- A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky. Tensor decompositions for learning latent variable models,
*Journal of Machine Learning Research*, 2014 (to appear). - B. Barak, J. Kelner, and D. Steurer. Dictionary learning and tensor decomposition via the sum-of-squares method. 2014.
- A. Bhaskara, M. Charikar, and A. Vijayaraghavan. Uniqueness of tensor decompositions and polynomial identifiability of latent variable models.
*COLT*, 2014. - P. Comon, X. Luciani, and A.L.F. de Almeida. Tensor decompositions, alternating least squares and other tales.
*Journal of Chemometrics*, 2009. - L. de Lathauwer, B. de Moor, and J. Vandewalle. On the best rank-1 and rank-(R_1,R_2,...,R_n) approximation and applications of higher-order tensors.
*SIAM Journal on Matrix Analysis and Applications*, 2000. - R. Harshman. Foundations of the PARAFAC procedure: model and conditions for an 'explanatory' multi-mode factor analysis.
*UCLA Working Papers in Phonetics*, 1970. - F.L. Hitchcock. The expression of a tensor or a polyadic as a sum of products.
*Journal of Mathematics and Physics*, 1927. - F.L. Hitchcock. Multiple invariants and generalized rank of a p-way matrix or tensor.
*Journal of Mathematics and Physics*, 1927. - S. Leurgans, R. Ross, and R. Abel. A decomposition for three-way arrays.
*SIAM Journal on Matrix Analysis and Applications*, 1993. - T.G. Kolda and B.W. Bader. Tensor decompositions and applications.
*SIAM Review*, 2009. - T.G. Kolda and J.R. Mayo. Shifted power method for computing tensor eigenpairs.
*SIAM Journal on Matrix Analysis and Applications*, 2011. - J.B. Kruskal. Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics.
*Linear Algebra and Its Applications*, 1977. - T. Zhang and G. Golub. Rank-one approximation to high order tensors.
*SIAM Journal on Matrix Analysis and Applications*, 2001.

- E.S. Allman, C. Matias, J.A. Rhodes, and S. Sullivant. Identifiability of parameters in latent structure models with many observed variables.
*Annals of Statistics*, 2009. - A. Anandkumar, D.P. Foster, D. Hsu, S.M. Kakade, and Y.K. Liu. A spectral algorithm for latent Dirichlet allocation,
*NIPS*, 2012. - A. Anandkumar, D. Hsu, and S.M. Kakade. A method of moments for mixture models and hidden Markov models.
*COLT*, 2012. - J. Anderson, M. Belkin, N. Goyal, L. Rademacher, and J. Voss. The more, the merrier: the blessing of dimensionality for learning large Gaussian mixtures.
*COLT*, 2014. - A. Bhaskara, M. Charikar, A. Moitra, and A. Vijayaraghavan. Smoothed analysis of tensor decompositions.
*STOC*, 2014. - A. Chaganty and P. Liang. Estimating latent-variable graphical models using moments and likelihoods.
*ICML*, 2014. - A. Chaganty and P. Liang. Spectral experts for estimating mixtures of linear regressions.
*ICML*, 2013. - J.T. Chang. Full reconstruction of Markov models on evolutionary trees: Identifiability and consistency.
*Mathematical Biosciences*, 1996. - D. Hsu, S.M. Kakade, and P. Liang. Identifiability and unmixing of latent parse trees.
*NIPS*, 2012. - D. Hsu and S.M. Kakade. Learning mixtures of spherical Gaussians: moment methods and spectral decompositions.
*ITCS*, 2013. - E. Mossel and S. Roch. Learning nonsingular phylogenies and hidden Markov models.
*Annals of Applied Probability*, 2006. - J. Zou, D. Hsu, D. Parkes, and R. Adams. Contrastive learning using spectral methods.
*NIPS*, 2013.

- S. Arora, R. Ge, Y. Halpern, D. Mimno, A. Moitra, D. Sontag, Y. Wu, M. Zhu. A practical algorithm for topic modeling with provable guarantees.
*ICML*, 2013. - S. Arora, R. Ge, and A. Moitra. Learning topic models---going beyond SVD.
*FOCS*, 2012. - M. Belkin and K. Sinha. Polynomial learning of distribution families.
*FOCS*, 2010. - Y. Halpern and D. Sontag. Unsupervised learning of noisy-or Bayesian networks.
*UAI*, 2013. - M. Hardt and E. Price. Sharp bounds for learning a mixture of two Gaussians. 2014.
- A.T. Kalai, A. Moitra, and G. Valiant. Efficiently learning mixtures of two Gaussians.
*STOC*, 2010. - A. Moitra, and G. Valiant. Settling the polynomial learnability of mixtures of Gaussians.
*FOCS*, 2010. - K. Pearson. Contributions to the mathematical theory of evolution.
*Philosophical Transactions of the Royal Society, London, A.*, 1894. - K. Stratos, D. Kim, M. Collins, and D. Hsu. A spectral algorithm for learning class-based n-gram models of natural language.
*UAI*, 2014.

- A. Anandkumar, K. Chaudhuri, D. Hsu, S.M. Kakade, L. Song and T. Zhang, Spectral methods for learning multivariate latent tree structure.
*NIPS*, 2011. - R. Bailly. Quadratic weighted automata: spectral algorithm and likelihood maximization.
*ACML*, 2011. - R. Bailly, F. Denis, L. Ralaivola. Grammatical inference as a principal component analysis problem.
*ICML*, 2009. - R. Bailly, A. Habrard, F. Denis. A spectral approach for probabilistic grammatical inference on trees.
*ALT*, 2010. - B. Balle, X. Carreras, F. M. Luque, and A. Quattoni. Spectral learning of weighted automata: a forward-backward perspective.
*Machine Learning*, 2013. - B. Balle and M. Mohri. Spectral learning of general weighted automata via constrained matrix completion.
*NIPS*, 2012. - B. Balle, A. Quattoni, and X. Carreras. A spectral learning algorithm for finite state transducers.
*ECML*, 2011. - B. Balle, A. Quattoni, and X. Carreras. Local loss optimization in operator models: A new insight into spectral learning.
*ICML*, 2012. - B. Boots and G. Gordon. An online spectral learning algorithm for partially observable nonlinear dynamical systems.
*AAAI*, 2011. - B. Boots and G. Gordon. Predictive state temporal difference learning.
*NIPS*, 2010. - B. Boots and G. Gordon. Two-manifold problems with applications to nonlinear system identification.
*ICML*, 2012. - B. Boots, S. Siddiqi and G. Gordon. Closing the learning-planning loop with predictive state representations.
*Robotics: Science and Systems*, 2010. - S.B. Cohen, K. Stratos, M. Collins, D.P. Foster, and L. Ungar. Spectral learning of latent variable PCFGs.
*ACL*, 2012. - F. Denis, Y. Esposito, and A. Habrard. Learning rational stochastic languages.
*COLT*, 2006 - P. Dhillon, J. Rodu, M. Collins, D. Foster, and L. Ungar. Spectral dependency parsing with latent variables.
*EMNLP/CoNLL*, 2012. - D. Hsu, S.M. Kakade, and T. Zhang. A spectral algorithm for learning hidden Markov models.
*Journal of Computer and System Sciences*, 2012. - H. Jaeger. Observable operator models for discrete stochastic time series.
*Neural Computation*, 2000. - M. Littman, R. Sutton, and S. Singh. Predictive representations of state.
*NIPS*, 2001. - F.M. Luque, A. Quattoni, B. Balle, and X. Carreras. Spectral learning in non-deterministic dependency parsing.
*EACL*, 2012. - P.V. Overschee and B. De Moor. Subspace identification of linear systems. 1996.
- A.P. Parikh, L. Song and E. Xing, A spectral algorithm for latent tree graphical models.
*ICML*, 2011. - A.P. Parikh, L. Song, M. Ishteva, G. Teodoru, and E.P. Xing. A spectral algorithm for latent junction trees.
*UAI*, 2012. - S. Siddiqi, B. Boots and G. Gordon, A constraint generation approach to learning stable linear dynamical systems.
*NIPS*, 2007. - S. Siddiqi, B. Boots and G. Gordon, Reduced rank hidden Markov models.
*AISTATS*, 2010. - L. Song, B. Boots, S. Siddiqi, G. Gordon and A. Smola, Hilbert space embedding of hidden Markov model.
*ICML*, 2010.

- S. Arora, R. Ge, A. Moitra, and S. Sachdeva. Provable ICA with unknown Gaussian noise, and implications for Gaussian mixtures and autoencoders.
*NIPS*, 2012. - J.-F. Cardoso. Super-symmetric decomposition of the fourth-order cumulant tensor: blind identification of more sources than sensors.
*ICASSP*, 1991. - J.-F. Cardoso and Pierre Comon. Independent component analysis, a survey of some algebraic methods.
*IEEE International Symposium on Circuits and Systems*, 1996. - P. Comon. Independent component analysis, a new concept?
*Signal Processing*, 1994. - P. Comon. and C. Jutten. Handbook of blind source separation: independent component analysis and applications. 2010.
- A.T. Erdogan. On the convergence of ICA algorithms with symmetric orthogonalization.
*IEEE Transactions on Signal Processing*, 2009. - N. Delfosse and P. Loubaton. Adaptive blind separation of independent sources: a deflation approach.
*Signal processing*, 1995. - A.M. Frieze, M. Jerrum, and R. Kannan. Learning linear transformations.
*FOCS*, 1996. - A. Hyvarinen. Fast and robust fixed-point algorithms for independent component analysis.
*IEEE Transactions on Neural Networks*, 1999. - A. Hyvarinen and E. Oja. Independent component analysis: algorithms and applications.
*Neural Networks*, 2000. - P. Q. Nguyen and O. Regev. Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures.
*Journal of Cryptology*, 2009.