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Motivation
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Support vector machines

X = Rd, Y = {−1,+1}.

I Return solution ŵ ∈ Rd to following optimization problem:

min
w∈Rd

λ

2 ‖w‖
2
2 + 1

n

n∑
i=1

[1− yiwTxi]+.

I Loss function is hinge loss

`(ŷ, y) = [1− yŷ]+ = max{1− yŷ, 0}.

(Here, we are okay with a real-valued prediction.)
I The λ

2‖w‖
2
2 term is called Tikhonov regularization, which we’ll

discuss later.
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Basic statistical model for data
IID model of data

I Training data and test example are independent and identically
distributed (X × Y)-valued random variables:

(X1, Y1), . . . , (Xn, Yn), (X,Y ) ∼iid P.

SVM in the iid model

I Return solution ŵ to following optimization problem:

min
w∈Rd

λ

2 ‖w‖
2
2 + 1

n

n∑
i=1

[1− YiwTXi]+.

I Therefore, ŵ is a random variable, depending on
(X1, Y1), . . . , (Xn, Yn).
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Convergence of empirical risk

For w that does not depend on training data:

Empirical risk

Rn(w) = 1
n

n∑
i=1

`(wTXi, Yi)

is a sum of iid random variables.

Law of Large Numbers gives an asymptotic result:

Rn(w) = 1
n

n∑
i=1

`(wTXi, Yi)
p−→ E[`(wTX,Y )] = R(w).

(This can be made non-asymptotic.)
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Uniform convergence of empirical risk

However, ŵ does depend on training data.

Empirical risk of ŵ is not a sum of iid random variables:

Rn(ŵ) = 1
n

n∑
i=1

`(ŵTXi, Yi).

Idea: ŵ could conceivably take any value w, but if

sup
w
|Rn(w)−R(w)| p−→ 0, (1)

then Rn(ŵ) p−→ R(ŵ) as well.

(1) is called uniform convergence.
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(1) is called uniform convergence.

6



Detour: Concentration inequalities
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Symmetric random walk
Rademacher random variables

ε1, . . . , εn iid with P(εi = −1) = P(εi = 1) = 1/2.

Symmetric random walk: position after n steps is

Sn =
n∑
i=1

εi.

How far from origin?

I By independence, var(Sn) =
∑n
i=1 var(εi) = n.

I So expected distance from origin is

E|Sn| ≤
√

var(Sn) ≤
√
n.

How many realizations are �
√
n from origin?
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Markov’s inequality

For any random variable X and any t ≥ 0,

P(|X| ≥ t) ≤ E|X|
t

.

I Proof:
t · 1{|X| ≥ t} ≤ |X|.

Application to symmetric random walk:

P(|Sn| ≥ c
√
n) ≤ E|Sn|

c
√
n
≤ 1
c
.
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Hoeffding’s inequality

If X1, . . . , Xn are independent random variables, with Xi taking
values in [ai, bi], then for any t ≥ 0,

P

 n∑
i=1

(Xi − E(Xi)) ≥ t

 ≤ exp
(
− 2t2∑n

i=1(bi − ai)2

)
.

E.g., Rademacher random variables have [ai, bi] = [−1,+1], so

P(Sn ≥ t) ≤ exp(−2t2/(4n)).
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Applying Hoeffding’s inequality to symmetric random walk
Union bound: For any events A and B,

P(A ∪B) ≤ P(A) + P(B).

1. Apply Hoeffding to ε1, . . . , εn:

P(Sn ≥ c
√
n) ≤ exp(−c2/2).

2. Apply Hoeffding to −ε1, . . . ,−εn:

P(−Sn ≥ c
√
n) ≤ exp(−c2/2).

3. Therefore, by union bound,

P(|Sn| ≥ c
√
n) ≤ 2 exp(−c2/2).

(Compare to bound from Markov’s inequality: 1/c.)
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Equivalent form of Hoeffding’s inequality

Let X1, . . . , Xn be independent random variables, with Xi taking
values in [ai, bi], and let Sn =

∑n
i=1Xi. For any δ ∈ (0, 1),

P

Sn − E[Sn] <

√√√√1
2

n∑
i=1

(bi − ai)2 ln(1/δ)

 ≥ 1− δ.

This is a “high probability” upper-bound on Sn − E[Sn].
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Uniform convergence: Finite classes
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Back to statistical learning

Cast of characters:

I feature and outcome spaces: X ,Y
I function class: F ⊂ YX
I loss function: ` : Y × Y → R+ (assume bounded by 1)
I training and test data: (X1, Y1), . . . , (Xn, Yn), (X,Y ) ∼iid P

We let f̂ ∈ arg minf∈F Rn(f) be minimizer of empirical risk

Rn(f) = 1
n

n∑
i=1

`(f(Xi), Yi).

Our worry: over-fitting R(f̂)� Rn(f̂).
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Convergence of empirical risk for fixed function

For any fixed function f ∈ F ,

E
[
Rn(f)

]
= E

 1
n

n∑
i=1

`(f(Xi), Yi)

 = 1
n

n∑
i=1

E
[
`(f(Xi), Yi)

]
= R(f).

Since Rn(f) is sum of n independent [0, 1
n ]-valued random

variables,

P
(
|Rn(f)−R(f)| ≥ t

)
≤ 2 exp

(
− 2t2∑n

i=1( 1
n)2

)
= 2 exp(−2nt2)

for any t > 0, by Hoeffding’s inequality and union bound.

This argument does not apply to f̂ , because f̂ depends on
(X1, Y1), . . . , (Xn, Yn).
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Uniform convergence

We cannot directly apply Hoeffding’s inequality to f̂ , since its
empirical risk Rn(f̂) is not average of iid random variables.

One possible solution: ensure empirical risk of every f ∈ F is
close to its expected value.

This is called uniform convergence.

I How much data is needed to ensure this?
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Uniform convergence for all functions in a finite class
If |F| <∞, then by Hoeffding’s inequality and union bound,

P
(
∃f ∈ F s.t. |Rn(f)−R(f)| ≥ t

)
= P

 ⋃
f∈F

{
|Rn(f)−R(f)| ≥ t

}
≤
∑
f∈F

P
(
|Rn(f)−R(f)| ≥ t

)
≤ |F| · 2 exp(−2nt2).

Choose t so that RHS is δ, and “invert”.

Theorem. For any δ ∈ (0, 1),

P

∀f ∈ F : |Rn(f)−R(f)| <

√
ln(2|F|/δ)

2n

 ≥ 1− δ.
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What we get from uniform convergence

If n� log |F|, then with high probability, no function f ∈ F will
over-fit the training data.

Also: An empirical risk minimizer (ERM), like f̂ , is near optimal!

Theorem. With probability at least 1− δ,

R(f̂)−R(f∗) = R(f̂)−Rn(f̂) (≤ ε)
+Rn(f̂)−Rn(f∗) (≤ 0)
+Rn(f∗)−R(f∗) (≤ ε)
≤ 2ε

where f∗ ∈ arg minf∈F R(f) and ε =
√

ln(2|F|/δ)
2n .
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Uniform convergence: General case
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Uniform convergence: General case
Let F ⊂ RX be a class of real-valued functions, and let P be a
probability distribution on X .

Notation:

I Let Pf = E[f(X)] for X ∼ P .
I Let Pn be the empirical distribution on X1, . . . , Xn ∼iid P ,

which assigns probability mass 1/n to each Xi.
I So Pnf = 1

n

∑n
i=1 f(Xi).

We are interested in the maximum (or supremum) deviation:
sup
f∈F
|Pnf − Pf |.

The arguments from before show that for any finite class of
bounded functions F ,

sup
f∈F
|Pnf − Pf |

p−→ 0,

and also give a non-asymptotic rate of convergence.
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Infinite classes

For which classes F ⊂ RX does uniform convergence hold?

Example:

F = {fS(x) = 1{x ∈ S} : S ⊂ R, |S| <∞},

i.e., {0, 1}-valued functions that take value 1 on a finite set.

I If P is continuous, then Pf = 0 for all f ∈ F .
I But supf∈F Pnf = 1 for all n.
I So supf∈F |Pnf − Pf | = 1 for all n.

What is the appropriate “complexity” measure of a function class?
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Rademacher complexity
Let ε1, . . . , εn be independent Rademacher random variables.

Uniform convergence with F holds iff

lim
n→∞

EEε

sup
f∈F

∣∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣∣


︸ ︷︷ ︸
Radn(F)

= 0

(where Eε is expectation with respect to ε = (ε1, . . . , εn)).

Radn(F) is the Rademacher complexity of F , which measures how
well vectors in (random) set

F(X1:n) = {(f(X1), . . . , f(Xn)) : f ∈ F}

can correlate with uniformly random signs ε1, . . . , εn.
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Extreme cases of Rademacher complexity

For simplicity, assume X1, . . . , Xn are distinct (e.g., P continuous).

I F contains a single function f0 : X → {−1,+1}:

Radn(F) = EEε


∣∣∣∣∣∣ 1n

n∑
i=1

εif0(Xi)

∣∣∣∣∣∣
 ≤ 1√

n
.

I F contains all functions X → {−1,+1}:

Radn(F) = EEε

sup
f∈F

∣∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣∣
 = 1.
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Uniform convergence via Rademacher complexity

Theorem.

1. Uniform convergence in expectation:
For any F ⊂ RX ,

E
[

sup
f∈F
|Pnf − Pf |

]
≤ 2 Radn(F).

2. Uniform convergence with high probability:
For any F ⊂ [−1,+1]X and δ ∈ (0, 1), with probability
≥ 1− δ,

sup
f∈F
|Pnf − Pf | ≤ 2 Radn(F) +

√
2 ln(1/δ)

n
.
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Step 1: Symmetrization by “ghost sample”
Let P ′n be empirical distribution on independent copies X ′1, . . . , X ′n
of X1, . . . , Xn. Write E′ for expectation with respect to X ′1:n.

Then

E
[

sup
f∈F
|Pnf − Pf |

]
= E

sup
f∈F

∣∣∣∣∣∣∣E′
 1
n

n∑
i=1

f(Xi)− f(X ′i)


∣∣∣∣∣∣∣


≤ E

E′
sup
f∈F

∣∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− f(X ′i)

∣∣∣∣∣∣



= EE′ sup
f∈F
|Pnf − P ′nf |.

The random variable Pnf − P ′nf is arguably nicer than Pnf − Pf
because it is symmetric.
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Step 2: Symmetrization by random signs
Consider any ε = (ε1, . . . , εn) ∈ {−1,+1}n. Distribution of

Pnf − P ′nf = 1
n

n∑
i=1

f(Xi)− f(X ′i)

is the same distribution of

Pnf − P ′nf = 1
n

n∑
i=1

εi
(
f(Xi)− f(X ′i)

)
.

Thus, this is also true for uniform average over all ε ∈ {−1,+1}n
(i.e., expectation over Rademacher ε):

EE′ sup
f∈F
|Pnf − P ′nf | = EE′Eε sup

f∈F

∣∣∣∣∣∣ 1n
n∑
i=1

εi
(
f(Xi)− f(X ′i)

)∣∣∣∣∣∣ .
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Step 3: Back to a single sample
By triangle inequality,

sup
f∈F

∣∣∣∣∣∣ 1n
n∑
i=1

εi
(
f(Xi)− f(X ′i)

)∣∣∣∣∣∣
≤ sup

f∈F

∣∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣∣+ sup
f∈F

∣∣∣∣∣∣ 1n
n∑
i=1

εif(X ′i)

∣∣∣∣∣∣
The two terms on the RHS have the same distribution.

So

EE′Eε sup
f∈F

∣∣∣∣∣∣ 1n
n∑
i=1

εi
(
f(Xi)− f(X ′i)

)∣∣∣∣∣∣ ≤ 2EEε sup
f∈F

∣∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣∣
= 2 Radn(F).
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Recap

For any F ⊂ RX ,

E
[

sup
f∈F
|Pnf − Pf |

]
≤ 2 Radn(F).

For any F ⊂ [−1,+1]X and δ ∈ (0, 1), with probability ≥ 1− δ,

sup
f∈F
|Pnf − Pf | ≤ 2 Radn(F) +

√
2 ln(1/δ)

n
.

Conclusion

If Radn(F)→ 0, then uniform convergence holds.

(Can also show: If uniform convergence holds, then Radn(F)→ 0.)
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Analysis of SVM

29



Loss class
Back to classes of prediction functions F ⊂ RX .

Consider a loss function ` : R× Y → R+ that satisfies `(0, y) ≤ 1
for all y ∈ Y, and is 1-Lipschitz in first argument: for all ŷ, ŷ′ ∈ R,

|`(ŷ, y)− `(ŷ′, y)| ≤ |ŷ − ŷ′|.

(Example: hinge loss `(ŷ, y) = [1− ŷy]+.)

Define the associated loss class by

`F = {(x, y) 7→ `(f(x), y) : f ∈ F}.

Then

Radn(`F ) ≤ 2 Radn(F) +

√
2 ln 2
n

.

So uniform convergence holds for `F if it holds for F .
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Rademacher complexity of linear predictors

Linear functions Flin = {w ∈ Rd}.

What is the Rademacher complexity of Flin?

Radn(Flin) = EEε

 sup
w∈Rd

∣∣∣∣∣∣ 1n
n∑
i=1

εiw
TXi

∣∣∣∣∣∣
 .

Inside the EEε:

sup
w∈Rd

∣∣∣∣∣∣wT

 1
n

n∑
i=1

εiXi

∣∣∣∣∣∣ = sup
w∈Rd

‖w‖2

∥∥∥∥∥∥ 1
n

n∑
i=1

εiXi

∥∥∥∥∥∥
2

.

As long as
∑n
i=1 εiXi 6= 0, this is unbounded! :-(
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Regularization

Recall SVM optimization problem:

min
w∈Rd

λ

2 ‖w‖
2
2 + 1

n

n∑
i=1

[1− yiwTxi]+.

Objective value at w = 0 is 1, so objective value at minimizer ŵ is
no worse than this:

λ

2 ‖ŵ‖
2
2 + 1

n

n∑
i=1

[1− yiŵTxi]+ ≤ 1.

Therefore
‖ŵ‖22 ≤

2
λ
.
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[1− yiŵTxi]+ ≤ 1.

Therefore
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Rademacher complexity of bounded linear predictors

Bounded linear functions F`2,B = {w ∈ Rd : ‖w‖2 ≤ B}.

What is the Rademacher complexity of F`2,B?

Radn(F`2,B) = EEε

 sup
‖w‖2≤B

∣∣∣∣∣∣ 1n
n∑
i=1

εiw
TXi

∣∣∣∣∣∣


= BEEε

 sup
‖u‖2≤1

∣∣∣∣∣∣ 1n
n∑
i=1

εiu
TXi

∣∣∣∣∣∣


= BEEε

∥∥∥∥∥∥ 1
n

n∑
i=1

εiXi

∥∥∥∥∥∥
2

≤ B

√√√√√EEε

∥∥∥∥∥∥ 1
n

n∑
i=1

εiXi

∥∥∥∥∥∥
2

2

.

This is d-dimensional random walk, where i-th step is ±Xi.
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Rademacher complexity of bounded linear predictors (2)

EEε

∥∥∥∥∥∥ 1
n

n∑
i=1

εiXi

∥∥∥∥∥∥
2

2

= 1
n2EEε

 n∑
i=1
‖εiXi‖22 +

∑
i 6=j

εiεjX
T
i Xj


= 1
n2E

 n∑
i=1
‖Xi‖22


= 1
n
E‖X‖22.

Conclusion

Rademacher complexity of F`2,B = {w ∈ Rd : ‖w‖2 ≤ B}:

Radn(F`2,B) ≤ B

√
E‖X‖22
n

.
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Risk bound for SVM

E
[
R(ŵ)−R(w∗)

]
= E

[
R(ŵ)−Rn(ŵ)

]
(≤ ε)

+ E
[
λ
2‖ŵ‖

2
2 +Rn(ŵ)− λ

2‖w
∗‖22 −Rn(w∗)

]
(≤ 0)

+ E
[
Rn(w∗)−R(w∗)

]
(= 0)

+ E
[
λ
2‖w

∗‖22 − λ
2‖ŵ‖

2
2

]
≤ ε+ λ

2‖w
∗‖22

where

w∗ ∈ arg min
w∈Rd

λ
2‖w‖

2
2 +R(w), ε = O


√

E‖X‖22
λn

+ 1√
n

 .

This suggests we should use λ→ 0 such that λn→∞ as n→∞.
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Kernels

Excess risk bound has no explicit dependence on the dimension d.
In particular, it holds in infinite dimensional inner product spaces.

I SVM can be applied in such spaces as long as there is an
algorithm for computing inner products.

I This is the kernel trick, and these corresponding spaces are
called Reproducing Kernel Hilbert Spaces (RKHS).

Universal approximation

With some RKHS, can approximate any function arbitrarily well:

lim
λ→0

{
inf
w∈F

λ
2‖w‖

2 +R(w)
}

= inf
g : X→R

R(g).
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Other regularizers
Instead of SVM, suppose ŵ is solution to

min
w∈Rd

λ‖w‖1 +Rn(w).

So ŵ ∈ F`1,B = {w ∈ Rd : ‖w‖1 ≤ B} for B = 1/λ.

What is Rademacher complexity of F`1,B?

Radn(F`1,B) = EEε

 sup
‖w‖1≤B

∣∣∣∣∣∣ 1n
n∑
i=1

εiw
TXi

∣∣∣∣∣∣


= BEEε

 sup
‖u‖1≤1

∣∣∣∣∣∣ 1n
n∑
i=1

εiu
TXi

∣∣∣∣∣∣


= BEEε

∥∥∥∥∥∥ 1
n

n∑
i=1

εiXi

∥∥∥∥∥∥
∞

.
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Rademacher complexity of `1-bounded linear predictors
Can show, using martingale argument,

EEε

∥∥∥∥∥∥ 1
n

n∑
i=1

εiXi

∥∥∥∥∥∥
∞

≤

√
O(log d) · E‖X‖2∞

n
.

Rademacher complexity of F`1,B = {w ∈ Rd : ‖w‖1 ≤ B}:

Radn(F`1,B) ≤ B

√
O(log d) · E‖X‖2∞

n
.

Let X = {−1,+1}d. Then ‖x‖22 = d but ‖x‖2∞ = 1 for all x ∈ X .

Dependence on d much better than using bound for `2-bounded
linear predictors, which would have looked like B

√
d/n.

This kind of bound is used to study generalization of AdaBoost.
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linear predictors, which would have looked like B

√
d/n.

This kind of bound is used to study generalization of AdaBoost.
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Other examples of Rademacher complexity
I F = any class of {0, 1}-valued functions with VC dimension V :

Radn(F) = O

√V

n

 .
I F = ReLU networks of depth D with parameter matrices of

Frobenius norm ≤ 1:

Radn(F) = O


√
D · E‖X‖22

n

 .
I F = Lipschitz functions from [0, 1]d to R:

Radn(F) = O
(
n−1/(2+d)

)
.

I F = functions from [0, 1]d to R with Lipschitz k-th derivatives:

Radn(F) = O
(
n−(k+1)/(2(k+1)+d)

)
.
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Questions

Are these the “right” notions of complexity?

I For SVM, the complexity of `2-bounded linear predictors is
relevant because `2-regularization explicitly ensures the solution
to SVM problem is `2-bounded.

I Do training algorithms for neural nets lead to Frobenius
norm-bounded parameter matrices?

Do complexity bounds suggest different algorithms?
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Beyond uniform convergence

41



Deficiencies of uniform convergence analysis

I For certain loss functions, if R(f) is small, then variance of
Rn(f) is also small, and bound should reflect this.

I Instead of Hoeffding’s inequality, use concentration inequality
that involves variance information (e.g., Bernstein’s inequality).

I Overkill to require all functions in F to not over-fit.
I Just need to worry about the f , e.g., with small empirical risk.
I Solution: Local Rademacher complexity.
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Example: Occam’s razor bound

Suppose F is countable and we fix (a priori) a probability
distribution π = (πf : f ∈ F) on F .

I Think of π as placing bets on which functions are likely to be
the one to be picked by your learning algorithm.

For any fixed f ∈ F ,

P
(
|Rn(f)−R(f)| ≥ tf

)
≤ 2 exp(−2nt2f )

for any tf > 0, by Hoeffding’s inequality and union bound.

Note: We can choose the tf ’s non-uniformly.
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Occam’s razor bound (continued)
Let tf =

√
ln(1/πf )+ln(2/δ)

2n .

By union bound,

P
(
∃f ∈ F s.t. |Rn(f)−R(f)| ≥ tf

)
≤
∑
f∈F

P
(
|Rn(f)−R(f)| ≥ tf

)
≤
∑
f∈F

2 exp(−2nt2f ) =
∑
f∈F

πfδ = δ.

Theorem. For any δ ∈ (0, 1),

P

∀f ∈ F : |Rn(f)−R(f)| <

√
ln(1/πf ) + ln(2/δ)

2n

 ≥ 1− δ.

Better bound for functions f with higher “prior probability” πf !
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Other forms of generalization analysis

I Stability
I If a learning algorithm’s output does not change much if a

single data point is changed, then its output will generalize.
I Connections to differential privacy and regularization.

I Compression bounds
I If a learning algorithm’s output is invariant to all but a small

number k � n of training data (e.g., # support vectors in
SVM), then get bound of the form

√
k/(n− k).

I Direct analyses
I Some well-known learning algorithms do not fit the mold of

typical (regularized) ERM algorithm, and seem to require a
direct analysis.

I E.g., nearest neighbor rule.

I Many others
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Many active areas of research in learning theory
I Implicit bias of optimization algorithms

I E.g., gradient descent for least squares linear regression
converges to solution of smallest norm.

I What about for other problems?

I Efficient algorithms for non-linear models
I E.g., polynomials, neural networks, kernel machines.
I Understand if/why existing algorithms work!

I Learning algorithms with robustness guarantees
I Noisy labels, missing / malformed data, heavy-tail distributions,

adversarial corruptions, etc.
I Interactive learning

I Learning algorithms that interact with external environment
(e.g., bandits, active learning, reinforcement learning).

I More: see proceedings of Conference on Learning Theory!
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