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Abstract

We consider unsupervised estimation of mixtures of discrete graphical models,
where the class variable is hidden and each mixture component can have a poten-
tially different Markov graph structure and parameters over the observed variables.
We propose a novel method for estimating the mixture components with provable
guarantees. Our output is a tree-mixture model which servesas a good approxi-
mation to the underlying graphical model mixture. The sample and computational
requirements for our method scale aspoly(p, r), for anr-component mixture ofp-
variate graphical models, for a wide class of models which includes tree mixtures
and mixtures over bounded degree graphs.

Keywords: Graphical models, mixture models, spectral methods, tree approximation.

1 Introduction

The framework of graphical models allows for parsimonious representation of high-dimensional
data by encoding statistical relationships among the givenset of variables through a graph, known
as theMarkov graph. Recent works have shown that a wide class of graphical models can be es-
timated efficiently in high dimensions [1–3]. Moreover, efficient (approximate) inference can be
performed on graphical models using distributed methods such as loopy belief propagation. How-
ever, frequently, graphical models may not suffice to explain all the characteristics of the observed
data. For instance, there may be latent or hidden variables,which can influence the observed data in
myriad ways.

In this paper, we consider latent variable models, where a latent variable can alter the relationships
(both structural and parametric) among the observed variables. In other words, we posit the observed
data as being generated from a mixture of graphical models, where each mixture component has a
potentially different Markov graph structure and parameters. The choice variable corresponding
to the selection of the mixture component is hidden. Such a class of graphical model mixtures
can incorporatecontext-specific dependencies, and employs multiple graph structures to model the
observed data. This leads to a significantly richer class of models, compared to graphical models.

Learning graphical model mixtures is however far more challenging than learning graphical mod-
els. State-of-art theoretical guarantees are mostly limited to mixtures of product distributions, also
known aslatent class modelsor näıve Bayes models. These models are restrictive since they do not
allow for dependencies to exist among the observed variables in each mixture component. Our work
significantly generalizes this class and allows for generalMarkov dependencies among the observed
variables in each mixture component.
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The output of our method is a tree mixture model, which is a good approximation for the underlying
graphical model mixture. The motivation behind fitting the observed data to a tree mixture is clear:
inference can be performed efficiently via belief propagation in each of the mixture components.
See [4] for a detailed discussion. Thus, a tree mixture modeloffers a good tradeoff between using
single-tree models, which are too simplistic, and general graphical model mixtures, where inference
is not tractable.

1.1 Summary of Results

We propose a novel method with provable guarantees for unsupervised estimation of discrete graph-
ical model mixtures. Our method has mainly three stages: graph structure estimation, parameter
estimation, and tree approximation. The first stage involves estimation of theunion graphstructure
G∪ := ∪hGh, which is the union of the Markov graphs{Gh} of the respective mixture components.
Our method is based on a series of rank tests, and can be viewedas a generalization of conditional-
independence tests for graphical model selection (e.g. [1,5, 6]). We establish that our method is
efficient (in terms of computational and sample complexities), when the underlying union graph has
sparse vertex separators. This includes tree mixtures and mixtures with bounded degree graphs.

The second stage of our algorithm involves parameter estimation of the mixture components. In
general, this problem is NP-hard, even in the case of a singlegraphical model. We provide condi-
tions for tractable estimation of pairwise marginals of themixture components. Roughly, we exploit
the conditional-independence relationships (based on theestimate of the union graph) to convert
the given model to a series of mixtures of product distributions. Parameter estimation for product
distribution mixture has been well studied (e.g. [7–9]), and is based onspectral decompositions
of the observed moments. We leverage on these techniques to obtain estimates of the pairwise
marginals for each mixture component. The final stage of our method for obtaining tree approxima-
tions involves running the standard Chow-Liu algorithm [10] on each component using the estimated
pairwise marginals of the mixture components.

We prove that our method correctly recovers the union graph structure and the tree structures cor-
responding to maximum-likelihood tree approximations of the mixture components. Note that if
the underlying model is a tree mixture, we correctly recoverthe tree structures of the mixture com-
ponents. The sample and computational complexities of our method scale aspoly(p, r), for an
r-component mixture ofp-variate graphical models, when the union graph has sparse vertex separa-
tors between any node pair. This includes tree mixtures and mixtures with bounded degree graphs.
To the best of our knowledge, this is the first work to provide provable learning guarantees for
graphical model mixtures. Our algorithm is also efficient for practical implementation and some
preliminary experiments suggest an advantage over EM with respect to running times and accuracy
of structure estimation of the mixture components. Thus, our approach for learning graphical model
mixtures has both theoretical and practical implications.

1.2 Related Work

Graphical Model Selection: Graphical model selection is a well studied problem starting from
the seminal work of Chow and Liu [10] for finding the maximum-likelihood tree approximation of a
graphical model. Works on high-dimensional loopy graphical model selection are more recent. They
can be classified into mainly two groups: non-convex local approaches [1, 2, 6] and those based on
convex optimization [3,11]. However, these works are not directly applicable for learning mixtures
of graphical models. Moreover, our proposed method also provides a new approach for graphical
model selection, in the special case when there is only one mixture component.

Learning Mixture Models: Mixture models have been extensively studied, and there area num-
ber of recent works on learning high-dimensional mixtures,e.g. [12,13]. These works provide guar-
antees on recovery under various separation constraints between the mixture components and/or
have computational and sample complexities growing exponentially in the number of mixture com-
ponentsr. In contrast, the so-calledspectral methodshave both computational and sample complex-
ities scaling only polynomially in the number of components, and do not impose stringent separation
constraints. Spectral methods are applicable for parameter estimation in mixtures of discrete product
distributions [7] and more generally for latent trees [8] and general linear multiview mixtures [9].

2



We leverage on these techniques for parameter estimation inmodels beyond product distribution
mixtures.

2 Graphical Models and their Mixtures

A graphical model is a family of multivariate distributionsMarkov on a given undirected graph [14].
In a discrete graphical model, each node in the graphv ∈ V is associated with a random variable
Yv taking value in a finite setY. Let d := |Y| denote the cardinality of the set andp := |V |
denote the number of variables. We say that a vector of randomvariablesY := (Y1, . . . , Yp) with a
joint probability mass function (pmf)P is Markov on the graphG if P satisfies theglobal Markov
propertyfor all disjoint setsA,B ⊂ V

P (yA,yB|yS(A,B;G)) = P (yA|yS(A,B;G))P (yB |yS(A,B;G)), ∀A,B ⊂ V : N [A] ∩ N [B] = ∅.

where the setS(A,B;G) is a node separator1betweenA andB, andN [A] denotes the closed
neighborhood ofA (i.e., includingA).

In this paper, we consider mixtures of discrete graphical models. LetH denote the discrete hidden
choice variable corresponding to selection of a different mixture components, taking values in[r] :=
{1, . . . , r} and letY denote the observed random vector. DenoteπH := [P (H = h)]>h as the
probability vector of the mixing weights andGh as the Markov graph of the distributionP (y|H =
h) of each mixture component. Givenn i.i.d. samplesyn = [y1, . . . ,yn]

> from P (y), our goal
is to find a tree approximation for each mixture component{P (y|H = h)}h. We do not assume
any knowledge of the mixing weightsπH or Markov graphs{Gh}h or parameters of the mixture
components{P (y|H = h)}h. Moreover, since the variableH is latent, we do not a priori know the
mixture component from which a sample is drawn. Thus, a majorchallenge is in decomposition of
the observed statistics into the component models, and we tackle this in three main stages.

Our method proceeds in three main stages. First, we estimatethe union graphG∪ := ∪r
h=1Gh,

which is the union of the Markov graphs of the components. We then use this graph estimatêG∪

to obtain the pairwise marginals of the respective mixture components{P (y|H = h)}h. Finally,
Chow-Liu algorithm provides tree approximations{Th}h of the individual mixture components.

3 Estimation of the Union of Component Graphs

We propose a novel method for learning graphical model mixtures by first estimating the union
graphG∪ = ∪r

h=1Gh, which is the union of the graphs of the components. In the special case
whenGh ≡ G∪, this gives the graph estimate of the components. However, at first glance, the
union graphG∪ appears to have no direct relationship with the marginalized modelP (y). We first
provide intuitions on howG∪ relates to the observed statistics.

Intuitions: We first establish the simple result that the union graphG∪ satisfies Markov property
in each mixture component. Recall thatS(u, v;G∪) denotes a vertex separator between nodesu and
v in G∪, i.e., its removal disconnectsu andv in G∪.

Fact 1 (Markov Property of G∪) For any two nodesu, v ∈ V such that(u, v) /∈ G∪,

Yu ⊥⊥ Yv|YS , H, S := S(u, v;G∪). (1)

Proof: The separator set inG∪, denoted byS := S(u, v;G∪), is also a vertex separator foru and
v in each of the component graphsGh. This is because removal ofS disconnectsu andv in each
Gh. Thus, we have Markov property in each component:Yu ⊥⊥ Yv|YS , {H = h}, for eachh ∈ [r],
and the above result follows. 2

The above result can be exploited to obtain union graph estimate as follows: two nodesu, v are
not neighbors inG∪ if a separator setS can be found which results in conditional independence,
as in (1). The main challenge is indeed that the variableH is not observed and thus, conditional

1A setS(A,B;G) ⊂ V is a separator of setsA andB if the removal of nodes inS(A,B;G) separatesA
andB into distinct components.
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independence cannot be directly inferred via observed statistics. However, the effect ofH on the
observed statistics can be quantified as follows:

Lemma 1 (Rank Property) Given an r-component mixture of graphical models withG∪ =
∪r
h=1Gh, for anyu, v ∈ V such that(u, v) /∈ G∪ andS := S(u, v;G∪), the probability matrix

Mu,v,{S;k} := [P [Yu = i, Yv = j,YS = k]]i,j has rank at mostr for anyk ∈ Y |S|.

The proof is given in [15]. Thus, the effect of marginalizingthe choice variableH is seen in the
rank of the observed probability matricesMu,v,{S;k}. Whenu andv are non-neighbors inG∪, a
separator setS can be found such that the rank ofMu,v,{S;k} is at mostr. In order to use this result
as a criterion for inferring neighbors inG∪, we require that the rank ofMu,v,{S;k} for any neighbors
(u, v) ∈ G∪ be strictly larger thanr. This requires the dimension of each node variabled > r. We
discuss in detail the set of sufficient conditions for correctly recoveringG∪ in Section 3.1.

Tractable Graph Families: Another obstacle in using Lemma 1 to estimate graphG∪ is compu-
tational: the search for separatorsS for any node pairu, v ∈ V is exponential in|V | := p if no
further constraints are imposed. Defines(G1, . . . , Gr) to be the worst-case bound for the model un-
der consideration:∪r

h=1|S(u, v;Gh)| ≤ s(G1, . . . , Gr), ∀ (u, v) /∈ G∪, G∪ := G1 ∪ . . .Gr. Note
that∪r

h=1S(u, v;Gh) ⊆ S(u, v;G∪) since a separation on the union graph implies separation in its
components. This implies thats(G1, . . . , Gr) ≤ s(G∪), and equality holds whenG1 = . . . = Gr.
Similarly, we also have the bounds(G1, . . . , Gr) ≤

∑r
h=1 s(Gh).

In light of the above bounds, we list a few graph families where s(G1, . . . , Gr) or its bounds(G∪)
is small:

1. If G∪ is trivial (i.e., no edges) thens(G∪) = 0, we have a mixture of product distributions.

2. WhenG∪ is a tree, i.e., we have a mixture model Markov on the same tree, thens(G∪) = 1,
since there is a unique path between any two nodes on a tree.

3. For a general graphG∪ with treewidthtw(G∪) and maximum degree∆(G∪), we have that
s(G∪) ≤ min(∆(G∪), tw(G∪)).

4. For an arbitraryr-component tree mixture,G∪ = ∪hTh where each component is a tree,
we haves(T1, . . . , Tr) ≤ r sinces(Ti) = 1.

5. For an arbitrary mixture of bounded degree graphs, we haves(G1, . . . , Gr) ≤
∑

h∈[r]∆h,
where∆h is the maximum degree inGh.

Algorithm 1 Ĝn
∪ = RankTest(yn; ξn,p, η, r) for estimatingG∪ := ∪r

h=1Gh of an r-component
mixture usingyn samples, whereη is the bound on size of vertex separators between any node pair:
maxu,v ∪r

h=1|S(u, v;Gh)| ≤ η, andξn,p is a threshold on the singular values.

Rank(A; ξ) denotes the effective rank of matrixA, i.e., number of singular values more thanξ.
M̂n

u,v,{S;k} := [P̂n(Yu = i, Yv = j,YS = k)]i,j is the empirical estimate computed usingn i.i.d.

samplesyn. Initialize Ĝn
∪ = (V, ∅). For eachu, v ∈ V , estimateM̂n

u,v,{S;k} from yn for some

configurationk ∈ Y |S|, if

min
S⊂V \{u,v}

|S|≤η

Rank(M̂n
u,v,{S;k}; ξn,p) > r, (2)

then add(u, v) to Ĝn
∪.

Rank Test: Based on the above observations, we propose a rank test to estimateG∪ := ∪h∈[r]Gh,
the union graph in Algorithm 1. The method is based on a searchfor potential separatorsS between
any two given nodesu, v ∈ V , based on the effective rank of̂Mn

u,v,{S;k}: if the effective rank isr
or less, thenu andv are declared as non-neighbors (and setS as their separator). If no such sets are
found, they are declared as neighbors. Thus, the method involves searching for separators for each
node pairu, v ∈ V , by considering all setsS ⊂ V \ {u, v} satisfying|S| ≤ η, whereη is the bound
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on separator sets. From Lemma 1, it is clear that the rank testfor structure estimation succeeds if we
setη ≥ s(G1, . . . , Gr). The computational complexity of this procedure isO(pη+2d3), whered is
the dimension of each node variableYi, for i ∈ V andp is the number of nodes. This is because the
number of rank tests performed isO(pη+2) over all node pairs and conditioning sets; each rank tests
hasO(d3) complexity since it involves performing singular value decomposition (SVD) of ad × d
matrix. The rank test also presents a new approach for graphical model selection (i.e., whenr = 1).

3.1 Analysis of the Rank Test

We now provide guarantees for the success of rank tests in estimatingG∪. As noted before, we
require that the number of componentsr and the dimensiond of each node variable satisfyd >
r. Moreover, we assume bounds on the size of separator sets. Recall that η ≥ s(G1, . . . , Gr)
denotes the bound on the minimal separator set for any node pair, and we assume thatη = O(1).
This includes tree mixtures and mixtures over bounded degree graphs, as discussed previously. In
addition, the following parameters determine the success of the rank tests.

(A1) Rank condition for neighbors: LetMu,v,{S;k} := [P (Yu = i, Yv = j,YS = k)]i,j and

ρmin := min
(u,v)∈G∪,|S|≤η

S⊂V \{u,v}

max
k∈Y|S|

σr+1

(
Mu,v,{S;k}

)
> 0, (3)

whereσr+1(·) denotes the(r+1)th singular value, when the singular values are arranged in
the descending orderσ1(·) ≥ σ2(·) ≥ . . . σd(·). This ensures that the probability matrices
for neighbors(u, v) ∈ G∪ have (effective) rank of at leastr+1, and thus, the rank test can
correctly distinguish neighbors from non-neighbors. It rules out the presence of spurious
low rank matrices between neighboring nodes inG∪ (for instance, when the nodes are
marginally independent or when the distribution is degenerate).

(A2) Choice of threshold ξ: The thresholdξ on singular values is chosen asξ := ρmin

2 .

(A3) Number of Samples: Givenδ ∈ (0, 1), the number of samplesn satisfies

n > nRank(δ; p) := max

(
1

t2
(
2 log p+ log δ−1 + log 2

)
,

(
2

ρmin − t

)2
)
, (4)

for somet ∈ (0, ρmin) (e.g.t = ρmin/2,) wherep is the number of nodes.

We now provide the result on the success of recovering the union graphG∪ := ∪r
h=1Gh.

Theorem 1 (Success of Rank Tests) The RankTest(yn; ξ, η, r) recovers the correct graphG∪,
which is the union of the component Markov graphs, under (A1)–(A3) with probability at least
1− δ.

A special case of the above result is graphical model selection, where there is a single graphical
model(r = 1) and we are interested in estimating its graph structure.

Corollary 1 (Application to Graphical Model Selection) Given n i.i.d. samples yn, the
RankTest(yn; ξ, η, 1) is structurally consistent under (A1)–(A3) with probability at least1− δ.

Remarks: Thus, the rank test is also applicable for graphical model selection. Previous works (see
Section 1.2) have proposed tests based on conditional independence, using either conditional mutual
information or conditional variation distances, see [1, 6]. The rank test above is thus an alternative
test for conditional independence in graphical models, resulting in graph structure estimation. In
addition, it extends naturally to estimation of union graphstructure of mixture components. Our
above result establishes that our method is also efficient inhigh dimensions, since it only requires
logarithmic samples for structural consistency(n = Ω(log p)).

4 Parameter Estimation of Mixture Components

Having obtained an estimate of the union graphG∪, we now describe a procedure for estimating
parameters of the mixture components{P (y|H = h)}. Our method is based on spectral decom-
position, proposed previously for mixtures of product distributions [7–9]. We recap it briefly below
and then describe how it can be adapted to the more general setting of graphical model mixtures.
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Recap of Spectral Decomposition in Mixtures of Product Distributions: Consider the case
whereV = {u, v, w}, andYu ⊥⊥ Yv ⊥⊥ Yw|H . For simplicity assume thatd = r, i.e., the hidden
and observed variables have the same dimension. This assumption will be removed subsequently.
DenoteMu|H := [P (Yu = i|H = j)]i,j , and similarly forMv|H ,Mw|H and assume that they are
full rank. Denote the probability matricesMu,v := [P (Yu = i, Yv = j)]i,j andMu,v,{w;k} :=
[P (Yu = i, Yv = j, Yw = k)]i,j . The parameters (i.e., matricesMu|H ,Mv|H ,Mw|H) can be
estimated as:

Lemma 2 (Mixture of Product Distributions) Given the above model, letλ(k) =

[λ
(k)
1 , . . . , λ

(k)
d ]> be the column vector with thed eigenvalues given by

λ
(k) := Eigenvalues

(
Mu,v,{w;k}M

−1
u,v

)
, k ∈ Y. (5)

LetΛ := [λ(1)|λ(2)| . . . |λ(d)] be a matrix where thekth column corresponds toλ(k). We have

Mw|H := [P (Yw = i|H = j)]i,j = Λ>. (6)

For the proof of the above result and for the general algorithm (whend ≥ r), see [9]. Thus, if
we have a general product distribution mixture over nodes inV , we can learn the parameters by
performing the above spectral decomposition over different triplets{u, v, w}. However, an obstacle
remains: spectral decomposition over different triplets{u, v, w} results in different permutations
of the labels of the hidden variableH . To overcome this, note that any two triplets(u, v, w) and
(u, v′, w′) share the same set of eigenvectors in (5) when the “left” nodeu is the same. Thus, if we
consider a fixed nodeu∗ ∈ V as the “left” node and use a fixed matrix to diagonalize (5) forall
triplets, we obtain a consistent ordering of the hidden labels over all triplet decompositions. Thus,
we can learn a general product distribution mixture using only third-order statistics.

Parameter Estimation in Graphical Model Mixtures: We now adapt the above procedure for
estimating components of a general graphical model mixture. We first make a simple observation on
how to obtain mixtures of product distributions by considering separators on the union graphG∪.
For any three nodesu, v, w ∈ V , which are not neighbors onG∪, letSuvw denote amultiwayvertex
separator, i.e., the removal of nodes inSuvw disconnectsu, v andw in G∪. On lines of Fact 1,

Yu ⊥⊥ Yv ⊥⊥ Yw|YSuvw
, H, ∀u, v, w : (u, v), (v, w), (w, u) /∈ G∪. (7)

Thus, by fixing the configuration of nodes inSuvw, we obtain a product distribution mixture over
{u, v, w}. If the previously proposed rank test is successful in estimatingG∪, then we possess cor-
rect knowledge of the separatorsSuvw. In this case, we can obtain estimates{P (Yw|YSuvw

=
k,H = h)}h by fixing the nodes inSuvw and using the spectral decomposition described in
Lemma 2, and the procedure can be repeated over different triplets{u, v, w}.

An obstacle remains, viz., the permutation of hidden labelsover different triplet decompositions
{u, v, w}. In case of product distribution mixture, as discussed previously, this is resolved by fixing
the “left” node in the triplet to someu∗ ∈ V and using the same matrix for diagonalization over
different triplets. However, an additional complication arises when we consider graphical model
mixtures, where conditioning over separators is required.We require that the permutation of the
hidden labels be unchanged upon conditioning over different values of variables in the separator set
Su∗vw. This holds when the separator setSu∗vw has no effect on nodeu∗, i.e., we require that

∃u∗ ∈ V, s.t. Yu∗ ⊥⊥ YV \u∗
|H, (8)

which implies thatu∗ is isolated from all other nodes in graphG∪.

Condition (8) is required for identifiability if we only operate on statistics over different triplets
(along with their separator sets). In other words, if we resort to operations over only low order
statistics, we require additional conditions such as (8) for identifiability. However, our setting is a
significant generalization over the mixtures of product distributions, where (8) is required to hold
for all nodes.

Finally, since our goal is to estimate pairwise marginals ofthe mixture components, in place of node
w in the triplet{u, v, w} in Lemma 2, we need to consider a node paira, b ∈ V . The general algo-
rithm allows the variables in the triplet to have different dimensions, see [9] for details. Thus, we
obtain estimates of the pairwise marginals of the mixture components. For details on implementa-
tion, refer to [15].
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4.1 Analysis and Guarantees

In addition to (A1)–(A3) in Section 3.1 to guarantee correctrecovery ofG∪ and the conditions
discussed above, the success of parameter estimation depends on the following quantities:

(A4) Non-degeneracy: For each node paira, b ∈ V , and any subsetS ⊂ V \ {a, b} with
|S| ≤ 2s(G∪) andk ∈ Y |S|, the probability matrixM(a,b)|H,{S;k} := [P (Ya,b = i|H =

j,YS = k)]i,j ∈ R
d2×r has rankr.

(A5) Spectral Bounds and Number of Samples: Refer to various spectral bounds used to
obtainK(δ; p, d, r) in (28) in [15], whereδ ∈ (0, 1) is fixed. Given any fixedε ∈ (0, 1),
assume that the number of samples satisfies

n > nspect(δ, ε; p, d, r) :=
4K2(δ; p, d, r)

ε2
. (9)

Note that (A4) is a natural condition required for success ofspectral decomposition and has been
previously imposed for learning product distribution mixtures [7–9]. Moreover, when (A4) does not
hold, i.e., when the matrices are not full rank, parameter estimation is computationally at least as
hard as learning parity with noise, which is conjectured to be computationally hard [8]. Condition
(A5) is required for learning product distribution mixtures [9], and we inherit it here.

We now provide guarantees for estimation of pairwise marginals of the mixture components. Let
‖ · ‖2 on a vector denote thè2 norm.

Theorem 2 (Parameter Estimation of Mixture Components) Under the assumptions (A1)–(A5),
the spectral decomposition method outputsP̂ spect(Ya, Yb|H = h), for eacha, b ∈ V , such that for
all h ∈ [r], there exists a permutationτ(h) ∈ [r] with

‖P̂ spect(Ya, Yb|H = h)− P (Ya, Yb|H = τ(h))‖2 ≤ ε, (10)

with probability at least1− 4δ.

Remark: Recall thatp denotes the number of variables,r is the number of mixture com-
ponents, d is the dimension of each node variable ands(G∪) is the bound on separa-
tor sets between any node pair in the union graph. We establish that K(δ; p, d, r) is
O
(
p2s(G∪)+2d2s(G∪)r5δ−1 poly log(p, d, r, δ−1)

)
in [15]. Thus, we require the number of samples

in (9) scaling asn = Ω
(
p4s(G∪)+4d4s(G∪)r10δ−2ε−2 poly log(p, d, r, δ−1)

)
. Since we consider

models wheres(G∪) = O(1) is a small constant, this implies that we have a polynomial sample
complexity inp, d, r.

Tree Approximation of Mixture Components: The final step involves using the estimated pair-
wise marginals of each component{P̂ spect(Ya, Yb|H = h)} to obtain tree approximation of the
component via Chow-Liu algorithm [10]. We now impose a standard condition of non-degeneracy
on each mixture component to guarantee the existence of a unique tree structure corresponding to
the maximum-likelihood tree approximation to the mixture component.

(A6) Separation of Mutual Information: Let Th denote the maximum-likelihood tree approx-
imation corresponding to the modelP (y|H = h) when exact statistics are input and let

ϑ := min
h∈[r]

min
(a,b)/∈Th

min
(u,v)∈Path(a,b;Th)

(I(Yu, Yv|H = h)− I(Ya, Yb|H = h)) , (11)

wherePath(a, b;Th) denotes the edges along the path connectinga andb in Th. Intuitively
ϑ denotes the “bottleneck” where errors are most likely to occur in tree structure estimation.
See [16] for a detailed discussion.

(A7) Number of Samples: Givenεtree defined in [15], we require

n > nspect(δ, ε
tree; p, d, r), (12)

wherenspect is given by (9). Intuitively,εtree provides the bound on distortion of the
estimated pairwise marginals of the mixture components, required for correct estimation of
tree approximations, and depends onϑ in (11).
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3000 4000 5000 6000 7000 8000
−7.5

−7

−6.5

−6

−5.5

 

 

Sample Sizen

Proposed+EM
Proposed
EM

Lo
g

-l
ik

el
ih

o
o

d

(b) Conditional likelihood of strong
component

3000 4000 5000 6000 7000 8000
−30

−28

−26

−24

−22

−20

−18

 

 

Sample Sizen

Proposed+EM
Proposed
EM

Lo
g

-l
ik

el
ih

o
o

d

(c) Conditional likelihood of weak
component

Figure 1: Performance of the proposed method, EM and EM initialized with the proposed method
output on a tree mixture with two components. Strong component refers to the component with
strong correlations and vice versa.

Theorem 3 (Tree Approximations of Mixture Components) Under (A1)–(A7), the Chow-Liu al-
gorithm outputs the correct tree structures correspondingto maximum-likelihood tree approxima-
tions of the mixture components{P (y|H = h)} with probability at least1− 4δ, when the estimates
of pairwise marginals{P̂ spect(Ya, Yb|H = h)} from spectral decomposition method are input.

Remark: Thus our approach succeeds in recovering the correct tree structures corresponding to
ML-tree approximations of mixture components. The computational and sample complexities scale
polynomially in the number of variablesp and the number of componentsr. Note that if the under-
lying model is a tree mixture, we recover the tree structuresof the mixture components.

5 Experiments

Experimental results are presented on synthetic data. We estimate the graph using proposed algo-
rithm and compare the performance of our method with EM [4]. Comprehensive results based on
the normalized edit distances and log-likelihood scores between the estimated and the true graphs
are presented. We generate samples from a mixture over two different trees (r = 2) with mixing
weightsπ = [0.7, 0.3] using Gibbs sampling. Each mixture component is generated from the stan-
dard Potts model onp = 60 nodes, where the node variables are ternary (d = 3), and the number of
samplesn ∈ [2.5× 103, 104]. The joint distribution of nodes in each mixture component is given by

P (X |H = h) ∝ exp


 ∑

(i,j)∈G

Ji,j;h(I(Yi = Yj)− 1) +
∑

i∈V

Ki;hYi,




whereI is the indicator function andJh := {Ji,j;h} are the edge potentials in the model. For the
first component (H = 1), the edge potentialsJ1 are chosen uniformly from[5, 5.05], while for the
second component (H = 2), J2 are chosen from[0.5, 0.55]. We refer to the first component as
strongand the second asweaksince the correlations vary widely between the two models due to the
choice of parameters. Thenode potentialsare all set to zero (Ki;h = 0) except at the isolated node
u∗ in the union graph. The performance of the proposed method iscompared with EM. We consider
10 random initializations of EM and run it to convergence. Wealso evaluated EM by utilizing
proposed result as the initial point (referred to as Proposed+EM in the figures). We observe in Fig 1a
that the overall likelihood under our method is comparable with EM. Intuitively this is because EM
attempts to maximize the overall likelihood. However, our algorithm has significantly superior
performance with respect to the edit distance which is the error in estimating the tree structure in
the two components, as seen in Fig 2. In fact, EM never managesto recover the structure of the
weak components(i.e., the component with weak correlations). Intuitively, this is because EM uses
the overall likelihood as criterion for tree selection. Under the above choice of parameters, the
weak component has a much lower contribution to the overall likelihood, and thus, EM is unable to
recover it. We also observe in Fig 1b and Fig 1c, that our proposed method has superior performance
in terms of conditional likelihood for both the components.Classification error is evaluated in Fig 2a
and we observe that our method (as well as EM initialized withthe output of our method) performs
better than EM.

The above experimental results confirm our theoretical analysis and suggest the advantages of our
basic technique over more common approaches. Our method provides a point of tractability in the
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(a) Classification error
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(b) Strong component edit distance
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(c) Weak component edit distance

Figure 2: Classification error and normalized edit distances of the proposed method, EM and EM
initialized with the proposed method output on the tree mixture.

spectrum of probabilistic models, and extending beyond theclass we consider here is a promising
direction of future research.
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