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Abstract

We consider unsupervised estimation of mixtures of discgeaphical models,
where the class variable is hidden and each mixture compoaarhave a poten-
tially different Markov graph structure and parameterg dive observed variables.
We propose a novel method for estimating the mixture compisneith provable
guarantees. Our output is a tree-mixture model which seasesgood approxi-
mation to the underlying graphical model mixture. The sanguld computational
requirements for our method scalepasy (p, r), for anr-component mixture gf-
variate graphical models, for a wide class of models whickuies tree mixtures
and mixtures over bounded degree graphs.

Keywords: Graphical models, mixture models, spectral methods, fppecximation.

1 Introduction

The framework of graphical models allows for parsimonioegresentation of high-dimensional
data by encoding statistical relationships among the geetrof variables through a graph, known
as theMarkov graph Recent works have shown that a wide class of graphical reaxel be es-
timated efficiently in high dimensions [1-3]. Moreover, efint (approximate) inference can be
performed on graphical models using distributed methodhk sis loopy belief propagation. How-
ever, frequently, graphical models may not suffice to expddli the characteristics of the observed
data. For instance, there may be latent or hidden variablgsh can influence the observed data in
myriad ways.

In this paper, we consider latent variable models, wheréemiaariable can alter the relationships
(both structural and parametric) among the observed agaln other words, we posit the observed
data as being generated from a mixture of graphical modéisraveach mixture component has a
potentially different Markov graph structure and paramseteThe choice variable corresponding
to the selection of the mixture component is hidden. Suchaascbf graphical model mixtures
can incorporateontext-specific dependencgiesnd employs multiple graph structures to model the
observed data. This leads to a significantly richer classaxfets, compared to graphical models.

Learning graphical model mixtures is however far more @majing than learning graphical mod-
els. State-of-art theoretical guarantees are mostlydinid mixtures of product distributions, also
known adatent class modelsr naive Bayes model§hese models are restrictive since they do not
allow for dependencies to exist among the observed vagabkeach mixture component. Our work
significantly generalizes this class and allows for gendiakov dependencies among the observed
variables in each mixture component.



The output of our method is a tree mixture model, which is adggqmproximation for the underlying
graphical model mixture. The motivation behind fitting theserved data to a tree mixture is clear:
inference can be performed efficiently via belief propagain each of the mixture components.
See [4] for a detailed discussion. Thus, a tree mixture moffets a good tradeoff between using
single-tree models, which are too simplistic, and gena@glgical model mixtures, where inference
is not tractable.

1.1 Summary of Results

We propose a novel method with provable guarantees for @ngiged estimation of discrete graph-
ical model mixtures. Our method has mainly three stagesphgséructure estimation, parameter
estimation, and tree approximation. The first stage invoaatimation of thenion graphstructure
Gy := U, Gp, which is the union of the Markov grapi&, } of the respective mixture components.
Our method is based on a series of rank tests, and can be vasxedeneralization of conditional-
independence tests for graphical model selection (e., Bl]). We establish that our method is
efficient (in terms of computational and sample comples)tiezhen the underlying union graph has
sparse vertex separators. This includes tree mixtures &tdnes with bounded degree graphs.

The second stage of our algorithm involves parameter estimaf the mixture components. In
general, this problem is NP-hard, even in the case of a sgmglghical model. We provide condi-
tions for tractable estimation of pairwise marginals ofthigture components. Roughly, we exploit
the conditional-independence relationships (based omslimate of the union graph) to convert
the given model to a series of mixtures of product distrifmgi Parameter estimation for product
distribution mixture has been well studied (e.g. [7-9])d & based orspectral decompositions
of the observed moments. We leverage on these techniqudstam @stimates of the pairwise
marginals for each mixture component. The final stage of athod for obtaining tree approxima-
tions involves running the standard Chow-Liu algorithm][@® each component using the estimated
pairwise marginals of the mixture components.

We prove that our method correctly recovers the union grapittsire and the tree structures cor-
responding to maximum-likelihood tree approximationsted mixture components. Note that if
the underlying model is a tree mixture, we correctly recdlertree structures of the mixture com-
ponents. The sample and computational complexities of aethad scale agoly(p,r), for an
r-component mixture gf-variate graphical models, when the union graph has sparsexsepara-
tors between any node pair. This includes tree mixtures artliras with bounded degree graphs.
To the best of our knowledge, this is the first work to providevable learning guarantees for
graphical model mixtures. Our algorithm is also efficient jpactical implementation and some
preliminary experiments suggest an advantage over EM wihect to running times and accuracy
of structure estimation of the mixture components. Thusapproach for learning graphical model
mixtures has both theoretical and practical implications.

1.2 Related Work

Graphical Model Selection: Graphical model selection is a well studied problem stgrfhiom
the seminal work of Chow and Liu [10] for finding the maximuikelihood tree approximation of a
graphical model. Works on high-dimensional loopy graphivadel selection are more recent. They
can be classified into mainly two groups: non-convex locgrapaches [1, 2, 6] and those based on
convex optimization [3,11]. However, these works are no#atly applicable for learning mixtures
of graphical models. Moreover, our proposed method alswiges a new approach for graphical
model selection, in the special case when there is only ortungicomponent.

Learning Mixture Models. Mixture models have been extensively studied, and thera aren-
ber of recent works on learning high-dimensional mixtueeg, [12, 13]. These works provide guar-
antees on recovery under various separation constraihisebe the mixture components and/or
have computational and sample complexities growing expiiedéy in the number of mixture com-
ponents-. In contrast, the so-callespectral methodsave both computational and sample complex-
ities scaling only polynomially in the number of componeatsd do notimpose stringent separation
constraints. Spectral methods are applicable for pararestienation in mixtures of discrete product
distributions [7] and more generally for latent trees [8Haeneral linear multiview mixtures [9].



We leverage on these techniques for parameter estimatiorodels beyond product distribution
mixtures.

2 Graphical Modelsand their Mixtures

A graphical modelis a family of multivariate distributiongarkov on a given undirected graph [14].
In a discrete graphical model, each node in the graghV is associated with a random variable
Y, taking value in a finite se}. Letd := |Y| denote the cardinality of the set apd:= |V/|
denote the number of variables. We say that a vector of randoiablesY := (Y7,...,Y,) witha
joint probability mass function (pmf}’ is Markov on the graply if P satisfies thglobal Markov
propertyfor all disjoint setsd, B c V

P(ya,¥yBlys.Ba) = P(yalysa,p,e)P(yBlysa,p), VA BCV:N[ANN[B]=0.

where the seS(4, B; G) is anode separatdbetweenA and B, and N[A] denotes the closed
neighborhood of4 (i.e., includingA).

In this paper, we consider mixtures of discrete graphicadef® LetH denote the discrete hidden
choice variable corresponding to selection of a differemtuane components, taking values|if} :=
{1,...,7} and letY denote the observed random vector. Denefe := [P(H = h)]} as the
probability vector of the mixing weights an@l;, as the Markov graph of the distributid®(y|H =

h) of each mixture component. Giveni.i.d. sampley™ = [yi,...,y.]" from P(y), our goal
is to find a tree approximation for each mixture componid@dty|H = h)},. We do not assume
any knowledge of the mixing weightsy; or Markov graphg G}, }, or parameters of the mixture
component§ P(y|H = h)},. Moreover, since the variab® is latent, we do not a priori know the
mixture component from which a sample is drawn. Thus, a n@jatlenge is in decomposition of
the observed statistics into the component models, andakéetthis in three main stages.

Our method proceeds in three main stages. First, we estitimatenion graplG, := Uj_, G,

which is the union of the Markov graphs of the components. Néa tuse this graph estimatg,
to obtain the pairwise marginals of the respective mixtuegonenty P(y|H = h)}. Finally,
Chow-Liu algorithm provides tree approximatiofig, };, of the individual mixture components.

3 Estimation of the Union of Component Graphs

We propose a novel method for learning graphical model megby first estimating the union
graphGy = Uj_, Gy, which is the union of the graphs of the components. In theiapease
whenG), = G, this gives the graph estimate of the components. Howevdirsaglance, the
union graphG, appears to have no direct relationship with the margindliredel P(y). We first
provide intuitions on hové, relates to the observed statistics.

Intuitions. We first establish the simple result that the union gr&phsatisfies Markov property
in each mixture component. Recall ti#t:, v; G;) denotes a vertex separator between nadasd
vin Gy, i.e., its removal disconnectsandv in Gy.

Fact 1 (Markov Property of G) For any two nodes, v € V such that(u, v) ¢ Gy,
Y. LY, |Ys, H, S:=8u,v;Gy). (1)

Proof: The separator set if, denoted bys := S(u, v; Gy), is also a vertex separator forand
v in each of the component grapts,. This is because removal 6fdisconnects: andv in each
Gy.. Thus, we have Markov property in each componéft:l Y,|Ys, {H = h}, for eachh € [r],
and the above result follows. O

The above result can be exploited to obtain union graph agtims follows: two nodes, v are
not neighbors inGy, if a separator sef can be found which results in conditional independence,
as in (1). The main challenge is indeed that the varidbles not observed and thus, conditional

'AsetS(A, B;G) C V is a separator of set$ and B if the removal of nodes i (A, B; G) separatesi
and B into distinct components.



independence cannot be directly inferred via observesstat However, the effect aff on the
observed statistics can be quantified as follows:

Lemma 1 (Rank Property) Given anr-component mixture of graphical models with, =
U5 _, Gy, for anyu,v € V such that(u,v) ¢ Gy andS := S(u,v; Gy), the probability matrix
M, (s} = [P[Yu =1i.Y, = j,Ys = k]];; has rank at most for anyk € Y.

The proof is given in [15]. Thus, the effect of marginalizitige choice variablé? is seen in the
rank of the observed probability matricas, ,, ;s.x;- Whenu andv are non-neighbors iG:,, a
separator sef can be found such that the rankau s:x} IS at mostr. In order to use this result
as a criterion for inferring neighbors @, we reqwret at the rank &fl,, , (s.xy for any neighbors
(u,v) € Gy be strictly larger tham. This requires the dimension of each node variabie r. We
discuss in detail the set of sufficient conditions for cotlgerecoveringGy in Section 3.1.

Tractable Graph Families: Another obstacle in using Lemma 1 to estimate gr&phis compu-
tational: the search for separatdsor any node pain, v € V is exponential inV| := p if no
further constraints are imposed. Defi{é71, . . ., G,.) to be the worst-case bound for the model un-
der considerationJ;,_, |S(u, v; Gp)| < s(Gh,...,Gy), ¥ (u,v) ¢ Gu,Gu = G1 U...G,. Note
thatU; _,S(u,v; G,) € S(u,v; Gu) since a separation on the union graph implies separatids in i
components. This implies thatGy, ..., G,) < s(Gy), and equality holds whe&; = ... = G,.
Similarly, we also have the boundGy, ..., G,) < 22:1 s(Gh).

In light of the above bounds, we list a few graph families veh€iG+, . . ., G,.) or its bounds(Gy,)
is small:

1. If Gy is trivial (i.e., no edges) thes(G,) = 0, we have a mixture of product distributions.

2. WhenGy is atree, i.e., we have a mixture model Markov on the samettrers(Gy) = 1,
since there is a unique path between any two nodes on a tree.

3. Forageneral grapi_ with treewidthtw (G ) and maximum degre&(Gy,), we have that
s(Gu) < min(A(Gy), tw(Gy)).

4. For an arbitrary--component tree mixtur&zy, = U1, where each component is a tree,
we haves(Ty,...,T;) < rsinces(T;) = 1.

5. For an arbitrary mixture of bounded degree graphs, we h@ve, ..., G,) < Zhe[r] A
whered\;, is the maximum degree if¥},.

Algorithm 1 @ﬁ = RankTest(y"; &, »,n, r) for estimatingGy := U}, _, G}, of anr-component
mixture usingy™ samples, wherg is the bound on size of vertex separators between any node pai
maxy, , Uy _|S(u,v; Gp)| <1, andg, , is a threshold on the singular values.

Rank(A; ¢) denotes the effective rank of matri i.e., number of singular values more th@an
M, sy = [P"(Yu =i,y = j, Yg = k)l;,; is the empirical estimate computed usingi.d.
samplesy”. Initialize G, = (V,0). For eachu,v € V, estimateM (S5k} from y™ for some

configuratiork € Y!°!, if

in  Rank(M" . , 2
SC\r/n\l{rt,v} a1 ( w,v,{S;k}" 5 710) r ( )
IS1<n

then addu, v) to @[ﬁ.

Rank Test: Based on the above observations, we propose a rank tesin@&st, := Uy, ¢(,1Gh,

the union graph in Algorithm 1. The method is based on a se‘arqh)tential separatotS between
any two given nodes, v € V, based on the effective rank M v {Sik}- if the effective rank is-

or less, then, andwv are declared as non-neighbors (and$es the|r separator). If no such sets are
found, they are declared as neighbors. Thus, the methotVas/eearching for separators for each
node pairu, v € V, by considering all setS C V' \ {u, v} satisfying|S| < n, wherey is the bound



on separator sets. From Lemma 1, it is clear that the rankatestructure estimation succeeds if we
setn > s(G1,...,G,). The computational complexity of this procedurgi&+2d?), whered is

the dimension of each node variablg for i € V' andp is the number of nodes. This is because the
number of rank tests performediXp”*?2) over all node pairs and conditioning sets; each rank tests
hasO(d?) complexity since it involves performing singular value dexposition (SVD) of al x d
matrix. The rank test also presents a new approach for grajghiodel selection (i.e., when= 1).

3.1 Analysisof the Rank Test

We now provide guarantees for the success of rank testsimatsig G,. As noted before, we
require that the number of componentand the dimensiod of each node variable satisty >

r. Moreover, we assume bounds on the size of separator setall Retn > s(Gy,...,G,)
denotes the bound on the minimal separator set for any nddeapd we assume thgt= O(1).
This includes tree mixtures and mixtures over bounded @egraphs, as discussed previously. In
addition, the following parameters determine the succéseaank tests.

(A1) Rank condition for neighbors: Let M,, ,, (s.x} == [P(Yy = i,Y, = j, Ys = k)]; ; and
Or41 (Mu,u,{S;k}) > 0, (3)

Pmin ‘= min max
(w,v)€GU,|S|<n keY!S
SCcV\{u,v}

whereo, 1 () denotes thér +1)" singular value, when the singular values are arranged in
the descending ordert; () > o2(-) > ...04(-). This ensures that the probability matrices
for neighborgu, v) € Gy have (effective) rank of at leastt- 1, and thus, the rank test can
correctly distinguish neighbors from non-neighbors. lesuout the presence of spurious
low rank matrices between neighboring nodesGin (for instance, when the nodes are
marginally independent or when the distribution is degater

(A2) Choice of threshold £: The threshold on singular values is chosen@s= 2.
(A3) Number of Samples: Givené € (0, 1), the number of samplessatisfies

2
1 2
1 > NRank(0; p) 1= max (t_Q (2logp+logd " +1og2), ( t) ) . (4
Pmin —

for somet € (0, pmin) (€.9.t = pmin/2,) Wherep is the number of nodes.

We now provide the result on the success of recovering thenugriaphGy, := U; _; G.

Theorem 1 (Success of Rank Tests) The RankTest(y™;&,n,r) recovers the correct grapld,
which is the union of the component Markov graphs, under«6&3) with probability at least
1-0.

A special case of the above result is graphical model selectihere there is a single graphical
model(r = 1) and we are interested in estimating its graph structure.

Corollary 1 (Application to Graphical Model Selection) Given n i.i.d. samplesy”, the
RankTest(y™; ¢, n, 1) is structurally consistent under (A1)—(A3) with probatyilat leastl — 4.

Remarks: Thus, the rank test is also applicable for graphical modektsen. Previous works (see
Section 1.2) have proposed tests based on conditionalémdigmce, using either conditional mutual
information or conditional variation distances, see [1,Hje rank test above is thus an alternative
test for conditional independence in graphical modelgjltieg in graph structure estimation. In
addition, it extends naturally to estimation of union grahucture of mixture components. Our
above result establishes that our method is also efficiehigin dimensions, since it only requires
logarithmic samples for structural consisteriey= Q(log p)).

4 Parameter Estimation of Mixture Components

Having obtained an estimate of the union graph, we now describe a procedure for estimating
parameters of the mixture componefif3(y|H = h)}. Our method is based on spectral decom-
position, proposed previously for mixtures of productidlisttions [7—9]. We recap it briefly below
and then describe how it can be adapted to the more gendmagsaftgraphical model mixtures.



Recap of Spectral Decomposition in Mixtures of Product Distributions. Consider the case
whereV = {u,v,w}, andY, L Y, 1L Y, |H. For simplicity assume that = r, i.e., the hidden
and observed variables have the same dimension. This agsamll be removed subsequently.
DenoteM,, y := [P(Y, = i|H = j)]; j, and similarly forM,, z, M,z and assume that they are
full rank. Denote the probability matrice¥, , := [P(Y., = i,Y, = j)li; and My, , (wik} =
[P(Yy = 4,Y, = j,Yy = k)]s;. The parameters (i.e., matricés, ;, M, u, M, ) can be
estimated as:

Lemma 2 (Mixture of Product Distributions) Given the above model, letA®
[/\gk) cee /\Ef)]T be the column vector with theeigenvalues given by

AR = Eigenvalues (Mu,v,{w;k}Mu:})) , kel (5)
LetA := ADIA@] . |A@)] be a matrix where thé™ column corresponds ta*). We have
Mg = [P(Yy =i|H = j))i; = AT (6)

For the proof of the above result and for the general algariftvhend > r), see [9]. Thus, if
we have a general product distribution mixture over nodeg ,iwe can learn the parameters by
performing the above spectral decomposition over diffetgpiets {«, v, w}. However, an obstacle
remains: spectral decomposition over different triplgisv, w} results in different permutations
of the labels of the hidden variablé. To overcome this, note that any two tripléis v, w) and
(u,v’,w’) share the same set of eigenvectors in (5) when the “left” nodethe same. Thus, if we
consider a fixed node,. € V as the “left” node and use a fixed matrix to diagonalize (5)dibr
triplets, we obtain a consistent ordering of the hiddenl&beer all triplet decompositions. Thus,
we can learn a general product distribution mixture usinly tivird-order statistics.

Parameter Estimation in Graphical Model Mixtures. We now adapt the above procedure for
estimating components of a general graphical model mixitveefirst make a simple observation on
how to obtain mixtures of product distributions by considgrseparators on the union gragh,.
For any three nodes v, w € V, which are not neighbors a#_, letS,,,., denote anultiwayvertex
separator, i.e., the removal of nodesSip,,, disconnects, v andw in Gy. On lines of Fact 1,

Y. LY, LY, Ys,..,H, Yuv,w:(u,v)(v,w),(wu)¢Gy. (7)

Thus, by fixing the configuration of nodes ..., we obtain a product distribution mixture over
{u, v, w}. If the previously proposed rank test is successful in extfimy G, then we possess cor-
rect knowledge of the separato$s,,,. In this case, we can obtain estimatg®(Yy,|Ys,,.,.,

k,H = h)}, by fixing the nodes inS,.., and using the spectral decomposition described in
Lemma 2, and the procedure can be repeated over differplatt{ v, v, w}.

An obstacle remains, viz., the permutation of hidden labgksr different triplet decompositions
{u, v, w}. In case of product distribution mixture, as discussediptesly, this is resolved by fixing
the “left” node in the triplet to some. € V and using the same matrix for diagonalization over
different triplets. However, an additional complicationsas when we consider graphical model
mixtures, where conditioning over separators is requindk. require that the permutation of the
hidden labels be unchanged upon conditioning over difteralues of variables in the separator set
Su,vw- This holds when the separator $&t .., has no effect on node., i.e., we require that

Ju, € Vysit. Yy, L Yy, |H, (8)
which implies that.. is isolated from all other nodes in graph;.

Condition (8) is required for identifiability if we only opate on statistics over different triplets
(along with their separator sets). In other words, if we resw operations over only low order
statistics, we require additional conditions such as (8)dentifiability. However, our setting is a
significant generalization over the mixtures of productriistions, where (8) is required to hold
for all nodes.

Finally, since our goal is to estimate pairwise marginalhefmixture components, in place of node
w in the triplet{u, v, w} in Lemma 2, we need to consider a node palr € V. The general algo-
rithm allows the variables in the triplet to have differeimndnsions, see [9] for details. Thus, we
obtain estimates of the pairwise marginals of the mixtumagonents. For details on implementa-
tion, refer to [15].



4.1 Analysisand Guarantees

In addition to (A1)-(A3) in Section 3.1 to guarantee cormestovery ofG, and the conditions
discussed above, the success of parameter estimationdieperthe following quantities:

(A4) Non-degeneracy: For each node paig,b € V, and any subset C V \ {a,b} with
|S| < 2s(Gy) andk € Y91, the probability matrixd , p) (s, (s:x} = [P(Yap = i|H =
5, Ys = k)]i; € R¥*" has rank:.

(A5) Spectral Bounds and Number of Samples: Refer to various spectral bounds used to
obtain K (d; p,d, r) in (28) in [15], whered € (0,1) is fixed. Given any fixed € (0,1),
assume that the number of samples satisfies

4K2(8;p,d
n > nspcct(67 €D, dv T) = M (9)

€2
Note that (A4) is a natural condition required for successpafctral decomposition and has been
previously imposed for learning product distribution noisets [7—9]. Moreover, when (A4) does not
hold, i.e., when the matrices are not full rank, parametémesion is computationally at least as
hard as learning parity with noise, which is conjecturedeacbmputationally hard [8]. Condition
(A5) is required for learning product distribution mixtsrg], and we inherit it here.

We now provide guarantees for estimation of pairwise maigiof the mixture components. Let
I - ]2 on a vector denote thie norm.

Theorem 2 (Parameter Estimation of Mixture Components) Under the assumptions (A1)—(A5),

the spectral decomposition method outpBtseet(Y,, Y,|H = h), for eacha, b € V, such that for
all i € [r], there exists a permutation(h) € [r] with

1PPe (Yo, Yo | H = h) = P(Yo, Yo H = 7(h))]|2 < €, (10)
with probability at leastl — 44.

Remark: Recall thatp denotes the number of variables,is the number of mixture com-
ponents, d is the dimension of each node variable ap@7,) is the bound on separa-
tor sets between any node pair in the union graph. We edtalkiat K (d;p,d,r) is

O (p*(G+2q2(Gu)p55=1 poly log(p, d, 7, 6~1)) in [15]. Thus, we require the number of samples
in (9) scaling asy = Q (p*s(G)+4g4s(Gu) 105262 poly log(p, d,r,671)). Since we consider
models wheres(G,) = O(1) is a small constant, this implies that we have a polynomiaida
complexity inp, d, r.

Tree Approximation of Mixture Components. The final step involves using the estimated pair-
wise marginals of each compone®srPe<t(Y,  Y,|H = h)} to obtain tree approximation of the
component via Chow-Liu algorithm [10]. We now impose a stddcondition of non-degeneracy
on each mixture component to guarantee the existence ofqaeitriee structure corresponding to
the maximum-likelihood tree approximation to the mixtuoenponent.

(AB) Separation of Mutual Information: Let T}, denote the maximum-likelihood tree approx-
imation corresponding to the modBly|H = h) when exact statistics are input and let

¥ := min min min (I(Y,,Y,|H="h)—1Y,,Ys|H =h)), (11)
he(r] (a,b)¢Ty (u,v)ePath(a,b;Th)

wherePath(a, b; T},) denotes the edges along the path conneetiaugdb in T},. Intuitively
9 denotes the “bottleneck” where errors are most likely taioattree structure estimation.
See [16] for a detailed discussion.

(A7) Number of Samples: Givenet*ee defined in [15], we require
n > nspect (67 Etree; b, da ’f‘), (12)

wherengpect is given by (9). Intuitively,e™® provides the bound on distortion of the
estimated pairwise marginals of the mixture componendgiired for correct estimation of
tree approximations, and dependswim (11).
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Figure 1: Performance of the proposed method, EM and EMalizgd with the proposed method
output on a tree mixture with two components. Strong compbrefers to the component with
strong correlations and vice versa.

Theorem 3 (Tree Approximations of Mixture Components) Under (A1)—(A7), the Chow-Liu al-
gorithm outputs the correct tree structures correspondmgaximume-likelihood tree approxima-
tions of the mixture component® (y|H = h)} with probability at leastl — 44, when the estimates

of pairwise marginalg PsPe<t(Y,, Y;|H = h)} from spectral decomposition method are input.

Remark: Thus our approach succeeds in recovering the correct tneetistes corresponding to
ML-tree approximations of mixture components. The comtiortal and sample complexities scale
polynomially in the number of variablesand the number of componentsNote that if the under-
lying model is a tree mixture, we recover the tree structofélke mixture components.

5 Experiments

Experimental results are presented on synthetic data. Waags the graph using proposed algo-
rithm and compare the performance of our method with EM [4§mPrehensive results based on
the normalized edit distances and log-likelihood scorewéen the estimated and the true graphs
are presented. We generate samples from a mixture over fieoedit trees«{ = 2) with mixing
weightsm = [0.7,0.3] using Gibbs sampling. Each mixture component is generated the stan-
dard Potts model op = 60 nodes, where the node variables are terndry @), and the number of
samples: € [2.5 x 103,10%]. The joint distribution of nodes in each mixture componergiven by

P(X|H=h)ocexp | Y Jijn(1(Y:i=Y;) = 1)+ > KinYi,
(i,5)€CG i€V

wherel is the indicator function and;, := {J; ;,»} are the edge potentials in the model. For the
first componentq = 1), the edge potential$; are chosen uniformly frorfs, 5.05], while for the
second componenf{ = 2), J, are chosen fronf0.5,0.55]. We refer to the first component as
strongand the second ageaksince the correlations vary widely between the two modeéstdihe
choice of parameters. Thde potentialgre all set to zerok;,;, = 0) except at the isolated node
u, in the union graph. The performance of the proposed methoshipared with EM. We consider
10 random initializations of EM and run it to convergence. ®i&o evaluated EM by utilizing
proposed result as the initial point (referred to as ProgpeEM in the figures). We observe in Fig 1a
that the overall likelihood under our method is comparahita &M. Intuitively this is because EM
attempts to maximize the overall likelihood. However, olgosithm has significantly superior
performance with respect to the edit distance which is therén estimating the tree structure in
the two components, as seen in Fig 2. In fact, EM never managesxover the structure of the
weak components(i.e., the component with weak correlgfidntuitively, this is because EM uses
the overall likelihood as criterion for tree selection. éndhe above choice of parameters, the
weak component has a much lower contribution to the ovekalihood, and thus, EM is unable to
recover it. We also observe in Fig 1b and Fig 1c, that our psedanethod has superior performance
in terms of conditional likelihood for both the componer@assification error is evaluated in Fig 2a
and we observe that our method (as well as EM initialized trighoutput of our method) performs
better than EM.

The above experimental results confirm our theoreticalyaismbnd suggest the advantages of our
basic technique over more common approaches. Our metheitipsoa point of tractability in the
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Figure 2: Classification error and normalized edit distanufethe proposed method, EM and EM
initialized with the proposed method output on the tree omixt

spectrum of probabilistic models, and extending beyondthss we consider here is a promising
direction of future research.
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