Active learning: Beyond the classics

Christopher Tosh

Columbia University

TRIPODS Bootcamp

Last time: Active learning for general hypothesis classes

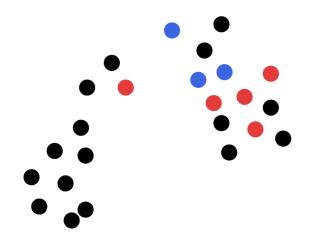
	Separable data	General (nonseparable) data
Aggressive	QBC [FSST97] Splitting index [D05]	
	GBS [D04, N09]	
Mellow	CAL [CAL94]	A^2 algorithm [BBL06, H07]
		Reduction to supervised [DHM07]
		Importance weighted [BDL09]
		Confidence rated prediction [ZC14]

Today: Beyond classical active learning

- Nonparametric active learning
- Interactive clustering

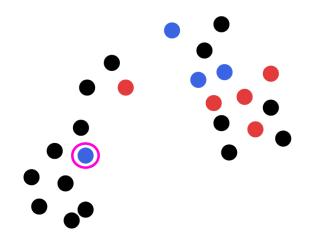
What's wrong with active learning (so far)?

- Don't always know right hypothesis class a priori.
- Labeled dataset from active learning is highly biased.



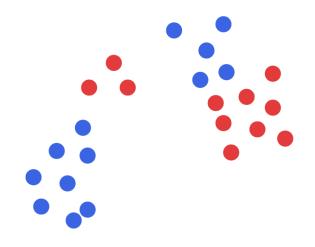
What's wrong with active learning (so far)?

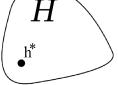
- Don't always know right hypothesis class a priori.
- Labeled dataset from active learning is highly biased.



What's wrong with active learning (so far)?

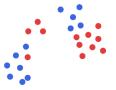
- Don't always know right hypothesis class a priori.
- Labeled dataset from active learning is highly biased.





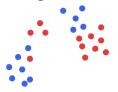
- Given: fixed hypothesis class and unlabeled data
- Can query data points for their labels
- Goal: find low error hypothesis from this class

Nonparametric



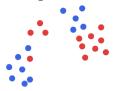
- Given: unlabeled data
- Can query data points for their labels
- Goal: infer the labels of all data points with low error

Nonparametric



- Given: unlabeled data
- Can query data points for their labels
- Goal: infer the labels of all data points with low error

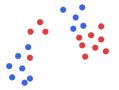
Nonparametric



Issue: 2ⁿ possible labelings!

- Given: unlabeled data
- Can query data points for their labels
- Goal: infer the labels of all data points with low error

Nonparametric



Issue: 2ⁿ possible labelings!

- Given: unlabeled data
- Can query data points for their labels
- Goal: infer the labels of all data points with low error

Solution: some labelings are more likely than others

Preferences in labelings

How are some labelings given preference over others?

- Graph-based methods
- Cluster-based methods

Preferences in labelings

How are some labelings given preference over others?

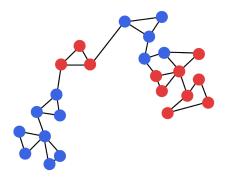
- Graph-based methods
- Cluster-based methods

Graph-based methods

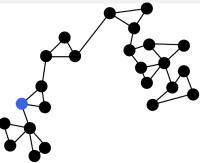


- Given (or construct): a similarity graph G = (V, E)
- Assumption: Vertices that share an edge are more likely to have same label

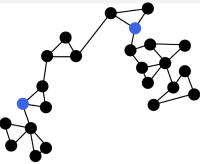
Graph-based methods



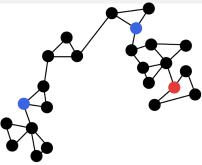
- Given (or construct): a similarity graph G = (V, E)
- Assumption: Vertices that share an edge are more likely to have same label



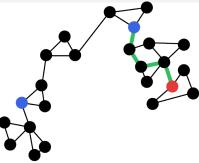
- Randomly sample until there are differently labeled points on same connected component
- Repeat until all connected components have single label:
 - Remove edges between differently labeled points
 - Find shortest path between differently labeled points and query midpoint.



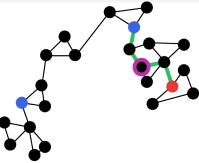
- Randomly sample until there are differently labeled points on same connected component
- Repeat until all connected components have single label:
 - Remove edges between differently labeled points
 - Find shortest path between differently labeled points and query midpoint.



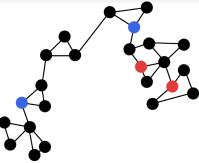
- Randomly sample until there are differently labeled points on same connected component
- Repeat until all connected components have single label:
 - Remove edges between differently labeled points
 - Find shortest path between differently labeled points and query midpoint.



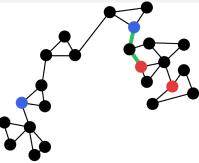
- Randomly sample until there are differently labeled points on same connected component
- Repeat until all connected components have single label:
 - Remove edges between differently labeled points
 - Find shortest path between differently labeled points and query midpoint.



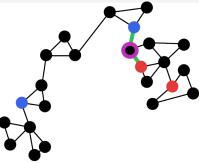
- Randomly sample until there are differently labeled points on same connected component
- Repeat until all connected components have single label:
 - Remove edges between differently labeled points
 - Find shortest path between differently labeled points and query midpoint.



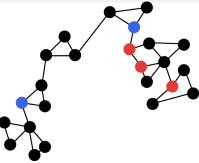
- Randomly sample until there are differently labeled points on same connected component
- Repeat until all connected components have single label:
 - Remove edges between differently labeled points
 - Find shortest path between differently labeled points and query midpoint.



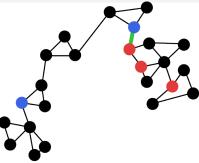
- Randomly sample until there are differently labeled points on same connected component
- Repeat until all connected components have single label:
 - Remove edges between differently labeled points
 - Find shortest path between differently labeled points and query midpoint.



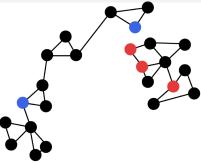
- Randomly sample until there are differently labeled points on same connected component
- Repeat until all connected components have single label:
 - Remove edges between differently labeled points
 - Find shortest path between differently labeled points and query midpoint.



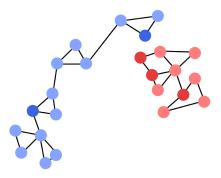
- Randomly sample until there are differently labeled points on same connected component
- Repeat until all connected components have single label:
 - Remove edges between differently labeled points
 - Find shortest path between differently labeled points and query midpoint.



- Randomly sample until there are differently labeled points on same connected component
- Repeat until all connected components have single label:
 - Remove edges between differently labeled points
 - Find shortest path between differently labeled points and query midpoint.

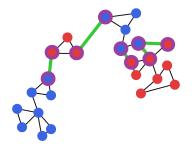


- Randomly sample until there are differently labeled points on same connected component
- Repeat until all connected components have single label:
 - Remove edges between differently labeled points
 - Find shortest path between differently labeled points and query midpoint.



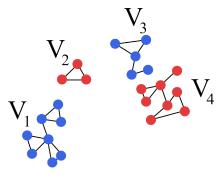
When budget is exhausted

• Give each connected component the majority label.



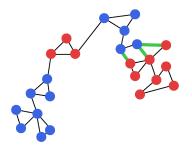
Relevant quantities:

- Cutset: $C = \{(u, v) \in E : h^*(u) = +, h^*(v) = -1\}$
- Cutset boundary: $\partial C = \bigcup_{(u,v) \in C} \{u,v\}$
- Balanced-ness: $\beta = \min \frac{|V_i|}{|V|}$ for connected components V_1, \ldots, V_m
- Clustered-ness: $\kappa =$ 'how tightly connected cutset edges are'



Relevant quantities:

- Cutset: $C = \{(u, v) \in E : h^*(u) = +, h^*(v) = -1\}$
- Cutset boundary: $\partial C = \bigcup_{(u,v)\in C} \{u,v\}$
- Balanced-ness: $\beta = \min \frac{|V_i|}{|V|}$ for connected components V_1, \ldots, V_m
- Clustered-ness: $\kappa =$ 'how tightly connected cutset edges are'



Relevant quantities:

- Cutset: $C = \{(u, v) \in E : h^*(u) = +, h^*(v) = -1\}$
- Cutset boundary: $\partial C = \bigcup_{(u,v) \in C} \{u,v\}$

• Balanced-ness: $\beta = \min \frac{|V_i|}{|V|}$ for connected components V_1, \ldots, V_m

• Clustered-ness: $\kappa =$ 'how tightly connected cutset edges are'

Relevant quantities:

• Cutset:
$$C = \{(u, v) \in E \ : \ h^*(u) = +, h^*(v) = -1\}$$

• Cutset boundary:
$$\partial C = \bigcup_{(u,v)\in C} \{u,v\}$$

- Balanced-ness: $\beta = \min \frac{|V_i|}{|V|}$ for connected components V_1, \ldots, V_m
- Clustered-ness: $\kappa =$ 'how tightly connected cutset edges are'

Theorem (Dasarathy et al. 2015)

With probability $1 - \delta$, can recover all labels after

$$\frac{1}{\beta} \log\left(\frac{m}{\delta}\right) + m \log\frac{n}{\kappa} + |\partial C| (1 + \log\kappa)$$

queries

Theorem (Dasarathy et al. 2015)

With probability $1 - \delta$, can recover all labels after

$$\frac{1}{\beta} \log\left(\frac{m}{\delta}\right) + m \log\frac{n}{\kappa} + |\partial C| (1 + \log \kappa)$$

queries

- Random sampling phase
- Binary search phase

Can handle random sampling phase and binary search phase separately.

Can handle random sampling phase and binary search phase separately. Random sampling phase: R = # of random labels requested.

 $R \leq \#$ of random labels needed to find a point in each $V_i =: k$

Can handle random sampling phase and binary search phase separately. Random sampling phase: R = # of random labels requested.

 $R~\leq~\#$ of random labels needed to find a point in each $V_i=:k$

How big do we need k to be? $Pr(\text{there is some } V_i \text{ with no labels}) \leq \sum_{i=1}^m Pr(V_i \text{ doesn't get sampled})$ $\leq \sum_{i=1}^m \left(1 - \frac{|V_i|}{|V|}\right)^k$ $\leq \sum_{i=1}^m (1 - \beta)^k \leq me^{-\beta k}$

Taking $k = \frac{1}{\beta} \log \frac{m}{\delta}$ makes this hold with probability $1 - \delta$.*

Can handle random sampling phase and binary search phase separately. Binary search phase: B = # of binary search labels requested. Simple analysis:

Can handle random sampling phase and binary search phase separately. Binary search phase: B = # of binary search labels requested. Simple analysis: Given that we have a labeled point in each component,

$$B \leq \sum_{e \in C} \# \text{ of queries needed to find endpoints of } e$$

$$\leq \sum_{e \in C} \log (\text{longest length of a shortest path containing } e)$$

$$\leq |C| \log n$$

S²: Proof idea

Can handle random sampling phase and binary search phase separately. Binary search phase: B = # of binary search labels requested. Simple analysis: Given that we have a labeled point in each component,

$$B \leq \sum_{e \in C} \# \text{ of queries needed to find endpoints of } e$$

$$\leq \sum_{e \in C} \log (\text{longest length of a shortest path containing } e)$$

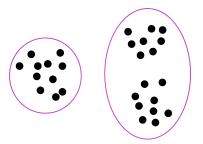
$$\leq |C| \log n$$

More complicated analysis: take advantage of 'clustered-ness' of cut-edges.

Preferences in labelings

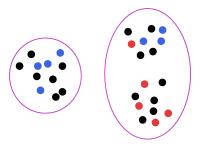
How are some labelings given preference over others?

- Graph-based methods
- Cluster-based methods



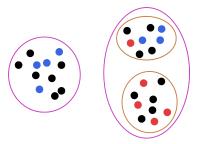
For rounds $t = 1, 2, \ldots, T$:

- Maintain a clustering C_t
- Query some data points
- Possibly split some clusters to obtain a new clustering C_{t+1}



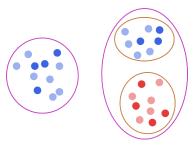
For rounds $t = 1, 2, \ldots, T$:

- Maintain a clustering C_t
- Query some data points
- Possibly split some clusters to obtain a new clustering C_{t+1}



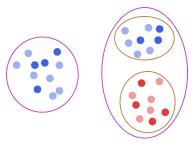
For rounds $t = 1, 2, \ldots, T$:

- Maintain a clustering C_t
- Query some data points
- Possibly split some clusters to obtain a new clustering C_{t+1}



For rounds $t = 1, 2, \ldots, T$:

- Maintain a clustering C_t
- Query some data points
- Possibly split some clusters to obtain a new clustering C_{t+1}



For rounds $t = 1, 2, \ldots, T$:

- Maintain a clustering C_t
- Query some data points
- Possibly split some clusters to obtain a new clustering C_{t+1}

At the end, each point gets majority label of its cluster in C_T .

Question: When does this strategy work?

Clustering-based methods: Rules

Question: When does this strategy work?

- Rule 1: At each round t, query is a uniform random draw from some chosen cluster $C \in C_t$.
- Rule 2: At two rounds t' > t, the clustering $C_{t'}$ is a refinement of C_t :

for all $C' \in \mathcal{C}_{t'}$ there exists a $C \in \mathcal{C}_t$ such that $C' \subseteq C$

• Rule 3: When a cluster is split, the manner of split cannot depend on the labels seen so far.

Clustering-based methods: Rules

Question: When does this strategy work?

- Rule 1: At each round t, query is a uniform random draw from some chosen cluster $C \in C_t$.
- Rule 2: At two rounds t' > t, the clustering $C_{t'}$ is a refinement of C_t :

for all $C' \in \mathcal{C}_{t'}$ there exists a $C \in \mathcal{C}_t$ such that $C' \subseteq C$

• Rule 3: When a cluster is split, the manner of split cannot depend on the labels seen so far.

Rules $2 + 3 \implies$ might as well start with a hierarchical clustering

Clustering-based methods: Algorithms

Start with hierarchical clustering T, $\ell = 0$, let $\mathcal{C} = \{\text{root node}\}$

While there are unlabeled points:

- For each cluster $C \in C$:
 - Request labels for $n(\ell)$ random points
 - If all labels in C are the same:
 - $\bullet\,$ Assign this label to rest of points in C
 - $\bullet \ \, {\rm Remove} \ \, C \ \, {\rm from} \ \, {\mathcal C}$
 - Otherwise if there are also unlabeled points in C:
 - Replace C its children in T

Clustering-based methods: Guarantees

Theorem (Urner et al. 2013)

With probability $1 - \delta$, the above procedure gets all but an ϵ -fraction of the points correct using $n(\ell) = \frac{1}{\epsilon}(2\ell \ln 2 + \ln(1/\delta))$.

Only need to consider case where we propagated labels, but an ϵ -fraction of those were incorrect.

Given $n(\ell)$ random labels, the probability of this happening in a particular node is

$$\begin{split} \Pr\left(\text{bad event in cell at level }\ell\right) = &\leq (1-\epsilon)^{n(\ell)} \\ &\leq e^{-\epsilon n(\ell)} \end{split}$$

Clustering-based methods: Guarantees

Theorem (Urner et al. 2013)

With probability $1 - \delta$, the above procedure gets all but an ϵ -fraction of the points correct using $n(\ell) = \frac{1}{\epsilon}(2\ell \ln 2 + \ln(1/\delta))$.

Summing over all levels in the tree and all nodes in each level,

$$\begin{split} \Pr\left(\text{any of these bad events happen}\right) &\leq \sum_{\ell=1}^{\infty} \sum_{\substack{C \in T: \text{level } \ell \\ \ell}} e^{-\epsilon n(\ell)} \\ &\leq \sum_{\ell=1}^{\infty} 2^{\ell} \cdot e^{-\epsilon n(\ell)} \\ &= \sum_{\ell=1}^{\infty} 2^{-\ell} \delta \ = \ \delta \end{split}$$

Clustering-based methods: Label complexity

How many labels does this procedure need? Depends on the data:

- How much are the clusters shrinking as we move down the tree?
- How often do labels of x, x' differ when d(x, x') is small?

A partial list of interactive "unsupervised" learning cases

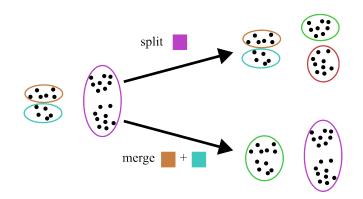
Learning task	Feedback type
Flat clustering	Split-and-merge requests
	Must-link/Cannot-link constraints
Hierarchical clustering	Triplet constraints
Embedding	Ordinal comparisons
Interactive topic modeling	Word-constraints

A partial list of interactive "unsupervised" learning cases

Learning task	Feedback type
Flat clustering	Split-and-merge requests
	Must-link/Cannot-link constraints
Hierarchical clustering	Triplet constraints
Embedding	Ordinal comparisons
Interactive topic modeling	Word-constraints

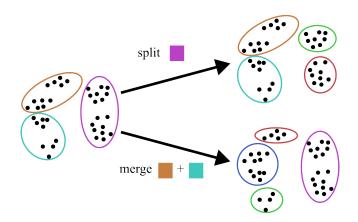
Split-and-merge feedback

Ideal:



Split-and-merge feedback

Actual:



Split-and-merge feedback

Assumptions:

- There is some ground truth clustering $\mathcal{C} = \{C_1, \dots, C_k\}$
- A user requests to *split* a cluster C only if C contains points from more than one target cluster
- A user requests to merge two clusters C and C' only if there exists a cluster C_i such that

 $\min\{|C \cap C_i| / |C|, |C' \cap C_i| / |C'|\} \geq \eta$

Split-and-merge algorithms

Given: an initial clustering \widehat{C} and a hierarchical clustering T s.t. a pruning of T corresponds to target C. Every cluster is initially 'impure.'

Split-and-merge algorithms

Given: an initial clustering \widehat{C} and a hierarchical clustering T s.t. a pruning of T corresponds to target C. Every cluster is initially 'impure.'

Split(C):

- Search T to find shallowest node N at which the points in C are split into two clusters N_1 and N_2 .
- Replace C with $C \cap N_1$ and $C \cap N_2$, and mark both as 'impure.'

 $Merge(C_1, C_2)$:

- If C_1 is 'pure' then $\eta_1 = 1$ else $\eta_1 = \eta$. Similarly for C_2 , η_2 .
- Search T to find deepest node N at which

 $|N\cap C_1|/|C_1|\geq \eta_1 \text{ and }, |N\cap C_2|/|C_2|\geq \eta_2$

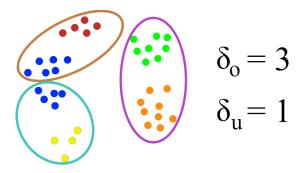
• Replace C_1 with $C_1 \setminus N$, C_2 with $C_2 \setminus N$ and create new 'pure' cluster $N \cap (C_1 \cup C_2)$.

Clustering errors

Let \mathcal{C}^* be target clustering and \mathcal{C} be arbitrary clustering.

$$\delta_o(\mathcal{C}) = \sum_{C_i \in \mathcal{C}} |\{C_j^* \in \mathcal{C}^* : C_i \cap C_j^* \neq \emptyset\}| - |\mathcal{C}|$$

$$\delta_u(\mathcal{C}) = \sum_{C_j^* \in \mathcal{C}^*} |\{C_i \in \mathcal{C} : C_i \cap C_j^* \neq \emptyset\}| - |\mathcal{C}^*|$$



Split bounds: sketch

Lemma

Say the initial clustering is ${\mathcal C}$ and the target clustering is ${\mathcal C}^*.$ Then

of split requests $\leq \delta_o(\mathcal{C})$

Observation 1: Merge does not increase δ_o .

Observation2: Whenever Split(C) is called to create nodes C_1 and C_2 , we have by laminarity of T with C^*

 $C_j^* \cap C_1 = C_j^* \cap C \qquad \text{ or } \qquad C_j^* \cap C_2 = C_j^* \cap C$

for all $C_j^* \in \mathcal{C}^*$. Thus $k = k_1 + k_2$ for

$$k = |\{C_j^* \in \mathcal{C}^* : C \cap C_j^* \neq \emptyset\}|$$

$$k_1 = |\{C_j^* \in \mathcal{C}^* : C_1 \cap C_j^* \neq \emptyset\}|$$

$$k_2 = |\{C_j^* \in \mathcal{C}^* : C_2 \cap C_j^* \neq \emptyset\}|$$

Split bounds: sketch

Lemma

Say the initial clustering is ${\mathcal C}$ and the target clustering is ${\mathcal C}^*.$ Then

of split requests $\leq \delta_o(C)$

Thus $k = k_1 + k_2$ for

$$k = |\{C_j^* \in \mathcal{C}^* : C \cap C_j^* \neq \emptyset\}|$$

$$k_1 = |\{C_j^* \in \mathcal{C}^* : C_1 \cap C_j^* \neq \emptyset\}|$$

$$k_2 = |\{C_j^* \in \mathcal{C}^* : C_2 \cap C_j^* \neq \emptyset\}|$$

Then after Split(C), we have

$$\delta_o((\mathcal{C} \setminus \{C\}) \cup \{C_1, C_2\}) = \delta_o(\mathcal{C}) - (k-1) + (k_1 - 1) + (k_2 - 1) \\ = \delta_o(\mathcal{C}) - 1$$

Merge bounds: sketch

Lemma

Say the initial clustering is ${\mathcal C}$ and the target clustering is ${\mathcal C}^*.$ Then

of merge requests $\leq 2(\delta_u(\mathcal{C}) + |\mathcal{C}^*|) \log_{1/(1-\eta)} n$

Each merge is either:

- Pure: both clusters are marked 'pure.' Creates a single pure cluster.
- Impure: one of the clusters is marked 'impure.' Creates at least one pure cluster.

Let $P = \{C_i \cap C_i^* : C_i \text{ is 'impure' and } C_i \cap C_i^* \neq \emptyset\}.$

An impure merge reduces at least one of the elements of P by an η fraction.

of times set S can be reduced by an η fraction is $\leq \log_{1/(1-\eta)} |S|$ $|P| \leq \sum_{C_j^* \in \mathcal{C}^*} |\{C_i \in \mathcal{C} : C_i \cap C_j^* \neq \emptyset\}| = \delta_u(\mathcal{C}) + |\mathcal{C}^*|$

Merge bounds: sketch

Lemma

Say the initial clustering is ${\mathcal C}$ and the target clustering is ${\mathcal C}^*.$ Then

of merge requests $\leq 2(\delta_u(\mathcal{C}) + |\mathcal{C}^*|) \log_{1/(1-\eta)} n$

Each merge is either:

- Pure: both clusters are marked 'pure.' Creates a single pure cluster.
- Impure: one of the clusters is marked 'impure.' Creates at least one pure cluster.

So # of impure merges $\leq (\delta_u(\mathcal{C}) + |\mathcal{C}^*|) log_{1/(1-\eta)} n$

And # of pure merges $\leq \#$ of pure clusters $\leq \#$ of impure merges

Split-and-merge bounds

Combining the lemmas, we have

total # of interactions $\leq \delta_o(\mathcal{C}) + 2(\delta_u(\mathcal{C}) + |\mathcal{C}^*|) \log_{1/(1-\eta)} n.$

Often much less than specifying a clustering directly.

Active research directions

- Rates for 'aggressive' nonparametric active learning
- Interaction for other types of structures