Tensor Decompositions: Exploiting Structure in Observed Correlations

Anima Anandkumar, Daniel Hsu, Sham M. Kakade

Microsoft Research, New England

Learning Hidden Structure

- With unlabeled data, how do we discover hidden structure?
- topics in documents?
- clusters? hidden communities in social networks?
- hidden interactions?

Learning is easy with cluster labels. Learning without cluster labels?

Using Observed Correlations

Two step approach:
(1) Under modeling assumptions, what correlations arise? topic models, HMMs, LDA, mixture of Gaussians models, parsing (e.g. PCFGs), Bayesian networks
(2) Can we "invert"/reverse engineer the model from these correlations?

This Tutorial

How to utilize observed correlations?

- part 1: the correlational structure
- When are the correlations sufficient for learning?
- part 2: "invert" (CP decomposition)
- generalizations of simple (linear algebra) approach
- aren't these problems hard/non-convex?
- part 3: "invert... differently" (Tucker)
- exploit different structural conditions

Two Extremes

- Single hidden state active
- mixture of Gaussians, single topic per document
- Independent Component Analysis
- Blind source separation audio signal has different speakers talking
- independent factors

What about the middle ground?

Mixture Models

(spherical) Mixture of Gaussian:

- k means: $\mu_{1}, \ldots \mu_{k}$
- sample cluster $H=i$ with prob.
w_{i}
- observe x, with spherical noise,

$$
x=\mu_{i}+\eta, \quad \eta \sim \mathcal{N}\left(0, \sigma_{i}^{2} l\right)
$$

(single) Topic Models

- k topics: $\mu_{1}, \ldots \mu_{k}$
- sample topic $H=i$ with prob. w_{i}
- observe m (exchangeable) words
$x_{1}, x_{2}, \ldots x_{m}$ sampled i.i.d. from μ_{i}
- dataset: multiple points / m-word documents
- how to learn the params? $\mu_{1}, \ldots \mu_{k}, w_{1}, \ldots w_{k}$ (and σ_{i} 's)

vector notation!

- k clusters, d dimensions/words, $d \geq k$
- for MOGs:
- the conditional expectations are:

$$
\mathbb{E}[x \mid \text { cluster } \mathrm{i}]=\mu_{i}
$$

- topic models:
- binary word encoding: $x_{1}=[0,1,0, \ldots]^{\top}$
- the μ_{i} 's are probability vectors
- for each word, the conditional probabilities are:

$$
\operatorname{Pr}\left[x_{1} \mid \text { topic } \mathrm{i}\right]=\mathbb{E}\left[x_{1} \mid \text { topic } \mathrm{i}\right]=\mu_{i}
$$

- k mixing directions: $\mu_{1}, \ldots \mu_{k}$
- each hidden (scalar) factor, $H_{1}, H_{2}, \ldots H_{k}$, is independently distributed
- observe mixture x, with Gaussian noise,

$$
x=\sum_{i} \mu_{i} H_{i}+\eta, \quad \eta \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

- in MOG's, only one $H_{i}=1$
- how to learn the params? $\mu_{1}, \ldots \mu_{k}$

The Method of Moments

- (Pearson, 1894): find params consistent with observed moments
- MOGs moments:

$$
\mathbb{E}[x], \mathbb{E}\left[x x^{\top}\right], \mathbb{E}[x \otimes x \otimes x], \ldots
$$

- Topic model moments:

$$
\operatorname{Pr}\left[x_{1}\right], \operatorname{Pr}\left[x_{1}, x_{2}\right], \operatorname{Pr}\left[x_{1}, x_{2}, x_{3}\right], \ldots
$$

- Identifiability: with exact moments, what order moment suffices?
- how many words per document suffice?
- efficient algorithms?

(some) Related Work

- Kruskal's Theorem

Kruskal (1977), Bhaskara, Charikar, \& Vijayaraghavan (2013), ...

- Algebraic Work
- ICA literature: Cardoso\&Common, '96, ...
- for phylogeny trees: J. T. Chang (1996), E. Mossel \& S. Roch (2006),
- Tensor Decomposition Algorithms

Lathauwer, Moor, \& Vandewalle (2000), Zhang \& Golub (2001), Anandkumar et. al. (2012), ...

- Structural assumptions/Dictionary learning

Spielman, Wang \& Right (2012), Arora, Ge, \& Moitra (2012)

With the first moment?

MOGs:

- have:

$$
\mathbb{E}[x]=\sum_{i=1}^{k} w_{i} \mu_{i}
$$

Single Topics:

- with 1 word per document:

$$
\operatorname{Pr}\left[x_{1}\right]=\sum_{i=1}^{k} w_{i} \mu_{i}
$$

ICA:

- define $\mathbb{E}\left[H_{i}\right]:=w_{i}$

$$
\mathbb{E}[x]=\sum_{i=1}^{k} w_{i} \mu_{i}
$$

Not identifiable: only d nums.

With the second moment?

MOGs/ICA:

Single Topics:

- additive noise

$$
\begin{aligned}
& \mathbb{E}[x \otimes x] \\
= & \mathbb{E}\left[\left(\mu_{i}+\eta\right) \otimes\left(\mu_{i}+\eta\right)\right] \\
= & \sum_{i=1}^{k} w_{i} \mu_{i} \otimes \mu_{i}+\sigma^{2} \boldsymbol{l}
\end{aligned}
$$

- have a full rank matrix
- by exchangeability:

$$
\begin{aligned}
& \operatorname{Pr}\left[x_{1}, x_{2}\right] \\
= & \mathbb{E}\left[\mathbb{E}\left[x_{1} \mid \text { topic }\right] \otimes \mathbb{E}\left[x_{2} \mid \text { topic }\right]\right] \\
= & \sum_{i=1}^{k} w_{i} \mu_{i} \otimes \mu_{i}
\end{aligned}
$$

- have a low rank matrix!

Still not identifiable!

With three words per document?

- for topics: $d \times d$ matrix, a $d \times d \times d$ tensor:

$$
\begin{aligned}
& M_{2}:=\operatorname{Pr}\left[x_{1}, x_{2}\right]=\sum_{i=1}^{k} w_{i} \mu_{i} \otimes \mu_{i} \\
& M_{3}:=\operatorname{Pr}\left[x_{1}, x_{2}, x_{3}\right]=\sum_{i=1}^{k} w_{i} \mu_{i} \otimes \mu_{i} \otimes \mu_{i}
\end{aligned}
$$

Whitening

- Whiten: project to k dimensions; make the $\tilde{\mu}_{i}$'s orthogonal
- The Inverse Problem

$$
\begin{aligned}
& \tilde{M}_{2}=1 \\
& \tilde{M}_{3}=\sum_{i=1}^{k} \tilde{w}_{i} \tilde{\mu}_{i} \otimes \tilde{\mu}_{i} \otimes \tilde{\mu}_{i}
\end{aligned}
$$

(for a $k \times k \times k$ tensor)

- Is there a unique solution? parameter counting?
- yes: $k<d+$ generic params (Kruskal (1977))
- what about $k>d$? (Lathauwer, Castaing, \& Cardoso (2007))
- How is this different form an SVD?
- Can we solve this efficiently?

Mixtures of spherical Gaussians

Theorem

The variance σ^{2} is is the smallest eigenvalue of the observed covariance matrix $\mathbb{E}[x \otimes x]-\mathbb{E}[x] \otimes \mathbb{E}[x]$. Furthermore, if
$M_{2}:=\mathbb{E}[x \otimes x]-\sigma^{2} /$
$M_{3}:=\mathbb{E}[x \otimes x \otimes x]$

$$
-\sigma^{2} \sum_{i=1}^{d}\left(\mathbb{E}[x] \otimes \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{i}+\boldsymbol{e}_{i} \otimes \mathbb{E}[x] \otimes \boldsymbol{e}_{i}+\boldsymbol{e}_{i} \otimes \boldsymbol{e}_{i} \otimes \mathbb{E}[x]\right),
$$

then

$$
\begin{aligned}
M_{2} & =\sum w_{i} \mu_{i} \otimes \mu_{i} \\
M_{3} & =\sum w_{i} \mu_{i} \otimes \mu_{i} \otimes \mu_{i}
\end{aligned}
$$

Differing σ_{i} case also solved.

Independent Component Analysis

Theorem

Different higher order moments from MOGs. Use cumulants:

$$
\begin{aligned}
& M_{4}:=\mathbb{E}[x \otimes x \otimes x \otimes x] \\
& -(\mathbb{E}[x \otimes x] \otimes \mathbb{E}[x \otimes x]+\text { more stuff... }),
\end{aligned}
$$

then

$$
M_{4}=\sum w_{i} \mu_{i} \otimes \mu_{i} \otimes \mu_{i} \otimes \mu_{i}
$$

Latent Dirichlet Allocation

prior for topic mixture π :

$$
p_{\alpha}(\pi)=\frac{1}{Z} \prod_{i=1}^{k} \pi_{i}^{\alpha_{i}-1}, \quad \alpha_{0}:=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}
$$

Theorem

Again, three words per doc suffice. Define
$M_{2}:=\mathbb{E}\left[x_{1} \otimes x_{2}\right] \quad-\frac{\alpha_{0}}{\alpha_{0}+1} \mathbb{E}\left[x_{1}\right] \otimes \mathbb{E}\left[x_{1}\right]$
$M_{3}:=\mathbb{E}\left[x_{1} \otimes x_{2} \otimes x_{3}\right] \quad-\frac{\alpha_{0}}{\alpha_{0}+2} \mathbb{E}\left[x_{1} \otimes x_{2} \otimes \mathbb{E}\left[x_{1}\right]\right]-$ more stuff...
Then

$$
\begin{aligned}
& M_{2}=\sum \tilde{w}_{i} \mu_{i} \otimes \mu_{i} \\
& M_{3}=\sum \tilde{w}_{i} \mu_{i} \otimes \mu_{i} \otimes \mu_{i}
\end{aligned}
$$

Learning without inference!

Richer Probabilistic Models

- approaches richer probabilistic models:
- setting 1: have a "diagonalization" problem (like the SVD) topic models/LDA, HMMs, mixture of Gaussians models, parsing (e.g. PCFGs),
- rely on correlational structure/prior of hidden variables
- setting 2: have a "sparse" problem:

Bayesian networks, Dictionary learning, topic modeling

- suppose only a few "topics" are on. no other prior assumptions.
- rely on sparsity + incoherence

Thanks!

- The structure of the correlations gives rise to certain decomposition problems.
- Identifiability: This is the first step.
- Stay Tuned: How do we estimate efficiently?

