
Active learning: Beyond the classics

Christopher Tosh

Columbia University

TRIPODS Bootcamp

Recap

Last time: Active learning for general hypothesis classes

Separable data General (nonseparable) data

Aggressive
QBC [FSST97]

Splitting index [D05]
GBS [D04, N09]

Mellow CAL [CAL94]

A2 algorithm [BBL06, H07]
Reduction to supervised [DHM07]

Importance weighted [BDL09]
Confidence rated prediction [ZC14]

Recap

Today: Beyond classical active learning

Nonparametric active learning

Interactive clustering

Nonparametric active learning

What’s wrong with active learning (so far)?

Don’t always know right hypothesis class a priori.

Labeled dataset from active learning is highly biased.

Nonparametric active learning

What’s wrong with active learning (so far)?

Don’t always know right hypothesis class a priori.

Labeled dataset from active learning is highly biased.

Nonparametric active learning

What’s wrong with active learning (so far)?

Don’t always know right hypothesis class a priori.

Labeled dataset from active learning is highly biased.

Nonparametric active learning

Nonparametric active learning

Nonparametric active learning

Nonparametric active learning

Nonparametric active learning

Nonparametric active learning

Nonparametric active learning

Nonparametric active learning

Nonparametric active learning

Preferences in labelings

How are some labelings given preference over others?

Graph-based methods

Cluster-based methods

Nonparametric active learning

Preferences in labelings

How are some labelings given preference over others?

Graph-based methods

Cluster-based methods

Nonparametric active learning Graph-based methods

Graph-based methods

Given (or construct): a similarity graph G = (V,E)

Assumption: Vertices that share an edge are more likely to have same
label

Nonparametric active learning Graph-based methods

Graph-based methods

Given (or construct): a similarity graph G = (V,E)

Assumption: Vertices that share an edge are more likely to have same
label

Nonparametric active learning Graph-based methods

S2: Active learning strategy

While budget not exhausted:

Randomly sample until there are differently labeled points on same
connected component

Repeat until all connected components have single label:

Remove edges between differently labeled points
Find shortest path between differently labeled points and query
midpoint.

Nonparametric active learning Graph-based methods

S2: Active learning strategy

While budget not exhausted:

Randomly sample until there are differently labeled points on same
connected component

Repeat until all connected components have single label:

Remove edges between differently labeled points
Find shortest path between differently labeled points and query
midpoint.

Nonparametric active learning Graph-based methods

S2: Active learning strategy

While budget not exhausted:

Randomly sample until there are differently labeled points on same
connected component

Repeat until all connected components have single label:

Remove edges between differently labeled points
Find shortest path between differently labeled points and query
midpoint.

Nonparametric active learning Graph-based methods

S2: Active learning strategy

While budget not exhausted:

Randomly sample until there are differently labeled points on same
connected component

Repeat until all connected components have single label:

Remove edges between differently labeled points
Find shortest path between differently labeled points and query
midpoint.

Nonparametric active learning Graph-based methods

S2: Active learning strategy

While budget not exhausted:

Randomly sample until there are differently labeled points on same
connected component

Repeat until all connected components have single label:

Remove edges between differently labeled points
Find shortest path between differently labeled points and query
midpoint.

Nonparametric active learning Graph-based methods

S2: Active learning strategy

While budget not exhausted:

Randomly sample until there are differently labeled points on same
connected component

Repeat until all connected components have single label:

Remove edges between differently labeled points
Find shortest path between differently labeled points and query
midpoint.

Nonparametric active learning Graph-based methods

S2: Active learning strategy

While budget not exhausted:

Randomly sample until there are differently labeled points on same
connected component

Repeat until all connected components have single label:

Remove edges between differently labeled points
Find shortest path between differently labeled points and query
midpoint.

Nonparametric active learning Graph-based methods

S2: Active learning strategy

While budget not exhausted:

Randomly sample until there are differently labeled points on same
connected component

Repeat until all connected components have single label:

Remove edges between differently labeled points
Find shortest path between differently labeled points and query
midpoint.

Nonparametric active learning Graph-based methods

S2: Active learning strategy

While budget not exhausted:

Randomly sample until there are differently labeled points on same
connected component

Repeat until all connected components have single label:

Remove edges between differently labeled points
Find shortest path between differently labeled points and query
midpoint.

Nonparametric active learning Graph-based methods

S2: Active learning strategy

While budget not exhausted:

Randomly sample until there are differently labeled points on same
connected component

Repeat until all connected components have single label:

Remove edges between differently labeled points
Find shortest path between differently labeled points and query
midpoint.

Nonparametric active learning Graph-based methods

S2: Active learning strategy

While budget not exhausted:

Randomly sample until there are differently labeled points on same
connected component

Repeat until all connected components have single label:

Remove edges between differently labeled points
Find shortest path between differently labeled points and query
midpoint.

Nonparametric active learning Graph-based methods

S2: Active learning strategy

When budget is exhausted

Give each connected component the majority label.

Nonparametric active learning Graph-based methods

S2: Label complexity

Relevant quantities:

Cutset: C = {(u, v) ∈ E : h∗(u) = +, h∗(v) = −1}
Cutset boundary: ∂C =

⋃
(u,v)∈C

{u, v}

Balanced-ness: β = min |Vi||V | for connected components V1, . . . , Vm

Clustered-ness: κ = ‘how tightly connected cutset edges are’

Nonparametric active learning Graph-based methods

S2: Label complexity

Relevant quantities:

Cutset: C = {(u, v) ∈ E : h∗(u) = +, h∗(v) = −1}
Cutset boundary: ∂C =

⋃
(u,v)∈C

{u, v}

Balanced-ness: β = min |Vi||V | for connected components V1, . . . , Vm

Clustered-ness: κ = ‘how tightly connected cutset edges are’

Nonparametric active learning Graph-based methods

S2: Label complexity

Relevant quantities:

Cutset: C = {(u, v) ∈ E : h∗(u) = +, h∗(v) = −1}
Cutset boundary: ∂C =

⋃
(u,v)∈C

{u, v}

Balanced-ness: β = min |Vi||V | for connected components V1, . . . , Vm

Clustered-ness: κ = ‘how tightly connected cutset edges are’

Nonparametric active learning Graph-based methods

S2: Label complexity

Relevant quantities:

Cutset: C = {(u, v) ∈ E : h∗(u) = +, h∗(v) = −1}
Cutset boundary: ∂C =

⋃
(u,v)∈C

{u, v}

Balanced-ness: β = min |Vi||V | for connected components V1, . . . , Vm

Clustered-ness: κ = ‘how tightly connected cutset edges are’

Theorem (Dasarathy et al. 2015)

With probability 1− δ, can recover all labels after

1

β
log
(m
δ

)
+m log

n

κ
+ |∂C|(1 + log κ)

queries

Nonparametric active learning Graph-based methods

S2: Label complexity

Theorem (Dasarathy et al. 2015)

With probability 1− δ, can recover all labels after

1

β
log
(m
δ

)
+m log

n

κ
+ |∂C|(1 + log κ)

queries

Random sampling phase

Binary search phase

Nonparametric active learning Graph-based methods

S2: Proof idea

Can handle random sampling phase and binary search phase separately.

Nonparametric active learning Graph-based methods

S2: Proof idea

Can handle random sampling phase and binary search phase separately.

Random sampling phase: R = # of random labels requested.

R ≤ # of random labels needed to find a point in each Vi =: k

Nonparametric active learning Graph-based methods

S2: Proof idea

Can handle random sampling phase and binary search phase separately.

Random sampling phase: R = # of random labels requested.

R ≤ # of random labels needed to find a point in each Vi =: k

How big do we need k to be?

Pr(there is some Vi with no labels) ≤
m∑
i=1

Pr(Vi doesn’t get sampled)

≤
m∑
i=1

(
1− |Vi|
|V |

)k
≤

m∑
i=1

(1− β)k ≤ me−βk

Taking k = 1
β log

m
δ makes this hold with probability 1− δ.∗

Nonparametric active learning Graph-based methods

S2: Proof idea

Can handle random sampling phase and binary search phase separately.

Binary search phase: B = # of binary search labels requested.

Simple analysis:

Nonparametric active learning Graph-based methods

S2: Proof idea

Can handle random sampling phase and binary search phase separately.

Binary search phase: B = # of binary search labels requested.

Simple analysis: Given that we have a labeled point in each component,

B ≤
∑
e∈C

of queries needed to find endpoints of e

≤
∑
e∈C

log (longest length of a shortest path containing e)

≤ |C| log n

Nonparametric active learning Graph-based methods

S2: Proof idea

Can handle random sampling phase and binary search phase separately.

Binary search phase: B = # of binary search labels requested.

Simple analysis: Given that we have a labeled point in each component,

B ≤
∑
e∈C

of queries needed to find endpoints of e

≤
∑
e∈C

log (longest length of a shortest path containing e)

≤ |C| log n

More complicated analysis: take advantage of ‘clustered-ness’ of
cut-edges.

Nonparametric active learning Clustering-based methods

Preferences in labelings

How are some labelings given preference over others?

Graph-based methods

Cluster-based methods

Nonparametric active learning Clustering-based methods

Clustering-based methods

For rounds t = 1, 2, . . . , T :

Maintain a clustering Ct
Query some data points

Possibly split some clusters to obtain a new clustering Ct+1

At the end, each point gets majority label of its cluster in CT .

Nonparametric active learning Clustering-based methods

Clustering-based methods

For rounds t = 1, 2, . . . , T :

Maintain a clustering Ct
Query some data points

Possibly split some clusters to obtain a new clustering Ct+1

At the end, each point gets majority label of its cluster in CT .

Nonparametric active learning Clustering-based methods

Clustering-based methods

For rounds t = 1, 2, . . . , T :

Maintain a clustering Ct
Query some data points

Possibly split some clusters to obtain a new clustering Ct+1

At the end, each point gets majority label of its cluster in CT .

Nonparametric active learning Clustering-based methods

Clustering-based methods

For rounds t = 1, 2, . . . , T :

Maintain a clustering Ct
Query some data points

Possibly split some clusters to obtain a new clustering Ct+1

At the end, each point gets majority label of its cluster in CT .

Nonparametric active learning Clustering-based methods

Clustering-based methods

For rounds t = 1, 2, . . . , T :

Maintain a clustering Ct
Query some data points

Possibly split some clusters to obtain a new clustering Ct+1

At the end, each point gets majority label of its cluster in CT .

Question: When does this strategy work?

Nonparametric active learning Clustering-based methods

Clustering-based methods: Rules

Question: When does this strategy work?

Rule 1: At each round t, query is a uniform random draw from some
chosen cluster C ∈ Ct.

Rule 2: At two rounds t′ > t, the clustering Ct′ is a refinement of Ct:

for all C ′ ∈ Ct′ there exists a C ∈ Ct such that C ′ ⊆ C

Rule 3: When a cluster is split, the manner of split cannot depend on
the labels seen so far.

Nonparametric active learning Clustering-based methods

Clustering-based methods: Rules

Question: When does this strategy work?

Rule 1: At each round t, query is a uniform random draw from some
chosen cluster C ∈ Ct.

Rule 2: At two rounds t′ > t, the clustering Ct′ is a refinement of Ct:

for all C ′ ∈ Ct′ there exists a C ∈ Ct such that C ′ ⊆ C

Rule 3: When a cluster is split, the manner of split cannot depend on
the labels seen so far.

Rules 2 + 3 =⇒ might as well start with a hierarchical clustering

Nonparametric active learning Clustering-based methods

Clustering-based methods: Algorithms

Start with hierarchical clustering T , ` = 0, let C = {root node}

While there are unlabeled points:

For each cluster C ∈ C:

Request labels for n(`) random points

If all labels in C are the same:

Assign this label to rest of points in C

Remove C from C

Otherwise if there are also unlabeled points in C:

Replace C its children in T

Nonparametric active learning Clustering-based methods

Clustering-based methods: Guarantees

Theorem (Urner et al. 2013)

With probability 1− δ, the above procedure gets all but an ε-fraction of
the points correct using n(`) = 1

ε (2` ln 2 + ln(1/δ)).

Only need to consider case where we propagated labels, but an ε-fraction
of those were incorrect.

Given n(`) random labels, the probability of this happening in a particular
node is

Pr (bad event in cell at level `) =≤ (1− ε)n(`)

≤ e−εn(`)

Nonparametric active learning Clustering-based methods

Clustering-based methods: Guarantees

Theorem (Urner et al. 2013)

With probability 1− δ, the above procedure gets all but an ε-fraction of
the points correct using n(`) = 1

ε (2` ln 2 + ln(1/δ)).

Summing over all levels in the tree and all nodes in each level,

Pr (any of these bad events happen) ≤
∞∑
`=1

∑
C∈T :level `

e−εn(`)

≤
∞∑
`=1

2` · e−εn(`)

=

∞∑
`=1

2−`δ = δ

Nonparametric active learning Clustering-based methods

Clustering-based methods: Label complexity

How many labels does this procedure need? Depends on the data:

How much are the clusters shrinking as we move down the tree?

How often do labels of x, x′ differ when d(x, x′) is small?

Interactive clustering

A partial list of interactive “unsupervised” learning cases

Learning task Feedback type

Flat clustering
Split-and-merge requests

Must-link/Cannot-link constraints

Hierarchical clustering Triplet constraints

Embedding Ordinal comparisons

Interactive topic modeling Word-constraints

Interactive clustering

A partial list of interactive “unsupervised” learning cases

Learning task Feedback type

Flat clustering
Split-and-merge requests

Must-link/Cannot-link constraints

Hierarchical clustering Triplet constraints

Embedding Ordinal comparisons

Interactive topic modeling Word-constraints

Interactive clustering

Split-and-merge feedback

Ideal:

Interactive clustering

Split-and-merge feedback

Actual:

Interactive clustering

Split-and-merge feedback

Assumptions:

There is some ground truth clustering C = {C1, . . . , Ck}

A user requests to split a cluster C only if C contains points from
more than one target cluster

A user requests to merge two clusters C and C ′ only if there exists a
cluster Ci such that

min{|C ∩ Ci|/|C|, |C ′ ∩ Ci|/|C ′|} ≥ η

Interactive clustering

Split-and-merge algorithms

Given: an initial clustering Ĉ and a hierarchical clustering T s.t. a pruning
of T corresponds to target C. Every cluster is initially ‘impure.’

Interactive clustering

Split-and-merge algorithms

Given: an initial clustering Ĉ and a hierarchical clustering T s.t. a pruning
of T corresponds to target C. Every cluster is initially ‘impure.’

Split(C):

Search T to find shallowest node N at which the points in C are split
into two clusters N1 and N2.

Replace C with C ∩N1 and C ∩N2, and mark both as ‘impure.’

Merge(C1, C2):

If C1 is ’pure’ then η1 = 1 else η1 = η. Similarly for C2, η2.

Search T to find deepest node N at which

|N ∩ C1|/|C1| ≥ η1 and , |N ∩ C2|/|C2| ≥ η2

Replace C1 with C1 \N , C2 with C2 \N and create new ’pure’
cluster N ∩ (C1 ∪ C2).

Interactive clustering

Clustering errors

Let C∗ be target clustering and C be arbitrary clustering.

δo(C) =
∑
Ci∈C
|{C∗j ∈ C∗ : Ci ∩ C∗j 6= ∅}| − |C|

δu(C) =
∑
C∗j ∈C∗

|{Ci ∈ C : Ci ∩ C∗j 6= ∅}| − |C∗|

Interactive clustering

Split bounds: sketch

Lemma

Say the initial clustering is C and the target clustering is C∗. Then

of split requests ≤ δo(C)

Observation 1: Merge does not increase δo.

Observation2: Whenever Split(C) is called to create nodes C1 and C2,
we have by laminarity of T with C∗

C∗j ∩ C1 = C∗j ∩ C or C∗j ∩ C2 = C∗j ∩ C

for all C∗j ∈ C∗. Thus k = k1 + k2 for

k = |{C∗j ∈ C∗ : C ∩ C∗j 6= ∅}|
k1 = |{C∗j ∈ C∗ : C1 ∩ C∗j 6= ∅}|
k2 = |{C∗j ∈ C∗ : C2 ∩ C∗j 6= ∅}|

Interactive clustering

Split bounds: sketch

Lemma

Say the initial clustering is C and the target clustering is C∗. Then

of split requests ≤ δo(C)

Thus k = k1 + k2 for

k = |{C∗j ∈ C∗ : C ∩ C∗j 6= ∅}|
k1 = |{C∗j ∈ C∗ : C1 ∩ C∗j 6= ∅}|
k2 = |{C∗j ∈ C∗ : C2 ∩ C∗j 6= ∅}|

Then after Split(C), we have

δo((C \ {C}) ∪ {C1, C2}) = δo(C)− (k − 1) + (k1 − 1) + (k2 − 1)

= δo(C)− 1

Interactive clustering

Merge bounds: sketch

Lemma

Say the initial clustering is C and the target clustering is C∗. Then

of merge requests ≤ 2(δu(C) + |C∗|) log1/(1−η) n

Each merge is either:

Pure: both clusters are marked ‘pure.’ Creates a single pure cluster.

Impure: one of the clusters is marked ‘impure.’ Creates at least one
pure cluster.

Let P = {Ci ∩ C∗j : Ci is ‘impure’ and Ci ∩ C∗j 6= ∅}.

An impure merge reduces at least one of the elements of P by an η
fraction.

of times set S can be reduced by an η fraction is ≤ log1/(1−η) |S|

|P | ≤
∑

C∗j ∈C∗
|{Ci ∈ C : Ci ∩ C∗j 6= ∅}| = δu(C) + |C∗|

Interactive clustering

Merge bounds: sketch

Lemma

Say the initial clustering is C and the target clustering is C∗. Then

of merge requests ≤ 2(δu(C) + |C∗|) log1/(1−η) n

Each merge is either:

Pure: both clusters are marked ‘pure.’ Creates a single pure cluster.

Impure: one of the clusters is marked ‘impure.’ Creates at least one
pure cluster.

So # of impure merges ≤ (δu(C) + |C∗|)log1/(1−η)n

And # of pure merges ≤ # of pure clusters ≤ # of impure merges

Interactive clustering

Split-and-merge bounds

Combining the lemmas, we have

total # of interactions ≤ δo(C) + 2(δu(C) + |C∗|) log1/(1−η) n.

Often much less than specifying a clustering directly.

Interactive clustering

Active research directions

Rates for ‘aggressive’ nonparametric active learning

Interaction for other types of structures

	Recap
	Nonparametric active learning
	Graph-based methods
	Clustering-based methods

	Interactive clustering

