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Motivation



Support vector machines

X =RYY=1{-1,+1}.
» Return solution @ € R? to following optimization problem:
in = ST - yaw a4
min, Sl + - ;[ yiw'zi] 4
» Loss function is hinge loss
0(9,y) = [1 — yjl+ = max{1l —y7,0}.

(Here, we are okay with a real-valued prediction.)
> The %HwH% term is called Tikhonov regularization, which we'll
discuss later.



Basic statistical model for data

11D model of data

» Training data and test example are independent and identically
distributed (X x ))-valued random variables:

(XlaYI)a sy (Xnayn)a (va) ~iid P.



Basic statistical model for data

11D model of data

» Training data and test example are independent and identically
distributed (X x ))-valued random variables:

(Xla Yl)a sy (Xna Yn)a (va) ~iid P.
SVM in the iid model

» Return solution  to following optimization problem:
i, 2l + 2301 - Vi x)
min —|lw — —Yw' X;]1.
’LUERd 2 2 n P K3 (2 +

» Therefore, w is a random variable, depending on
(X1,Y7),..., (X, Yy).



Convergence of empirical risk

For w that does not depend on training data:

Empirical risk
1

n
== U(w'X,;,Y)
i=1

is a sum of iid random variables.
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Convergence of empirical risk

For w that does not depend on training data:

Empirical risk
1

n
== U(w'X,;,Y)
i=1

is a sum of iid random variables.

3

Law of Large Numbers gives an asymptotic result:

n

Ro(w) == > L(w'X;,Y;) 25 E[{(w'X,Y)]

(This can be made non-asymptotic.)

= R(w).



Uniform convergence of empirical risk

However, 1 does depend on training data.
Empirical risk of 1 is not a sum of iid random variables:

n

LS~ oarx,.vi).

i3

Ran() =



Uniform convergence of empirical risk

However, 1 does depend on training data.
Empirical risk of 1 is not a sum of iid random variables:

n

LS~ oarx,.vi).

i3

Rn(0) =
Idea: w could conceivably take any value w, but if
sup [Rn (w) = R(w)| == 0, (1)

then R, () <= R(d) as well.

(1) is called uniform convergence.



Detour: Concentration inequalities



Symmetric random walk

Rademacher random variables
€ly...,epn iid with P(g; = —1) =P(g; = 1) = 1/2.

Symmetric random walk: position after n steps is

Sn = ZEZ'.
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Symmetric random walk

Rademacher random variables
€ly...,epn iid with P(g; = —1) =P(g; = 1) = 1/2.

Symmetric random walk: position after n steps is
Sn = Z Ei.

How far from origin?

» By independence, var(S,) = > ;. var(e;) = n.
» So expected distance from origin is

E|S,| < \/var(S,) < v/n.

How many realizations are > \/n from origin?



Markov's inequality

For any random variable X and any t > 0,

E|X
P(X|>t) < ‘t‘

» Proof:
t-1{|X] > 1) < |X].



Markov's inequality

For any random variable X and any t > 0,

E|X
P(X|>1t) < ‘t‘

» Proof:
t-1{|X] > 1) < |X].

Application to symmetric random walk:

E|Sn|

C

P(|Sn| > cv/n) <

1
< -.
c

B



Hoeffding's inequality

If Xq,...,X, are independent random variables, with X; taking
values in [a;, b;], then for any ¢ > 0,

n 2t2
P (Z(X,- —E(X;)) > t) < exp <_”(b—a)2> .

i=1 i=1



Hoeffding's inequality

If Xq,...,X, are independent random variables, with X; taking
values in [a;, b;], then for any ¢ > 0,

" 2t
P (Zm ~E(X;)) > t) = exp (‘_1<b—>2> '

=1

E.g., Rademacher random variables have [a;, b;] = [—1, +1], so

P(S, > t) < exp(—2t*/(4n)).



Applying Hoeffding's inequality to symmetric random walk
Union bound: For any events A and B,

P(AU B) < P(A) + P(B).
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Applying Hoeffding's inequality to symmetric random walk
Union bound: For any events A and B,

P(AU B) < P(A) + P(B).

1. Apply Hoeffding to e1,...,¢en:
P(S, > cv/n) < exp(—c/2).
2. Apply Hoeffding to —¢1, ..., —ey:
P(—S, > cy/n) < exp(—c?/2).
3. Therefore, by union bound,
P(|S,| > ev/n) < 2exp(—c?/2).

(Compare to bound from Markov's inequality: 1/c.)



Equivalent form of Hoeffding's inequality

Let X1,...,X,, be independent random variables, with X; taking
values in [a;, b;], and let S,, = > | X;. For any ¢ € (0,1),

n

P|S,—E[S,] < J %Z(bi —a;)2In(1/8) | >1-46.

i=1

This is a “high probability” upper-bound on S,, — E[S,,].



Uniform convergence: Finite classes

13



Back to statistical learning

Cast of characters:

» feature and outcome spaces: X, )

» function class: F c Y%

» loss function: ¢: ) x Y — R, (assume bounded by 1)

» training and test data: (X1,Y1),..., (X, Y5), (X,Y) ~iq P
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Back to statistical learning
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We let f € argmin e > Ry (f) be minimizer of empirical risk



Convergence of empirical risk for fixed function

For any fixed function f € F,




Convergence of empirical risk for fixed function

For any fixed function f € F,

Since Ry (f) is sum of n independent [0, 2]-valued random
variables,

2
B (|Ra(f) ~ RU)| 2 1) < 2exp (_%()2) — 2exp(~2nt?)

for any ¢ > 0, by Hoeffding's inequality and union bound.



Convergence of empirical risk for fixed function

For any fixed function f € F,

Since Ry (f) is sum of n independent [0, 2]-valued random
variables,

2t2 9
P(IRn(f) = R(f)| 2 t) < 2exp <n)2> = 2exp(—2nt7)

i:l(%

for any ¢ > 0, by Hoeffding's inequality and union bound.

This argument does not apply to f because f depends on
(Xla le)a teey (Xn> Yn)



Uniform convergence

We cannot directly apply Hoeffding's inequality to f since its
empirical risk R, (f) is not average of iid random variables.



Uniform convergence

We cannot directly apply Hoeffding's inequality to f since its
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One possible solution: ensure empirical risk of every f € F is
close to its expected value.

This is called uniform convergence.



Uniform convergence

We cannot directly apply Hoeffding's inequality to f since its
empirical risk R, (f) is not average of iid random variables.

One possible solution: ensure empirical risk of every f € F is
close to its expected value.

This is called uniform convergence.

» How much data is needed to ensure this?



Uniform convergence for all functions in a finite class

If | F| < oo, then by Hoeffding's inequality and union bound,

P(3f € Fst |Ru(f) —R(f) >t) = (U{\R )\zt})
feF
< ST P(IRa(f) - R(H)| 2 1)
fer

< |F| - 2exp(—2nt?).



Uniform convergence for all functions in a finite class

If | F| < oo, then by Hoeffding's inequality and union bound,

P(3f € Fst. [Ru(f) ~R()| 2 1) = (U{\R >\zt})
feF
< ST B(Rulf) =R = 1)
feF

< |F| - 2exp(—2nt?).

Choose t so that RHS is 4, and “invert”.

Theorem. For any § € (0,1),

P(er]—' LR (f) = R(f)| < W) >1-4.



What we get from uniform convergence

If n > log |F|, then with high probability, no function f € F will
over-fit the training data.



What we get from uniform convergence

If n > log |F|, then with high probability, no function f € F will
over-fit the training data.

Also: An empirical risk minimizer (ERM), like f, is near optimal!

Theorem. With probability at least 1 — §,

R(f) = R(f*) = R(f) — Rulf) (<e)
+ Ra(f) = Ru(f*) (<0)
+ R (f7) = R(f*) (<o)

< 2e¢

where f* € argminfE;R(f) and e = W-



Uniform convergence: General case
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Uniform convergence: General case

Let F C R¥ be a class of real-valued functions, and let P be a
probability distribution on X.



Uniform convergence: General case

Let F C R¥ be a class of real-valued functions, and let P be a
probability distribution on X.

Notation:

> Let Pf =E[f(X)] for X ~ P.

» Let P, be the empirical distribution on X1,..., X, ~iiq P,
which assigns probability mass 1/n to each X;.

> So Puf = 13, f(X)).

n

We are interested in the maximum (or supremum) deviation:

sup [P f — Pf].
feF



Uniform convergence: General case

Let F C R¥ be a class of real-valued functions, and let P be a
probability distribution on X.

Notation:

> Let Pf =E[f(X)] for X ~ P.

> Let P, be the empirical distribution on X1, ..., X, ~uq P,
which assigns probability mass 1/n to each X;.

> So Puf = 13, f(X)).

n

We are interested in the maximum (or supremum) deviation:

sup [P f — Pf].
feF

The arguments from before show that for any finite class of
bounded functions F,

sup |Pof — Pf| 20,
feF

and also give a non-asymptotic rate of convergence.



Infinite classes

For which classes F C R does uniform convergence hold?



Infinite classes

For which classes F C R does uniform convergence hold?

Example:
F={fs(x) =1{z € S} : S CR,|S| < o0},
i.e., {0,1}-valued functions that take value 1 on a finite set.

» If P is continuous, then Pf =0 for all f € F.
» But supscr Pof =1 for all n.
> So supser |[Pof — Pf| =1 for all n.



Infinite classes

For which classes F C R does uniform convergence hold?

Example:
F={fs(x) =1{z € S} : S CR,|S| < o0},
i.e., {0,1}-valued functions that take value 1 on a finite set.

» If P is continuous, then Pf =0 for all f € F.
» But supscr Pof =1 for all n.
> So supser |[Pof — Pf| =1 for all n.

What is the appropriate “complexity” measure of a function class?



Rademacher complexity

Let 1,...,&, be independent Rademacher random variables.

Uniform convergence with F holds iff

. 1 &
lim EE. sup ;;Qf(Xi) =0
Radn (F)

(where E. is expectation with respect to € = (g1,...,&5)).



Rademacher complexity

Let 1,...,&, be independent Rademacher random variables.

Uniform convergence with F holds iff

LS~ cix|| =0

n =1

lim EE. |sup

Radn (F)

(where E. is expectation with respect to € = (g1,...,&5)).

Rad,,(F) is the Rademacher complexity of F, which measures how
well vectors in (random) set

‘F(Xl:n) = {(f(X1)7>f(Xn)) : fef.‘}

can correlate with uniformly random signs €1, ..., ¢&p.



Extreme cases of Rademacher complexity

For simplicity, assume X7, ..., X,, are distinct (e.g., P continuous).
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Extreme cases of Rademacher complexity

For simplicity, assume X7, ..., X,, are distinct (e.g., P continuous).

» F contains a single function fo: X — {—1,+1}:

1
Rad ( ‘ ZEZfO < %
» F contains all functions X — {—1,+1}:
Rad,,(F) = EE, |sup —Zezf =1.

fer|n




Uniform convergence via Rademacher complexity

Theorem.

1. Uniform convergence in expectation:
For any F C RY,

E lsup |P.f — Pf|| <2Rady,(F).
feFr

2. Uniform convergence with high probability:
For any F C [~1,+1]* and § € (0,1), with probability
Z 1 - 61

2In(1/6
sup |Pof — Pf| < 2 Rady(F) + | 220/
feF n



Step 1: Symmetrization by “ghost sample”

Let P/ be empirical distribution on independent copies X7, ..., X/,
of X1,...,X,. Write E for expectation with respect to X7.,,.



Step 1: Symmetrization by “ghost sample”

Let P/ be empirical distribution on independent copies X7, ...

of X1,...,X,. Write E for expectation with respect to X7.,,.

Then

n

E [Sup |Pof — Pfl] =E |sup |E {12n:f(X@-) — f(X]
feF

f€.7-' i=1

<E |[E'{ sup
feF

n

— BE'sup [P.f — PLf].
feF

X/

>}

Xi)




Step 1: Symmetrization by “ghost sample”

Let P/ be empirical distribution on independent copies X7, ..., X/,
of X1,...,X,. Write E for expectation with respect to X7.,,.

Then

E [Supanf—PfI] = |sup E/{lzf(Xi) —f(Xé)}
feEF

JeFr ni=

<E |[E'{ sup
ferF

zi: x!)

n

— BE'sup [P.f — PLf].
feF

The random variable P, f — P, f is arguably nicer than P, f — Pf
because it is symmetric.



Step 2: Symmetrization by random signs

Consider any € = (e1,...,&,) € {—1,+1}". Distribution of
1 n
Pof = Pif = = 3" F(Xi) = F(X))
i=1
is the same distribution of

Pof =P, f = izn:& (f(Xi) - f(Xz{)) :
i=1



Step 2: Symmetrization by random signs

Consider any € = (e1,...,&,) € {—1,+1}". Distribution of
1 n
Pof = Pof = 3" J(X0) = J(X))
i=1
is the same distribution of

Pof =P, f = :LG:& (f(Xi) - f(Xz{)) :
i=1

Thus, this is also true for uniform average over all € € {—1,+1}"
(i.e., expectation over Rademacher ¢):

/ _plrl — wR l - . ) — !
EE ;g_g\Pnf P, f| = EE'E. sup Zgz(f(Xz) f(Xz)).



Step 3: Back to a single sample

By triangle inequality,

1 n
sup |~ > & (f(Xi) — f(X]
| Y (f(x5) = £(xD)
< sup lEn:af(X-) + sup lzn;ef(X{)
_fE]: ni:l feF ni:l ‘

The two terms on the RHS have the same distribution.




Step 3: Back to a single sample

By triangle inequality,

1 n
sup |~ > & (f(Xi) — f(X]
| Y (f(x5) = £(xD)
< sup lEn:af(X-) + sup lzn;ef(X{)
_fE]: ni:l feF ni:l ‘

The two terms on the RHS have the same distribution.

So

Ly (s - 1) SY e ()
i=1 i=1

EE'E, sup
feFr

< 2EE. sup
fer

= 2Rad, (F).




Recap
For any F C RY,

E

sup | P, f — Pf|] < 2Rad,(F).
feF

For any F C [~1,+1]* and 6 € (0, 1), with probability > 1 — §,

21n(1
sup [Py f — Pf| < 2Rady (F) + 1) 220/9).
feF

n
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If Rad,,(F) — 0, then uniform convergence holds.



Recap
For any F C RY,

E

sup | P, f — Pf|] < 2Rad,(F).
fer

For any F C [~1,+1]* and 6 € (0, 1), with probability > 1 — §,

2In(1/6
sup |Pof — Pf| < 2 Rady(F) + 1| 221/0).
feF n
Conclusion

If Rad,,(F) — 0, then uniform convergence holds.

(Can also show: If uniform convergence holds, then Rad,,(F) — 0.)



Analysis of SVM
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Loss class

Back to classes of prediction functions F C R,



Loss class

Back to classes of prediction functions F C R,

Consider a loss function £: R x Y — R that satisfies £(0,y) <1
for all y € ), and is 1-Lipschitz in first argument: for all §,4’ € R,

1G9, y) — L@ )l < 15— 7|

(Example: hinge loss £(g,y) = [1 — §y]+.)



Loss class

Back to classes of prediction functions F C R,

Consider a loss function £: R x Y — R that satisfies £(0,y) <1

for all y € ), and is 1-Lipschitz in first argument: for all §,4’ € R,
1£(g,y) — €9 9)| < 15—

(Example: hinge loss £(g,y) = [1 — §y]+.)

Define the associated loss class by

6;:{(m,y)l—>£(f(a:),y)fe}"}

Then

1
Radn((7) < 2 Radn(F) + 1/ 2 ;2.

So uniform convergence holds for {5 if it holds for F.



Rademacher complexity of linear predictors

Linear functions Fiy, = {w € R%}.

What is the Rademacher complexity of Fij,?

1 n
— Z 6inXi

Rad,,(Fin) = EE. | sup
)

weR4




Rademacher complexity of linear predictors

Linear functions Fiy, = {w € R%}.

What is the Rademacher complexity of Fij,?

1 n
A*E:E{wTX%

Rad,,(Fin) = EE. | sup
)

weR4

Inside the EE.:

1 n
w' (n ZEiX,) ‘ = sup [Jw|2
i=1

wERY

sup
wERC

1 n
- E Eﬁ)Q
n -

i=1

2

As long as > | ;X; # 0, this is unbounded! :-(



Regularization

Recall SVM optimization problem:

in = ST — g
min, 2||wH2 + ;:1[ yiw' )+
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Objective value at w = 0 is 1, so objective value at minimizer @ is
no worse than this:

§Hw||2+ﬁz 1—y'x)y <1



Regularization
Recall SVM optimization problem:

win Ml + 131 -y
=1

Objective value at w = 0 is 1, so objective value at minimizer @ is
no worse than this:

§Hw||2+ﬁz 1—y'x)y <1

Therefore

5
> o



Rademacher complexity of bounded linear predictors

Bounded linear functions F, g = {w € R?: |lw|s < B}.

33



Rademacher complexity of bounded linear predictors

Bounded linear functions F, g = {w € R?: |lw|s < B}.

What is the Rademacher complexity of Fy, g?

n
Radn(fﬁmB) = E]EE sup | — EinXi
[wll2<B | ;=5
1
= BEE. | sup |— Z siuTXi
full2<1| ™ 35
2
1 & 1>




Rademacher complexity of bounded linear predictors

Bounded linear functions F, g = {w € R?: |lw|s < B}.

What is the Rademacher complexity of Fy, g?

n
Radn(fﬁmB) = E]EE sup | — EinXi
[wll2<B | T =5
1
= BEEE sup |— Z siuTXi
full2<1| ™ 35
2
1 & 1>

This is d-dimensional random walk, where i-th step is £X.



Rademacher complexity of bounded linear predictors (2)

2
1
== EEES
2

EE,

1 n
= eiXi
i

> lleaXill3 + Z&‘EinTXj}

i=1 i#]
n

o IIxil3

i=1

1
= —E| X|3.
CEIIX12

1
= _E
’I’L2

34



Rademacher complexity of bounded linear predictors (2)

2
1& 1 -
EE: |~ ) eX;|| = —5EE: Y [leiXill3 + ) eie; X[ X;
nia , i=1 i#j
1 i 9
= EE ZHXZHQ
=1
1
= ~E[|X||2.
~E| X3
Conclusion

Rademacher complexity of F, 5 = {w € R?: |lw||2 < B}:

E[X|2
Rad,(F7, ) < B ”n Iz




Risk bound for SVM

+E[3]1w*3 - 31111
< e+ 3w

where

| EIX[E . 1
= A 2 +R 7 -0 2 + '
wr € argmingffully +R(w), e oy



Risk bound for SVM

E [R(w) — R(w*)]

= E [R() )] (<)
+E[Auwu +R<uv> Ml - Ra(w)]  (<0)
2 2 2 2 n >
+E [Rn(w W)] (=0)
+E [3]w* ||2 AH
< e+ 3llwl3
where
E|| X |3
w* € argmin 3w} + R(w), =0 X +

This suggests we should use A — 0 such that An — co as n — oo.



Kernels

Excess risk bound has no explicit dependence on the dimension d.
In particular, it holds in infinite dimensional inner product spaces.

» SVM can be applied in such spaces as long as there is an
algorithm for computing inner products.

» This is the kernel trick, and these corresponding spaces are
called Reproducing Kernel Hilbert Spaces (RKHS).



Kernels

Excess risk bound has no explicit dependence on the dimension d.
In particular, it holds in infinite dimensional inner product spaces.

» SVM can be applied in such spaces as long as there is an
algorithm for computing inner products.

» This is the kernel trick, and these corresponding spaces are
called Reproducing Kernel Hilbert Spaces (RKHS).

Universal approximation

With some RKHS, can approximate any function arbitrarily well:

. . A 2 _
tim { it 3wl + Rw) | = int_Rig).



Other regularizers
Instead of SVM, suppose @ is solution to

min Al + Ro (w).

Sow € Fy, 5 ={weR: ||lw||; < B} for B=1/\.



Other regularizers
Instead of SVM, suppose @ is solution to

min Al + Ro (w).

Sow € Fy, 5 ={weR: ||lw||; < B} for B=1/\.

What is Rademacher complexity of Fy, g?

1 n
Rad,(F¢,,B) =EE; | sup |—)>» guw'X;
lwl<B|™ 55
i .
= BEE. | sup |= Y eu'X;
lulli<1 |7 52y

1 n
= BEE. |- ) &X;
n =1

o0



Rademacher complexity of ¢;1-bounded linear predictors

Can show, using martingale argument,

n

1
E Z €iXi

1=1

. 2
RE. . \/oaogco E|X2,

n

o0



Rademacher complexity of ¢;1-bounded linear predictors

Can show, using martingale argument,

n

1
E Z €iXi

1=1

EE.

. ¢0<logd> E|IX|Z,

n

o0

Rademacher complexity of Fy, g = {w € R?: |lw||; < B}:

O(logd) - E[| X%,
- :

Rad,(Fy, B) < B\/



Rademacher complexity of ¢;1-bounded linear predictors

Can show, using martingale argument,

EE.

1 & O(logd) -E|| X |2
Iyx, 4 (log ) - E[[X 2,
nizl n

oo

Rademacher complexity of Fy, g = {w € R?: |lw||; < B}:

O(logd) - E[| X%,
- :

Rad,(Fy, B) < B\/

Let X = {—1,+1}% Then ||z||2 = d but ||z||2, =1 for all z € X.

Dependence on d much better than using bound for ¢5-bounded
linear predictors, which would have looked like B\/d/n.



Rademacher complexity of ¢;1-bounded linear predictors

Can show, using martingale argument,

EE.

1 & O(logd) -E|| X |2
Iyx, 4 (log ) - E[[X 2,
nizl n

oo

Rademacher complexity of Fy, g = {w € R?: |lw||; < B}:

O(logd) - E[| X%,
- .

Rad,(Fy, B) < B\/

Let X = {—1,+1}% Then ||z||2 = d but ||z||2, =1 for all z € X.

Dependence on d much better than using bound for ¢5-bounded
linear predictors, which would have looked like B\/d/n.

This kind of bound is used to study generalization of AdaBoost.



Other examples of Rademacher complexity
» F = any class of {0, 1}-valued functions with VC dimension V:

Rad, (F) = O ( Z) .

» F = RelLU networks of depth D with parameter matrices of
Frobenius norm < 1:

/D K| X|3
Rad,(F) = O n” I2

» F = Lipschitz functions from [0, 1]¢ to R:
Rad,(F) = O (n—l/ <2+d>) .
» F = functions from [0,1]¢ to R with Lipschitz k-th derivatives:
Rad,(F) = O (n—(k+1)/(2(k+1)+d)) '
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Are these the “right” notions of complexity?
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relevant because fa-regularization explicitly ensures the solution
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Questions

Are these the “right” notions of complexity?

» For SVM, the complexity of £»-bounded linear predictors is
relevant because fa-regularization explicitly ensures the solution
to SVM problem is £5-bounded.

» Do training algorithms for neural nets lead to Frobenius
norm-bounded parameter matrices?

Do complexity bounds suggest different algorithms?
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Deficiencies of uniform convergence analysis

» For certain loss functions, if R(f) is small, then variance of
R, (f) is also small, and bound should reflect this.

» Instead of Hoeffding's inequality, use concentration inequality
that involves variance information (e.g., Bernstein’s inequality).

» Overkill to require all functions in F to not over-fit.

» Just need to worry about the f, e.g., with small empirical risk.
» Solution: Local Rademacher complexity.
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Example: Occam’s razor bound

Suppose F is countable and we fix (a priori) a probability
distribution 7 = (7y : f € F) on F.

» Think of 7 as placing bets on which functions are likely to be
the one to be picked by your learning algorithm.

For any fixed f € F,
P (IRn(f) = R(f)| > t7) < 2exp(—2nt})

for any ¢ty > 0, by Hoeffding's inequality and union bound.

Note: We can choose the t;'s non-uniformly.



Occam's razor bound (continued)

Let tf _ 1n(1/7rf)+1n(2/6).

2n

By union bound,
P (3f € F st [Ra(f) = R(S)| > ty)
< 3 P(IRalh) = RU 2 t)

fer

< Z Qexp(—Qnt?) = Z 6 = 0.

fer ferF



Occam's razor bound (continued)

Let tf _ 1n(1/7rf)+ln(2/6).

2n

By union bound,
P (3f € F st [Ra(f) = R(S)| > ty)
< 3 P(IRalh) = RU 2 t)

feFr
< Z Qexp(—2nt3c) = Z 6 = 0.
fer feF

Theorem. For any § € (0,1),

P (Vf EF : |Ru(f) = R(f) < \/m(l/wf); ln(2/5)) >1-4.



Occam's razor bound (continued)

Let tf _ ln(l/ﬂ'f)—i—ln(Q/ﬁ).

2n

By union bound,
P (3f € F st [Ra(f) = R(S)| > ty)
< 3 P(IRalh) = RU 2 t)

feFr
< Z Qexp(—Qntﬁc) = Z 6 = 0.
fer feF

Theorem. For any § € (0,1),

P (Vf EF : |Ru(f) = R(f) < \/m(l/wf; ln(2/5)) >1-4.

Better bound for functions f with higher “prior probability” 7!



Other forms of generalization analysis

» Stability

> If a learning algorithm's output does not change much if a
single data point is changed, then its output will generalize.
» Connections to differential privacy and regularization.

» Compression bounds

> If a learning algorithm’s output is invariant to all but a small
number k < n of training data (e.g., # support vectors in

SVM), then get bound of the form \/k/(n — k).

» Direct analyses

» Some well-known learning algorithms do not fit the mold of
typical (regularized) ERM algorithm, and seem to require a
direct analysis.

» E.g., nearest neighbor rule.

» Many others



Many active areas of research in learning theory

» Implicit bias of optimization algorithms

» E.g., gradient descent for least squares linear regression
converges to solution of smallest norm.
» What about for other problems?

v

Efficient algorithms for non-linear models

» E.g., polynomials, neural networks, kernel machines.
» Understand if/why existing algorithms work!

v

Learning algorithms with robustness guarantees

» Noisy labels, missing / malformed data, heavy-tail distributions,
adversarial corruptions, etc.

v

Interactive learning

» Learning algorithms that interact with external environment
(e.g., bandits, active learning, reinforcement learning).

» More: see proceedings of Conference on Learning Theory!
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