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Recap

Last time: Active learning for general hypothesis classes

Separable data General (nonseparable) data

Aggressive
QBC [FSST97]

Splitting index [D05]
GBS [D04, N09]

Mellow CAL [CAL94]

A2 algorithm [BBL06, H07]
Reduction to supervised [DHM07]

Importance weighted [BDL09]
Confidence rated prediction [ZC14]



Recap

Today: Beyond classical active learning

Nonparametric active learning

Interactive clustering



Nonparametric active learning

What’s wrong with active learning (so far)?

Don’t always know right hypothesis class a priori.

Labeled dataset from active learning is highly biased.
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Nonparametric active learning Graph-based methods

S2: Active learning strategy

While budget not exhausted:

Randomly sample until there are differently labeled points on same
connected component

Repeat until all connected components have single label:

Remove edges between differently labeled points
Find shortest path between differently labeled points and query
midpoint.
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S2: Active learning strategy

When budget is exhausted

Give each connected component the majority label.
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S2: Label complexity

Relevant quantities:

Cutset: C = {(u, v) ∈ E : h∗(u) = +, h∗(v) = −1}
Cutset boundary: ∂C =

⋃
(u,v)∈C

{u, v}

Balanced-ness: β = min |Vi||V | for connected components V1, . . . , Vm

Clustered-ness: κ = ‘how tightly connected cutset edges are’
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S2: Label complexity

Theorem (Dasarathy et al. 2015)

With probability 1− δ, can recover all labels after

1

β
log
(m
δ

)
+m log

n

κ
+ |∂C|(1 + log κ)

queries

Random sampling phase

Binary search phase
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S2: Proof idea

Can handle random sampling phase and binary search phase separately.

Random sampling phase: R = # of random labels requested.

R ≤ # of random labels needed to find a point in each Vi =: k

How big do we need k to be?

Pr(there is some Vi with no labels) ≤
m∑
i=1

Pr(Vi doesn’t get sampled)

≤
m∑
i=1

(
1− |Vi|
|V |

)k
≤

m∑
i=1

(1− β)k ≤ me−βk

Taking k = 1
β log

m
δ makes this hold with probability 1− δ.∗
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S2: Proof idea

Can handle random sampling phase and binary search phase separately.

Binary search phase: B = # of binary search labels requested.

Simple analysis: Given that we have a labeled point in each component,

B ≤
∑
e∈C

# of queries needed to find endpoints of e

≤
∑
e∈C

log (longest length of a shortest path containing e)

≤ |C| log n

More complicated analysis: take advantage of ‘clustered-ness’ of
cut-edges.
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Cluster-based methods
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Clustering-based methods

For rounds t = 1, 2, . . . , T :

Maintain a clustering Ct
Query some data points

Possibly split some clusters to obtain a new clustering Ct+1

At the end, each point gets majority label of its cluster in CT .
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For rounds t = 1, 2, . . . , T :

Maintain a clustering Ct
Query some data points

Possibly split some clusters to obtain a new clustering Ct+1

At the end, each point gets majority label of its cluster in CT .

Question: When does this strategy work?
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Clustering-based methods: Rules

Question: When does this strategy work?

Rule 1: At each round t, query is a uniform random draw from some
chosen cluster C ∈ Ct.

Rule 2: At two rounds t′ > t, the clustering Ct′ is a refinement of Ct:

for all C ′ ∈ Ct′ there exists a C ∈ Ct such that C ′ ⊆ C

Rule 3: When a cluster is split, the manner of split cannot depend on
the labels seen so far.
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Clustering-based methods: Rules

Question: When does this strategy work?

Rule 1: At each round t, query is a uniform random draw from some
chosen cluster C ∈ Ct.

Rule 2: At two rounds t′ > t, the clustering Ct′ is a refinement of Ct:

for all C ′ ∈ Ct′ there exists a C ∈ Ct such that C ′ ⊆ C

Rule 3: When a cluster is split, the manner of split cannot depend on
the labels seen so far.

Rules 2 + 3 =⇒ might as well start with a hierarchical clustering
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Clustering-based methods: Algorithms

Start with hierarchical clustering T , ` = 0, let C = {root node}

While there are unlabeled points:

For each cluster C ∈ C:

Request labels for n(`) random points

If all labels in C are the same:

Assign this label to rest of points in C

Remove C from C

Otherwise if there are also unlabeled points in C:

Replace C its children in T
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Clustering-based methods: Guarantees

Theorem (Urner et al. 2013)

With probability 1− δ, the above procedure gets all but an ε-fraction of
the points correct using n(`) = 1

ε (2` ln 2 + ln(1/δ)).

Only need to consider case where we propagated labels, but an ε-fraction
of those were incorrect.

Given n(`) random labels, the probability of this happening in a particular
node is

Pr (bad event in cell at level `) =≤ (1− ε)n(`)

≤ e−εn(`)
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Clustering-based methods: Guarantees

Theorem (Urner et al. 2013)

With probability 1− δ, the above procedure gets all but an ε-fraction of
the points correct using n(`) = 1

ε (2` ln 2 + ln(1/δ)).

Summing over all levels in the tree and all nodes in each level,

Pr (any of these bad events happen) ≤
∞∑
`=1

∑
C∈T :level `

e−εn(`)

≤
∞∑
`=1

2` · e−εn(`)

=

∞∑
`=1

2−`δ = δ



Nonparametric active learning Clustering-based methods

Clustering-based methods: Label complexity

How many labels does this procedure need? Depends on the data:

How much are the clusters shrinking as we move down the tree?

How often do labels of x, x′ differ when d(x, x′) is small?



Interactive clustering

A partial list of interactive “unsupervised” learning cases

Learning task Feedback type

Flat clustering
Split-and-merge requests

Must-link/Cannot-link constraints

Hierarchical clustering Triplet constraints

Embedding Ordinal comparisons

Interactive topic modeling Word-constraints
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Ideal:
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Split-and-merge feedback

Actual:



Interactive clustering

Split-and-merge feedback

Assumptions:

There is some ground truth clustering C = {C1, . . . , Ck}

A user requests to split a cluster C only if C contains points from
more than one target cluster

A user requests to merge two clusters C and C ′ only if there exists a
cluster Ci such that

min{|C ∩ Ci|/|C|, |C ′ ∩ Ci|/|C ′|} ≥ η
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Split-and-merge algorithms

Given: an initial clustering Ĉ and a hierarchical clustering T s.t. a pruning
of T corresponds to target C. Every cluster is initially ‘impure.’
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Split-and-merge algorithms

Given: an initial clustering Ĉ and a hierarchical clustering T s.t. a pruning
of T corresponds to target C. Every cluster is initially ‘impure.’

Split(C):

Search T to find shallowest node N at which the points in C are split
into two clusters N1 and N2.

Replace C with C ∩N1 and C ∩N2, and mark both as ‘impure.’

Merge(C1, C2):

If C1 is ’pure’ then η1 = 1 else η1 = η. Similarly for C2, η2.

Search T to find deepest node N at which

|N ∩ C1|/|C1| ≥ η1 and , |N ∩ C2|/|C2| ≥ η2

Replace C1 with C1 \N , C2 with C2 \N and create new ’pure’
cluster N ∩ (C1 ∪ C2).



Interactive clustering

Clustering errors

Let C∗ be target clustering and C be arbitrary clustering.

δo(C) =
∑
Ci∈C
|{C∗j ∈ C∗ : Ci ∩ C∗j 6= ∅}| − |C|

δu(C) =
∑
C∗j ∈C∗

|{Ci ∈ C : Ci ∩ C∗j 6= ∅}| − |C∗|



Interactive clustering

Split bounds: sketch

Lemma

Say the initial clustering is C and the target clustering is C∗. Then

# of split requests ≤ δo(C)

Observation 1: Merge does not increase δo.

Observation2: Whenever Split(C) is called to create nodes C1 and C2,
we have by laminarity of T with C∗

C∗j ∩ C1 = C∗j ∩ C or C∗j ∩ C2 = C∗j ∩ C

for all C∗j ∈ C∗. Thus k = k1 + k2 for

k = |{C∗j ∈ C∗ : C ∩ C∗j 6= ∅}|
k1 = |{C∗j ∈ C∗ : C1 ∩ C∗j 6= ∅}|
k2 = |{C∗j ∈ C∗ : C2 ∩ C∗j 6= ∅}|



Interactive clustering

Split bounds: sketch

Lemma

Say the initial clustering is C and the target clustering is C∗. Then

# of split requests ≤ δo(C)

Thus k = k1 + k2 for

k = |{C∗j ∈ C∗ : C ∩ C∗j 6= ∅}|
k1 = |{C∗j ∈ C∗ : C1 ∩ C∗j 6= ∅}|
k2 = |{C∗j ∈ C∗ : C2 ∩ C∗j 6= ∅}|

Then after Split(C), we have

δo((C \ {C}) ∪ {C1, C2}) = δo(C)− (k − 1) + (k1 − 1) + (k2 − 1)

= δo(C)− 1



Interactive clustering

Merge bounds: sketch

Lemma

Say the initial clustering is C and the target clustering is C∗. Then

# of merge requests ≤ 2(δu(C) + |C∗|) log1/(1−η) n

Each merge is either:

Pure: both clusters are marked ‘pure.’ Creates a single pure cluster.

Impure: one of the clusters is marked ‘impure.’ Creates at least one
pure cluster.

Let P = {Ci ∩ C∗j : Ci is ‘impure’ and Ci ∩ C∗j 6= ∅}.

An impure merge reduces at least one of the elements of P by an η
fraction.

# of times set S can be reduced by an η fraction is ≤ log1/(1−η) |S|

|P | ≤
∑

C∗j ∈C∗
|{Ci ∈ C : Ci ∩ C∗j 6= ∅}| = δu(C) + |C∗|
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Merge bounds: sketch

Lemma

Say the initial clustering is C and the target clustering is C∗. Then

# of merge requests ≤ 2(δu(C) + |C∗|) log1/(1−η) n

Each merge is either:

Pure: both clusters are marked ‘pure.’ Creates a single pure cluster.

Impure: one of the clusters is marked ‘impure.’ Creates at least one
pure cluster.

So # of impure merges ≤ (δu(C) + |C∗|)log1/(1−η)n

And # of pure merges ≤ # of pure clusters ≤ # of impure merges



Interactive clustering

Split-and-merge bounds

Combining the lemmas, we have

total # of interactions ≤ δo(C) + 2(δu(C) + |C∗|) log1/(1−η) n.

Often much less than specifying a clustering directly.



Interactive clustering

Active research directions

Rates for ‘aggressive’ nonparametric active learning

Interaction for other types of structures
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