Active learning: The classics

Christopher Tosh

Columbia University

TRIPODS Bootcamp
Supervised learning pipeline
Supervised learning pipeline

Cheap!

Expensive!

Active learning
Active learning
Active learning
A quick example: linear thresholds

Linear threshold:

\[h^*(x) = \begin{cases} + & \text{if } x > v^* \\ - & \text{if } x \leq v^* \end{cases} \]
A quick example: linear thresholds

Supervised approach:

- Draw $O(1/\epsilon)$ labeled data points
- Any consistent threshold h has error $\text{err}(h) \leq \epsilon$
Active learning

A quick example: linear thresholds

Supervised approach:

- Draw $O(1/\epsilon)$ labeled data points
- Any *consistent* threshold h has error $\text{err}(h) \leq \epsilon$
A quick example: linear thresholds

Active learning approach:

- Draw $O(1/\epsilon)$ unlabeled data points
- Repeatedly query median unlabeled point and infer labels for some unlabeled points
- Stop when there are two adjacent points of different labels
A quick example: linear thresholds

Active learning approach:
- Draw $O(1/\epsilon)$ unlabeled data points
- Repeatedly query median unlabeled point and infer labels for some unlabeled points
- Stop when there are two adjacent points of different labels
Active learning approach:
- Draw $O(1/\epsilon)$ unlabeled data points
- Repeatedly query median unlabeled point and infer labels for some unlabeled points
- Stop when there are two adjacent points of different labels

A quick example: linear thresholds
A quick example: linear thresholds

Active learning approach:
- Draw $O(1/\epsilon)$ unlabeled data points
- Repeatedly query median unlabeled point and infer labels for some unlabeled points
- Stop when there are two adjacent points of different labels
A quick example: linear thresholds

Active learning approach:

- Draw $O(1/\epsilon)$ unlabeled data points
- Repeatedly query median unlabeled point and infer labels for some unlabeled points
- Stop when there are two adjacent points of different labels
Active learning approach:

- Draw $O(1/\epsilon)$ unlabeled data points
- Repeatedly query median unlabeled point and infer labels for some unlabeled points
- Stop when there are two adjacent points of different labels
A quick example: linear thresholds

Active learning approach:

- Draw $O(1/\epsilon)$ unlabeled data points
- Repeatedly query median unlabeled point and infer labels for some unlabeled points
- Stop when there are two adjacent points of different labels
A quick example: linear thresholds

Active learning approach:
- Draw $O(1/\epsilon)$ unlabeled data points
- Repeatedly query median unlabeled point and infer labels for some unlabeled points
- Stop when there are two adjacent points of different labels

Number of labels requested: $O(\log 1/\epsilon)$
Overview

- **Today**: General hypothesis classes
 - Mellow
 - Aggressive

- **Tomorrow**: Interactive learning
 - Nonparametric active learning
 - Interactive clustering
A partition of (some) active learning work

<table>
<thead>
<tr>
<th>Aggressive</th>
<th>Separable data</th>
<th>General (nonseparable) data</th>
</tr>
</thead>
<tbody>
<tr>
<td>QBC [FSST97]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Splitting index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[D05]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBS [D04, N09]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A^2 algorithm [BBL06, H07]</td>
<td>Reduction to supervised [DHM07]</td>
<td>Importance weighted [BDL09]</td>
</tr>
<tr>
<td></td>
<td>Confidence rated prediction [ZC14]</td>
<td></td>
</tr>
<tr>
<td>Mellow</td>
<td>CAL [CAL94]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A partition of (some) active learning work

<table>
<thead>
<tr>
<th></th>
<th>Separable data</th>
<th>General (nonseparable) data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggressive</td>
<td>QBC [FSST97]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Splitting index [D05]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GBS [D04, N09]</td>
<td></td>
</tr>
<tr>
<td>Mellow</td>
<td>CAL [CAL94]</td>
<td>A² algorithm [BBL06, H07]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduction to supervised [DHM07]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Importance weighted [BDL09]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Confidence rated prediction [ZC14]</td>
</tr>
</tbody>
</table>
Noiseless realizable setting

- Fixed binary hypothesis class \mathcal{H}
- Realizable: some true hypothesis $h^* \in \mathcal{H}$
- Noiseless: query x and observe $h^*(x)$
- Pool of unlabeled data drawn from \mathcal{D} (essentially unlimited)
- **Goal**: learn low error hypothesis $h \in \mathcal{H}$ –
 $$\text{err}(h) = \Pr_{x \sim \mathcal{D}}(h(x) \neq h^*(x))$$
Active learning: Version spaces

Version space: set of hypotheses consistent with all the labels seen so far.

- Start with version space $V_0 = \mathcal{H}$.
- For $t = 1, 2, \ldots$
 - Query x_t and observe label $y_t = h^*(x_t)$.
 - Set $V_t = \{ h \in V_{t-1} : h(x_t) = y_t \}$.
Active learning: Version spaces

Version space: set of hypotheses consistent with all the labels seen so far.

- Start with version space $V_0 = \mathcal{H}$.
- For $t = 1, 2, \ldots$
 - Query x_t and observe label $y_t = h^*(x_t)$.
 - Set $V_t = \{ h \in V_{t-1} : h(x_t) = y_t \}$.

![Diagram of version space with examples](image.png)
Active learning: Version spaces

Version space: set of hypotheses consistent with all the labels seen so far.

- Start with version space $V_0 = \mathcal{H}$.
- For $t = 1, 2, \ldots$
 - Query x_t and observe label $y_t = h^*(x_t)$.
 - Set $V_t = \{h \in V_{t-1} : h(x_t) = y_t\}$.
Active learning: Version spaces

Version space: set of hypotheses consistent with all the labels seen so far.

- Start with version space $V_0 = \mathcal{H}$.
- For $t = 1, 2, \ldots$
 - Query x_t and observe label $y_t = h^*(x_t)$.
 - Set $V_t = \{h \in V_{t-1} : h(x_t) = y_t\}$.
Active learning: Version spaces

Version space: set of hypotheses consistent with all the labels seen so far.

- Start with version space \(V_0 = \mathcal{H} \).
- For \(t = 1, 2, \ldots \)
 - Query \(x_t \) and observe label \(y_t = h^*(x_t) \).
 - Set \(V_t = \{ h \in V_{t-1} : h(x_t) = y_t \} \).
Active learning: Version spaces

Version space: set of hypotheses consistent with all the labels seen so far.

- **Start with version space** $V_0 = \mathcal{H}$.
- For $t = 1, 2, \ldots$
 - Query x_t and observe label $y_t = h^*(x_t)$.
 - Set $V_t = \{ h \in V_{t-1} : h(x_t) = y_t \}$.

Observation: $h^* \in V_t$ for $t = 0, 1, 2, \ldots$
A mellow strategy: CAL

Strategy:

- Randomly sample \(x \sim \mathcal{D} \)
- Query \(x \) if there are two hypotheses \(h, h' \in V_t \) satisfying

\[
h(x) \neq h'(x)
\]
A mellow strategy: CAL

Strategy:

- Randomly sample $x \sim \mathcal{D}$
- Query x if there are two hypotheses $h, h' \in V_t$ satisfying

$$h(x) \neq h'(x)$$

Properties:

- Simple
- Consistent
- Label complexity of CAL \leq Label complexity of random strategy
- Efficient to implement*
CAL: Label complexity

For two hypotheses $h, h' \in \mathcal{H}$, define

$$d(h, h') = \Pr_{x \sim \mathcal{D}}(h(x) \neq h'(x)).$$

Define a ball of radius r as

$$B(h, r) = \{h' \in \mathcal{H} : d(h, h') \leq r\}$$

Define the disagreement region of radius r around h as

$$\text{DIS}(h, r) = \{x : \exists h_1, h_2 \in B(h, r) \text{ s.t. } h_1(x) \neq h_2(x)\}.$$

Then for target hypothesis h^*, disagreement coefficient is

$$\theta = \sup_{r \in (0,1)} \frac{\Pr_{x \sim \mathcal{D}}(x \in \text{DIS}(h^*, r))}{r}.$$
Disagreement coefficient: Example

Linear thresholds:

\[h^*(x) = \begin{cases}
+ & \text{if } x > v^* \\
- & \text{if } x \leq v^*
\end{cases} \]
Disagreement coefficient: Example

\[h(x) \neq h'(x) \text{ iff } x \in \text{green region} \implies d(h, h') = \Pr(x \in \text{green region}) \]
Disagreement coefficient: Example

\[d(h^*, h_L) = r = d(h^*, h_R) \]

\[B(h^*, r) = \text{blue region} = \text{DIS}(h^*, r) \]
Disagreement coefficient: Example

\[d(h^*, h_L) = r = d(h^*, h_R) \]

\[\Pr(x \in \text{DIS}(h^*, r)) = \Pr(x \in I_L) + \Pr(x \in I_R) = d(h^*, h_L) + d(h^*, h_R) = 2r \]

\[\theta = \sup_{r \in (0,1)} \frac{\Pr_{x \sim \mathcal{D}}(x \in \text{DIS}(h^*, r))}{r} = 2. \]
Other cases:

- Thresholds: $\theta = 2$

- Homogeneous linear separators under uniform distribution: $\theta \leq \sqrt{d}$

- Intervals of width w under uniform distribution: $\theta = \max \left\{ \frac{1}{w}, 4 \right\}$

- Finite hypothesis classes: $\theta \leq |\mathcal{H}|$.
CAL: Label complexity

Theorem

If VC-dimension of \mathcal{H} is d and disagreement coefficient is θ, then

$$\# \text{ of labels requested by CAL} \leq \tilde{O}\left(d \theta \log \frac{1}{\epsilon}\right)$$
Theorem

If VC-dimension of \mathcal{H} is d and disagreement coefficient is θ, then

$$\# \text{ of labels requested by CAL} \leq \tilde{O} \left(d\theta \log \frac{1}{\epsilon} \right)$$

Compare to passive learning:

$$\# \text{ of labels needed for passive learning} \geq \Omega \left(\frac{d}{\epsilon} \right)$$
CAL: Label complexity proof

Start with $V_0 = \mathcal{H}$

For $t = 1, 2, \ldots$:

- Draw unlabeled point $x_t \sim \mathcal{D}$
- If $\exists h, h' \in V_{t-1}$ s.t. $h(x_t) \neq h'(x_t)$, query for label y_t
- Otherwise, create pseudo-label \tilde{y}_t
- Update $V_t = \{ h \in V_{t-1} : h(x_t) = y_t \text{ (or } \tilde{y}_t) \}$
CAL: Label complexity proof

Start with $V_0 = \mathcal{H}$

For $t = 1, 2, \ldots$:

- Draw unlabeled point $x_t \sim \mathcal{D}$
- If $\exists h, h' \in V_{t-1}$ s.t. $h(x_t) \neq h'(x_t)$, query for label y_t
- Otherwise, create pseudo-label \tilde{y}_t
- Update $V_t = \{ h \in V_{t-1} : h(x_t) = y_t \text{ (or } \tilde{y}_t) \}$

Observation 1: We always have $h^*(x_t) = y_t$ (or \tilde{y}_t).

Observation 2: The (pseudo)-labeled dataset $(x_1, y_1/\tilde{y}_1), \ldots, (x_n, y_n/\tilde{y}_n)$ is an i.i.d. labeled dataset.
CAL: Label complexity proof

Start with $V_0 = \mathcal{H}$

For $t = 1, 2, \ldots$:

- Draw unlabeled point $x_t \sim \mathcal{D}$
- If $\exists h, h' \in V_{t-1}$ s.t. $h(x_t) \neq h'(x_t)$, query for label y_t
- Otherwise, create pseudo-label \tilde{y}_t
- Update $V_t = \{ h \in V_{t-1} : h(x_t) = y_t \text{ (or } \tilde{y}_t) \}$

Observation 1: We always have $h^*(x_t) = y_t$ (or \tilde{y}_t).

Observation 2: The (pseudo)-labeled dataset $(x_1, y_1/\tilde{y}_1), \ldots, (x_n, y_n/\tilde{y}_n)$ is an i.i.d. labeled dataset.

Conclusion: With probability $1 - \delta$, for every $t \geq 1$ and every $h \in V_t$,

$$\text{err}(h) \leq O\left(\frac{1}{t} \left(d \log t + \log \frac{t(t + 1)}{\delta} \right) \right) =: r_t.$$
CAL: Label complexity proof (continued)

With probability $1 - \delta$, for every $t \geq 1$ and every $h \in V_t$,

$$
\text{err}(h) \leq O \left(\frac{1}{t} \left(d \log t + \log \frac{t(t+1)}{\delta} \right) \right) =: r_t.
$$

At round t, CAL queries x_t if and only if there is a hypothesis $h \in V_{t-1}$ such that $h(x_t) \neq h^*(x_t)$.
CAL: Label complexity proof (continued)

With probability $1 - \delta$, for every $t \geq 1$ and every $h \in V_t$,

$$\text{err}(h) \leq O\left(\frac{1}{t} \left(d \log t + \log \frac{t(t+1)}{\delta}\right)\right) =: r_t.$$

At round t, CAL queries x_t if and only if there is a hypothesis $h \in V_{t-1}$ such that $h(x_t) \neq h^*(x_t)$.

$h \in V_{t-1}$ implies $h \in B(h^*, r_{t-1})$. \implies query x_t only if $x_t \in \text{DIS}(h^*, r_{t-1})$.
CAL: Label complexity proof (continued)

\[\mathbb{E}[\# \text{ of queries up to time } n] = \sum_{t=1}^{n} \mathbb{E}[\mathbb{E}[\mathbb{1}(\text{query } x_t) | V_{t-1}]] \leq \sum_{t=1}^{n} \mathbb{P}(x_t \in \text{DIS}(h^*, r_{t-1})) \leq \sum_{t=1}^{n} \theta \cdot r_{t-1} \leq O\left(\theta \left(d \log n + \log \frac{1}{\delta}\right) \log n\right) \]

Choosing \(n \) such that \(r_n \leq \epsilon \) makes the above \(\tilde{O}(d\theta \log \frac{1}{\epsilon}) \).
CAL: Label complexity proof (continued)

\[
\mathbb{E}[\# \text{ of queries up to time } n] = \sum_{t=1}^{n} \mathbb{E}[\mathbb{E}[\mathbb{1}(\text{query } x_t) \mid V_{t-1}]] \\
\leq \sum_{t=1}^{n} \Pr(x_t \in \text{DIS}(h^*, r^{t-1})) \\
\leq \sum_{t=1}^{n} \theta \cdot r_{t-1} \\
\leq O \left(\theta \left(d \log n + \log \frac{1}{\delta} \right) \log n \right)
\]

Choosing \(n \) such that \(r_n \leq \epsilon \) makes the above \(\tilde{O}(d\theta \log \frac{1}{\epsilon}) \).

Can turn from expectation bound to high probability bound using martingale deviation inequalities.
A partition of (some) active learning work

<table>
<thead>
<tr>
<th></th>
<th>Separable data</th>
<th>General (nonseparable) data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggressive</td>
<td>QBC [FSST97]</td>
<td>A^2 algorithm [BBL06, H07]</td>
</tr>
<tr>
<td></td>
<td>Splitting index [D05]</td>
<td>Reduction to supervised [DHM07]</td>
</tr>
<tr>
<td></td>
<td>GBS [D04, N09]</td>
<td>Importance weighted [BDL09]</td>
</tr>
<tr>
<td>Mellow</td>
<td>CAL [CAL94]</td>
<td>Confidence rated prediction [ZC14]</td>
</tr>
</tbody>
</table>
General (nonseparable) data setting

- Fixed binary hypothesis class \mathcal{H}
- Possibly not realizable: Query data point x and receive
 \[y \sim \Pr_{(X,Y)\sim\mathcal{D}}(Y \mid X = x) \]
- Target hypothesis: $h^* \in \mathcal{H}$ that minimizes error
 \[\text{err}(h) = \Pr_{(X,Y)\sim\mathcal{D}}(h(X) \neq Y) \]
- Pool of unlabeled data drawn from \mathcal{D} (essentially unlimited)
- **Goal**: learn low error hypothesis $h \in \mathcal{H}$
An agnostic mellow strategy: A^2 algorithm

Issue: Can no longer use version spaces.

Solution: Define effective ‘version space’ based on generalization bounds.
An agnostic mellow strategy: A^2 algorithm

Issue: Can no longer use version spaces.

Solution: Define effective ‘version space’ based on generalization bounds.

Standard learning theory result: For labeled dataset $S = \{(x_1, y_1), \ldots, (x_n, y_n)\}$ drawn from distribution D,

$$|\text{err}_D(h) - \text{err}_S(h)| \leq \frac{1}{n} + \sqrt{\frac{\ln \frac{4}{\delta} + d \ln \frac{2en}{d}}{n}} =: G(n, \delta)$$

for every $h \in \mathcal{H}$ with probability $1 - \delta$.
An agnostic mellow strategy: A² algorithm

Issue: Can no longer use version spaces.

Solution: Define effective ‘version space’ based on generalization bounds.

Standard learning theory result: For labeled dataset $S = \{(x_1, y_1), \ldots, (x_n, y_n)\}$ drawn from distribution \mathcal{D},

$$|\text{err}_\mathcal{D}(h) - \hat{\text{err}}_S(h)| \leq \frac{1}{n} + \sqrt{\frac{\ln \frac{4}{\delta} + d \ln \frac{2en}{d}}{n}} =: G(n, \delta)$$

for every $h \in \mathcal{H}$ with probability $1 - \delta$.

Key idea: With probability $1 - \delta$, any $h \in \mathcal{H}$ satisfying

$$\hat{\text{err}}_S(h) \geq \inf_{h' \in \mathcal{H}} \hat{\text{err}}_S(h) + 2G(n, \delta)$$

must have $\text{err}_\mathcal{D}(h) > \inf_{h' \in \mathcal{H}} \text{err}_\mathcal{D}(h)$.
An agnostic mellow strategy: A^2 algorithm

Start with $V_0 = \mathcal{H}, S_0 = \emptyset$

For $t = 1, 2, \ldots, T$:

- Repeat until we have n_t samples S_t:
 - Draw $x \sim \mathcal{D}$.
 - If $\exists h, h' \in V_{t-1}$ s.t. $h(x) \neq h'(x)$, query its label.
 - Otherwise, discard x.

- Set $V_t = \{ h \in V_{t-1} : \hat{\text{err}}_{S_t}(h) \leq \inf_{h' \in \mathcal{H}} \hat{\text{err}}_{S_t}(h') + 2G(n_t, \delta) \}$

$\hat{h} = \arg\min_{h \in V_T} \hat{\text{err}}_{S_T}(h)$
An agnostic mellow strategy: A^2 algorithm

Start with $V_0 = \mathcal{H}$, $S_0 = \emptyset$

For $t = 1, 2, \ldots, T$:

- Repeat until we have n_t samples S_t:
 - Draw $x \sim \mathcal{D}$.
 - If $\exists h, h' \in V_{t-1}$ s.t. $h(x) \neq h'(x)$, query its label.
 - Otherwise, discard x.

- Set $V_t = \{ h \in V_{t-1} : \hat{\text{err}}_{S_t}(h) \leq \inf_{h' \in \mathcal{H}} \hat{\text{err}}_{S_t}(h') + 2G(n_t, \delta) \}$

$\hat{h} = \arg\min_{h \in V_T} \hat{\text{err}}_{S_T}(h)$

Theorem (Hanneke 2007)

Let $\nu = \inf_{h \in \mathcal{H}} \hat{\text{err}}_{S_t}(h)$. With probability $1 - \delta$, $\text{err}(\hat{h}) \leq \nu + \epsilon$ and

$$\# \text{ queries} \leq O \left(\theta^2 \left(1 + \frac{\nu^2}{\epsilon^2} \right) \left(d \log \frac{1}{\epsilon} + \log \frac{1}{\delta} \right) \log \frac{1}{\epsilon} \right)$$
An agnostic mellow strategy: A^2 algorithm

Start with $V_0 = \mathcal{H}$, $S_0 = \emptyset$

For $t = 1, 2, \ldots, T$:

- Repeat until we have n_t samples S_t:
 - Draw $x \sim \mathcal{D}$.
 - If $\exists h, h' \in V_{t-1}$ s.t. $h(x) \neq h'(x)$, query its label.
 - Otherwise, discard x.

- Set $V_t = \{h \in V_{t-1} : \hat{\text{err}}_{S_t}(h) \leq \inf_{h'\in \mathcal{H}} \hat{\text{err}}_{S_t}(h') + 2G(n_t, \delta)\}$

$\hat{h} = \arg\min_{h \in V_T} \hat{\text{err}}_{S_T}(h)$

Theorem (Hanneke 2007)

Let $\nu = \inf_{h \in \mathcal{H}} \hat{\text{err}}_{S_t}(h)$. With probability $1 - \delta$, $\text{err}(\hat{h}) \leq \nu + \epsilon$ and

$$\# \text{ queries} \leq O \left(\theta^2 \left(1 + \frac{\nu^2}{\epsilon^2} \right) \left(d \log \frac{1}{\epsilon} + \log \frac{1}{\delta} \right) \log \frac{1}{\epsilon} \right)$$
An agnostic mellow strategy: A^2 algorithm

Theorem (Beygelzimer et al. 2007)

For any $\nu, \epsilon > 0$ such that $2\epsilon \leq \nu \leq 1/4$, any input space, and any hypothesis class \mathcal{H} of VC-dimension d, there is a distribution such that

(a) the best achievable error rate of a hypothesis in \mathcal{H} is ν and

(b) any active learner seeking a hypothesis with error $\nu + \epsilon$ must make $\frac{d\nu^2}{\epsilon^2}$ queries to succeed with probability at least $1/2$.
An agnostic mellow strategy: A^2 algorithm

Theorem (Beygelzimer et al. 2007)

For any $\nu, \epsilon > 0$ such that $2\epsilon \leq \nu \leq 1/4$, any input space, and any hypothesis class \mathcal{H} of VC-dimension d, there is a distribution such that

(a) the best achievable error rate of a hypothesis in \mathcal{H} is ν and

(b) any active learner seeking a hypothesis with error $\nu + \epsilon$ must make $rac{d\nu^2}{\epsilon^2}$ queries to succeed with probability at least $1/2$.

...BUT the distribution from Beygelzimer et al. is not very ‘natural.’
When are these algorithms efficient?

Computational challenges:

- **CAL/A²**: Maintaining a version space can be computationally challenging...
 - Don’t always need to do so explicitly.
Efficient CAL

To run CAL, we need to be able to determine if x falls in the disagreement region of V:

$$\exists h, h' \in V \text{ s.t. } h(x) \neq h'(x)$$

Assumption: We have an ERM oracle $\text{learn}((x_1, y_1), \ldots, (x_n, y_n))$:
- Returns $h \in \mathcal{H}$ s.t. $h(x_i) = y_i$ for $i = 1, \ldots, n$ if it exists
- Returns \bot otherwise
Efficient CAL

To run CAL, we need to be able to determine if \(x \) falls in the disagreement region of \(V \):

\[
\exists h, h' \in V \text{ s.t. } h(x) \neq h'(x)
\]

Assumption: We have an ERM oracle \(\text{learn}((x_1, y_1), \ldots, (x_n, y_n)) \):
- Returns \(h \in \mathcal{H} \) s.t. \(h(x_i) = y_i \) for \(i = 1, \ldots, n \) if it exists
- Returns \(\bot \) otherwise

To run CAL at round \(t \):
- Have data \((x_1, y_1), \ldots, (x_{t-1}, y_{t-1}) \).
- Query \(x \) if

\[
\text{learn}((x_1, y_1), \ldots, (x_{t-1}, y_{t-1}), (x, +)) \neq \bot
\]
\[
\text{learn}((x_1, y_1), \ldots, (x_{t-1}, y_{t-1}), (x, -)) \neq \bot
\]
Active research directions

- Aggressive strategies for general data
- Active learning without a fixed hypothesis class
 - Nested hypothesis classes
- Circumventing lower bounds
 - Tsybakov noise, Massart noise
- Specialized algorithms for special cases
 - Linear functions, neural nets, ...
A partition of (some) active learning work

<table>
<thead>
<tr>
<th></th>
<th>Separable data</th>
<th>General (nonseparable) data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggressive</td>
<td>QBC [FSST97]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Splitting index [D05]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GBS [D04, N09]</td>
<td></td>
</tr>
<tr>
<td>Mellow</td>
<td>CAL [CAL94]</td>
<td>A(^2) algorithm [BBL06, H07]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduction to supervised [DHM07]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Importance weighted [BDL09]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Confidence rated prediction [ZC14]</td>
</tr>
</tbody>
</table>
Mellow v.s. aggressive

Mellow active learning strategies:
- Query any data point whose label cannot be confidently inferred.

Aggressive active learning strategies:
- Query **informative** data points.
Generalized binary search

Introduce a prior probability measure π over \mathcal{H}.
- Assigns preferences over hypotheses.

Examples:
- **Finite classes**: Uniform distribution over \mathcal{H}.
- **Homogeneous linear separators**: Log-concave distributions, e.g. normal distribution.
- **General classes**: $e^{-R(h)}$ where $R(\cdot)$ is some regularizer.
Generalized binary search

Introduce a prior probability measure π over \mathcal{H}.
- Assigns preferences over hypotheses.

Generalized binary search criterion:
- Query data point that is guaranteed to lead to most probability mass of version space being eliminated:

$$\arg\min_x \max \{ \pi(V_x^+), \pi(V_x^-) \}$$

where $V_x^+ = \{ h \in V : h(x) = + \}$ and $V_x^- = V \setminus V_x^+$.
Generalized binary search: A change in objective

Given a finite pool of unlabeled data, a deterministic active learning strategy induces a decision tree T whose leaves are the elements of \mathcal{H}.

![Decision Tree Diagram]
Generalized binary search: A change in objective

Given a finite pool of unlabeled data, a deterministic active learning strategy induces a decision tree T whose leaves are the elements of \mathcal{H}.

Possible objectives:

- Worst case cost: $\max_{h \in \mathcal{H}}$ length of path in T to get to h
- Average case cost: $\sum_{h \in \mathcal{H}} (\text{length of path in } T \text{ to get to } h) \cdot \pi(h)$
Generalized binary search: A change in objective

Given a finite pool of unlabeled data, a deterministic active learning strategy induces a decision tree T whose leaves are the elements of \mathcal{H}.

Possible objectives:

- **Worst case cost**: $\max_{h \in \mathcal{H}}$ length of path in T to get to h
- **Average case cost**: $\sum_{h \in \mathcal{H}} (\text{length of path in } T \text{ to get to } h) \cdot \pi(h)$
Extra time
GBS

Generalized binary search: Theorem

Theorem (Dasgupta 2004)

Let π be any prior over \mathcal{H}. Suppose the optimal search tree has average cost Q^*. Then the average cost of the GBS search tree is at most

$$4Q^* \ln \frac{1}{\min_h \pi(h)}.$$
Generalized binary search: Theorem

Theorem (Dasgupta 2004)

Let \(\pi \) be any prior over \(\mathcal{H} \). Suppose the optimal search tree has average cost \(Q^* \). Then the average cost of the GBS search tree is at most

\[
4Q^* \ln \frac{1}{\min_h \pi(h)}.
\]

If instead only query \(\alpha \)-approximately greedy points, i.e. points \(x \) which satisfy

\[
\pi(V_x^+) \pi(V_x^-) \geq \frac{1}{\alpha} \max_{x^*} \pi(V_{x^+}) \pi(V_{x^-})
\]

then cost becomes \(O \left(\alpha Q^* \ln \frac{1}{\min_h \pi(h)} \right) \) (Golovin and Krause 2010).
Efficient GBS

To run GBS, we need to be able to approximately determine the split \(\pi(V_x^+), \pi(V_x^-) \).

Assumption: We have a sampling oracle \(\text{sample}(V) \):

- Returns a sample from \(\pi|_V \) (\(\pi \) conditioned on \(V \))
Efficient GBS

To run GBS, we need to be able to approximately determine the split $\pi(V_x^+), \pi(V_x^-)$

Assumption: We have a sampling oracle \text{sample}(V):

- Returns a sample from $\pi|_V$ (π conditioned on V)

To run GBS at round t:

- Have version space V.
- Sample hypotheses h_1, \ldots, h_n using \text{sample}(V).
- Query x that minimizes

$$\frac{1}{n} \max \left\{ \sum_{i=1}^{n} \mathbb{1}[h_i(x) = +], \sum_{i=1}^{n} \mathbb{1}[h_i(x) = -] \right\} \approx \max \{ \pi(V_x^+), \pi(V_x^-) \}$$