in X} T^t \|_F^2 \right\},
\]

where \(v_i \) are the unknown tensor eigenvectors, \(T^t = g^t_A \otimes g^t_B \otimes g^t_C \) — shift such that \(g^t_A = W^\top G_{ \{x, A\}} \), \ldots
Stochastic (Implicit) Tensor Gradient Descent

Whitened third order moments:

\[T = M_3(W, W, W). \]

Objective:

\[\arg\min_v \left\{ \| \theta \sum_{i \in [k]} v_i \otimes^3 - \sum_{t \in X} T^t \|_F^2 \right\}, \]

where \(v_i \) are the unknown tensor eigenvectors, \(T^t = g^t_A \otimes g^t_B \otimes g^t_C \) — shift such that \(g^t_A = W^\top G\{x,A\}, \ldots \)

Expand the objective:

\[\theta \| \sum_{i \in [k]} v_i \otimes^3 \|_F^2 - \left\langle \sum_{i \in [k]} v_i \otimes^3, T^t \right\rangle \]

Orthogonality cost vs Correlation Reward
Stochastic (Implicit) Tensor Gradient Descent

Updating Equation

\[v_{i}^{t+1} \leftarrow v_{i}^{t} - 3\theta \beta^{t} \sum_{j=1}^{k} \left[\langle v_{j}^{t}, v_{i}^{t} \rangle^{2} v_{j}^{t} \right] + \beta^{t} \langle v_{i}^{t}, g_{A}^{t} \rangle \langle v_{i}^{t}, g_{B}^{t} \rangle g_{C}^{t} + \ldots \]

Orthogonality cost vs Correlation Reward

Never form the tensor explicitly; multilinear operation on implicit tensor.

Space: \(O(k^2) \), Time: \(O(k^3/c) \times \) iterations with \(c \) cores.
Unwhitening

Post Processing for memberships

- Λ: eigenvalues. Φ: eigenvectors.
- G: adjacency matrix, γ: normalization.
- W: Whitening Matrix.

$$\hat{\Pi}_{A^c} = \text{diag}(\gamma)^{1/3} \text{diag}(\Lambda)^{-1} \Phi^\top W^\top G_{A,A^c},$$

where $A^c \equiv X \cup B \cup C$.

- Threshold the values.

Space Complexity $O(nk)$

Time Complexity $O(nsk/c)$ with c cores.
Computational Complexity ($k \ll n$)

- $n = \# \text{ of nodes}$
- $N = \# \text{ of iterations}$
- $k = \# \text{ of communities}$
- $m = \# \text{ of sampled node pairs (variational)}$

<table>
<thead>
<tr>
<th>Module</th>
<th>Pre</th>
<th>STGD</th>
<th>Post</th>
<th>Var</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space</td>
<td>$O(nk)$</td>
<td>$O(k^2)$</td>
<td>$O(nk)$</td>
<td>$O(nk)$</td>
</tr>
<tr>
<td>Time</td>
<td>$O(nsk/c + k^3)$</td>
<td>$O(Nk^3/c)$</td>
<td>$O(nsk/c)$</td>
<td>$O(mkN)$</td>
</tr>
</tbody>
</table>

Variational method: $O(m \times k)$ for each iteration

$O(n \times k) < O(m \times k) < O(n^2 \times k)$

Our approach: $O(nsk/c + k^3)$
Computational Complexity \((k \ll n)\)

- \(n = \# \text{ of nodes}\)
- \(k = \# \text{ of communities}\)
- \(N = \# \text{ of iterations}\)
- \(m = \# \text{ of sampled node pairs} \) (variational)

<table>
<thead>
<tr>
<th>Module</th>
<th>Pre (O(nk))</th>
<th>STGD (O(k^2))</th>
<th>Post (O(nk))</th>
<th>Var (O(nk))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space</td>
<td>(O(nsk/c + k^3))</td>
<td>(O(Nk^3/c))</td>
<td>(O(nsk/c))</td>
<td>(O(mkN))</td>
</tr>
<tr>
<td>Time</td>
<td>(O(nsk/c + k^3))</td>
<td>(O(Nk^3/c))</td>
<td>(O(nsk/c))</td>
<td>(O(mkN))</td>
</tr>
</tbody>
</table>

Variational method: \(O(m \times k)\) for each iteration

\[O(n \times k) < O(m \times k) < O(n^2 \times k) \]

Our approach: \(O(nsk/c + k^3)\)

In practice STGD is extremely fast and is not the bottleneck
Outline

1. Recap: A Toy Example via MATLAB

2. Community Detection through Tensor Methods
 - Whitening
 - Tensor Decomposition
 - Code Optimization
 - Experimental Results

3. Implementing In the Cloud

4. Conclusion
GPU/CPU Implementation

GPU (SIMD)

- **GPU**: Hundreds of cores; parallelism for matrix/vector operations
- **Speed-up**: Order of magnitude gains
- **Big data challenges**: GPU memory ≪ CPU memory ≪ Hard disk

Storage hierarchy

- Hard disk (expandable)
- CPU memory (expandable)
- GPU memory (not expandable)

Partitioned matrix

- block
- block
- block
- block
GPU (SIMD)

- **GPU**: Hundreds of cores; parallelism for matrix/vector operations
- **Speed-up**: Order of magnitude gains
- **Big data challenges**: GPU memory \ll CPU memory \ll Hard disk

![Storage hierarchy diagram]

CPU

- **CPU**: Sparse Representation, Expandable Memory
- Randomized Dimensionality Reduction
Scaling Of The Stochastic Iterations

\[v_i^{t+1} \leftarrow v_i^t - 3\theta \beta^t \sum_{j=1}^{k} \left[\langle v_j^t, v_i^t \rangle^2 v_j^t \right] + \beta^t \langle v_i^t, g_A^t \rangle \langle v_i^t, g_B^t \rangle g_C^t + \ldots \]

- Parallelize across eigenvectors.

- STGD is iterative: device code reuse buffers for updates.
Scaling Of The Stochastic Iterations

\[v_{i}^{t+1} \leftarrow v_{i}^{t} - 3\theta \beta^{t} \sum_{j=1}^{k} \left[\langle v_{j}^{t}, v_{i}^{t} \rangle^{2} v_{j}^{t} \right] + \beta^{t} \langle v_{i}^{t}, g_{A}^{t} \rangle \langle v_{i}^{t}, g_{B}^{t} \rangle g_{C}^{t} + \ldots \]

- Parallelize across eigenvectors.

- STGD is iterative: device code reuse buffers for updates.
Validation Metrics

Ground-truth membership available

- Ground-truth membership matrix Π vs Estimated membership $\hat{\Pi}$
Validation Metrics

Ground-truth membership available

- Ground-truth membership matrix Π vs Estimated membership $\hat{\Pi}$

Problem: How to relate Π and $\hat{\Pi}$?
Validation Metrics

Ground-truth membership available
- Ground-truth membership matrix Π vs Estimated membership $\hat{\Pi}$

Problem: How to relate Π and $\hat{\Pi}$?

Solution: p-value test based soft- “pairing”
Validation Metrics

Ground-truth membership available

- Ground-truth membership matrix Π vs Estimated membership $\hat{\Pi}$

Problem: How to relate Π and $\hat{\Pi}$?

Solution: p-value test based soft-“pairing”
Evaluation Metrics

- Recovery Ratio: % of ground-truth communities recovered
- Error Score: $E := \frac{1}{nk} \sum \{\text{paired membership errors}\}$

 $$E = \frac{1}{k} \sum_{(i,j) \in E_{\{p_{\text{val}}\}}} \left\{ \frac{1}{n} \sum_{x \in |X|} |\hat{\Pi}_i(x) - \Pi_j(x)| \right\}$$

Insights

- l_1 norm error between $\hat{\Pi}_i$ and the corresponding paired Π_j
- False pairings penalization

 too many falsely discovered pairings, error > 1
Outline

1. Recap: A Toy Example via MATLAB

2. Community Detection through Tensor Methods
 - Whitening
 - Tensor Decomposition
 - Code Optimization
 - Experimental Results

3. Implementing In the Cloud

4. Conclusion
Summary of Results

Facebook
\(n \sim 20k\)

Yelp
\(n \sim 40k\)

DBLP(sub)
\(n \sim 1\) million(\(\sim 100k\))

Error (\(\mathcal{E}\)) and Recovery ratio (\(\mathcal{R}\))

<table>
<thead>
<tr>
<th>Dataset</th>
<th>(\hat{k})</th>
<th>Method</th>
<th>Running Time</th>
<th>(\mathcal{E})</th>
<th>(\mathcal{R})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facebook(k=360)</td>
<td>500</td>
<td>ours</td>
<td>468</td>
<td>0.0175</td>
<td>100%</td>
</tr>
<tr>
<td>Facebook(k=360)</td>
<td>500</td>
<td>variational</td>
<td>86,808</td>
<td>0.0308</td>
<td>100%</td>
</tr>
<tr>
<td>Yelp(k=159)</td>
<td>100</td>
<td>ours</td>
<td>287</td>
<td>0.046</td>
<td>86%</td>
</tr>
<tr>
<td>Yelp(k=159)</td>
<td>100</td>
<td>variational</td>
<td>N.A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBLP sub(k=250)</td>
<td>500</td>
<td>ours</td>
<td>10,157</td>
<td>0.139</td>
<td>89%</td>
</tr>
<tr>
<td>DBLP sub(k=250)</td>
<td>500</td>
<td>variational</td>
<td>558,723</td>
<td>16.38</td>
<td>99%</td>
</tr>
<tr>
<td>DBLP(k=6000)</td>
<td>100</td>
<td>ours</td>
<td>5407</td>
<td>0.105</td>
<td>95%</td>
</tr>
</tbody>
</table>

Thanks to Prem Gopalan and David Mimno for providing variational code.
Experimental Results on Yelp

Lowest error business categories & largest weight businesses

<table>
<thead>
<tr>
<th>Rank</th>
<th>Category</th>
<th>Business</th>
<th>Stars</th>
<th>Review Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Latin American</td>
<td>Salvadoreno Restaurant</td>
<td>4.0</td>
<td>36</td>
</tr>
<tr>
<td>2</td>
<td>Gluten Free</td>
<td>P.F. Chang's China Bistro</td>
<td>3.5</td>
<td>55</td>
</tr>
<tr>
<td>3</td>
<td>Hobby Shops</td>
<td>Make Meaning</td>
<td>4.5</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>Mass Media</td>
<td>KJZZ 91.5FM</td>
<td>4.0</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>Yoga</td>
<td>Sutra Midtown</td>
<td>4.5</td>
<td>31</td>
</tr>
</tbody>
</table>
Experimental Results on Yelp

Lowest error business categories & largest weight businesses

<table>
<thead>
<tr>
<th>Rank</th>
<th>Category</th>
<th>Business</th>
<th>Stars</th>
<th>Review Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Latin American</td>
<td>Salvadoreno Restaurant</td>
<td>4.0</td>
<td>36</td>
</tr>
<tr>
<td>2</td>
<td>Gluten Free</td>
<td>P.F. Chang's China Bistro</td>
<td>3.5</td>
<td>55</td>
</tr>
<tr>
<td>3</td>
<td>Hobby Shops</td>
<td>Make Meaning</td>
<td>4.5</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>Mass Media</td>
<td>KJZZ 91.5FM</td>
<td>4.0</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>Yoga</td>
<td>Sutra Midtown</td>
<td>4.5</td>
<td>31</td>
</tr>
</tbody>
</table>

Bridgeness: Distance from vector \([1/\hat{k}, \ldots, 1/\hat{k}]^\top\)

Top-5 bridging nodes (businesses)

<table>
<thead>
<tr>
<th>Business</th>
<th>Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Four Peaks Brewing</td>
<td>Restaurants, Bars, American, Nightlife, Food, Pubs, Tempe</td>
</tr>
<tr>
<td>Pizzeria Bianco</td>
<td>Restaurants, Pizza, Phoenix</td>
</tr>
<tr>
<td>FEZ</td>
<td>Restaurants, Bars, American, Nightlife, Mediterranean, Lounges, Phoenix</td>
</tr>
<tr>
<td>Matt's Big Breakfast</td>
<td>Restaurants, Phoenix, Breakfast& Brunch</td>
</tr>
<tr>
<td>Cornish Pasty Co</td>
<td>Restaurants, Bars, Nightlife, Pubs, Tempe</td>
</tr>
</tbody>
</table>
1 Recap: A Toy Example via MATLAB

2 Community Detection through Tensor Methods
 - Whitening
 - Tensor Decomposition
 - Code Optimization
 - Experimental Results

3 Implementing In the Cloud

4 Conclusion
Review of linear algebra

Tensor Modes

- Analogy to Matrix Rows and Matrix Columns.
- For an order-d tensor $A \in \mathbb{R}^{n_1 \times n_2 \ldots n_d}$:
 - mode-1 has dimension n_1,
 - mode-2 has dimension n_2, and so on.

Tensor Unfolding

In a mode-k unfolding, the mode-k fibers are assembled to produce an n_k-by-\bar{N}/n_k matrix where $\bar{N} = n_1 \ldots n_d$.

![Diagram of tensor unfolding](attachment:tensor_unfolding_diagram.png)

- Mode-1 Unfolding of $A \in \mathbb{R}^{2\times2\times2} = \begin{bmatrix}
 a_{111} & a_{121} & a_{112} & a_{122} \\
 a_{211} & a_{221} & a_{212} & a_{222}
\end{bmatrix}$
Tensor decomposition is equivalent to

$$\min_{\sigma, A, B, C} \left\| T - \sum_{i=1}^{k} \sigma_i A(:, i) \otimes B(:, i) \otimes C(:, i) \right\|_F^2$$
Tensor Decomposition In The Cloud

Tensor decomposition is equivalent to

$$\min_{\sigma, A, B, C} \left\| T - \sum_{i=1}^{k} \sigma_i A(:, i) \otimes B(:, i) \otimes C(:, i) \right\|^2_F$$

Alternating Least Square is the solution:

$$A' \leftarrow T_a f(C, B) \left(C^\top C \ast B^\top B \right)^\dagger$$

$$B' \leftarrow T_b f(C, A') \left(C^\top C \ast A'^\top A' \right)^\dagger$$

$$C' \leftarrow T_c f(B', A') \left(B'^\top B' \ast A'^\top A' \right)^\dagger$$

where T_a is the mode-1 unfolding of T, T_b is the mode-2 unfolding of T, and T_c is the mode-3 unfolding of T.

Low Rank Structure: Hidden Dimension $<$ Observable Dimension
Challenges I

How to parallelize?

- Observations: $A'(i, :) \leftarrow T_a(i, :) f(C, B)(C^\top C \star B^\top B)^\dagger$
- $T_a \in \mathbb{R}^{k \times k^2}$, B and $C \in \mathbb{R}^{k \times k}$
Challenges I

How to parallelize?

- Observations: $A'(i,:) \leftarrow T_a(i,:) f(C, B)(C^\top C \star B^\top B)\dagger$
- $T_a \in \mathbb{R}^{k \times k^2}$, B and $C \in \mathbb{R}^{k \times k}$

Update Rows Independently

- k tensor slices $\in \mathbb{R}^{k^2}$
- $B, C \in \mathbb{R}^{k \times k}$
- $\rightarrow A(1,:)$
- $\rightarrow A(2,:)$
- $\rightarrow A(i,:)$
- $\rightarrow A(k,:)$
Challenges II

Communication and System Architecture Overhead

- Map-Reduce Framework

Overhead: Disk reading, Container Allocation, Intense Key/Value Design
Solution: REEF

- Big data framework called REEF (Retainable Evaluator Execution Framework)

- Advantage: Open source distributed system with one time container allocation, keep the tensor in memory
Correctness

Evaluation Score

\[
\text{perplexity} := \exp \left(- \frac{\sum_i \text{log-likelihood in doc } i}{\sum_i \text{words in doc } i} \right)
\]

New York Times Corpus

- Documents \(n = 300,000 \)
- Vocabulary \(d = 100,000 \)
- Topics \(k = 100 \)

<table>
<thead>
<tr>
<th></th>
<th>Stochastic Variational Inference</th>
<th>Tensor Decomposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perplexity</td>
<td>4000</td>
<td>3400</td>
</tr>
</tbody>
</table>

SVI drawbacks:

- Hyper parameters
- Learning rate
- Initial points
Running Time

Computational Complexity

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Whitening</th>
<th>Tensor Slices ((1, \ldots, k))</th>
<th>ALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>(O(k^3))</td>
<td>(O(k^2)) per slice</td>
<td>(O(k^3))</td>
</tr>
<tr>
<td>Space</td>
<td>(O(kd))</td>
<td>(O(k^2)) per slice</td>
<td>(O(k^2))</td>
</tr>
<tr>
<td>Degree of Parallelism</td>
<td>(\infty)</td>
<td>(\infty) per slice</td>
<td>(k)</td>
</tr>
<tr>
<td>Communication</td>
<td>(O(kd))</td>
<td>(O(k^2))</td>
<td>(O(k^2))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>SVI</th>
<th>1 node Map Red</th>
<th>1 node REEF</th>
<th>4 node REEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>overall</td>
<td>2 hours</td>
<td>4 hours 31 mins</td>
<td>68 mins</td>
<td>36 mins</td>
</tr>
<tr>
<td>Whiten</td>
<td>16 mins</td>
<td>16 mins</td>
<td>16 mins</td>
<td>16 mins</td>
</tr>
<tr>
<td>Matricize</td>
<td>15 mins</td>
<td>15 mins</td>
<td>4 mins</td>
<td></td>
</tr>
<tr>
<td>ALS</td>
<td>4 hours</td>
<td>37 mins</td>
<td>16 mins</td>
<td></td>
</tr>
</tbody>
</table>
Outline

1 Recap: A Toy Example via MATLAB

2 Community Detection through Tensor Methods
 - Whitening
 - Tensor Decomposition
 - Code Optimization
 - Experimental Results

3 Implementing In the Cloud

4 Conclusion
Conclusion

Guaranteed Learning of Latent Variable Models

- Guaranteed to recover correct model
- Efficient sample and computational complexities
- Better performance compared to EM, Variational Bayes etc.

Tensor approach: mixed membership communities, topic models, latent trees...

In practice

- Scalable and embarrassingly parallel: handle large datasets.
- Efficient performance: perplexity or ground truth validation.

Theoretical guarantees and promising practical performance