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Interactive learning: Contextual bandits

Website operator

Loop:
1. User visits website with profile, browsing history . . .
2. Choose content to display on website.
3. Observe user reaction to content (e.g., click, “like”).

Goal: choose content that yield desired user behavior.
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Interactive learning: Active learning

E-mail service provider

Loop:
1. Receive e-mail messages for users (spam or not).
2. Ask users to provide labels for some (borderline) messages.
3. Improve spam filter using newly labeled messages.

Goal: maximize accuracy of spam filter, minimize queries to users.
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Interactive learning

1. Learning agent (a.k.a. “learner”) interacts with the world
(e.g., patients, users) to achieve goals and gather data.

2. Learner’s performance based on chosen actions.
3. Data available to learner depends on chosen actions.

Efficient solutions to exploration/exploitation dilemma via
reductions to supervised learning
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Interactive learning
1. Learning agent (a.k.a. “learner”) interacts with the world

(e.g., patients, users) to achieve goals and gather data.
2. Learner’s performance based on chosen actions.
3. Data available to learner depends on chosen actions.

Efficient solutions to exploration/exploitation dilemma via
reductions to supervised learning

Rest of this talk:
1. Reductions for contextual bandits
2. Some challenges with this approach

(an excuse to talk about generalization?)
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1. Contextual bandit learning

5



Contextual bandit problem

For t = 1, 2, . . . ,T :

0. Nature draws (xt , r t) from dist. D over X × [0, 1]A.
1. Observe context xt ∈ X . [e.g., user profile, search query]

2. Choose action at ∈ A. [e.g., ad to display]

3. Collect reward rt(at) ∈ [0, 1]. [e.g., 1 if click, 0 otherwise]

Task: choose at ’s that yield high expected reward (w.r.t. D).

Contextual: use features xt to choose good actions at .
Bandit: rt(a) for a 6= at is not observed.

(Non-bandit setting: whole reward vector r t ∈ [0, 1]A is observed.)
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Challenges

1. Exploration vs. exploitation.
I Use what you’ve already learned (exploit), but also

learn about actions that could be good (explore).
I Must balance to get good statistical performance.

2. Must use context.
I Want to do as well as the best policy (i.e., decision rule)

π : context x 7→ action a

from some policy class Π (a set of decision rules).
I Computationally constrained w/ large Π.

3. Selection bias, especially while exploiting.
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Learning objective

Regret (i.e., relative performance) to a policy class Π:

max
π∈Π

1
T

T∑
t=1

rt(π(xt))︸ ︷︷ ︸
average reward of best policy

− 1
T

T∑
t=1

rt(at)︸ ︷︷ ︸
average reward of learner

Strong benchmark when Π has a policy w/ high expected reward.

Goal: regret → 0 as fast as possible as T →∞.
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Contextual bandits via reduction to supervised learning

Let K := |A| and N := |Π|.

Algorithm that operates via reduction to supervised learning
(Agarwal, H., Kale, Langford, Li, & Schapire, 2014).

I Regret bound: Õ
(√

K log N
T

)
.

Near optimal statistical performance

I # calls to supervised learner for Π: Õ
(√

TK
log N

)
.

Uses supervised learner less than once per round

9



Hypothetical “full-information” setting

If we observed rewards for all actions r t = (rt(a) : a ∈ A) . . .

I Like supervised learning, have labeled data after t rounds:

(x1, r1), . . . , (xt , r t) ∈ X × RA .

context −→ features
actions −→ classes
rewards −→ −costs
policy −→ classifier

I Can often exploit structure of Π to get tractable algorithms.
Abstraction for supervised learning: arg max oracle (AMO)

AMO
(
{(xi , r i )}ti=1

)
:= arg max

π∈Π

t∑
i=1

ri (π(xi )) .

In bandit setting: use randomization + importance weighting.
Draw at ∼ Pt for some pre-specified prob. dist. Pt .
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Inverse propensity weighting (Horvitz & Thompson, 1952)

Importance-weighted estimate of reward from round t:

∀a ∈ A � r̂t(a) :=


rt(at)

Pt(a)
if a = at ,

0 otherwise .

Estimate avg. reward of policy: R̂ewt(π) := 1
t

∑t
i=1 r̂i (π(xi )).

How should we choose action distribution Pt?

11



Hedging over policies

Get action distributions via policy distributions.

(Q, x)︸ ︷︷ ︸
(policy distribution, context)

7−→ P︸ ︷︷ ︸
action distribution
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action distribution

Policy distribution: Q = (Q(π) : π ∈ Π)
probability dist. over policies π in the policy class Π
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Hedging over policies

Get action distributions via policy distributions.

(Q, x)︸ ︷︷ ︸
(policy distribution, context)

7−→ P︸ ︷︷ ︸
action distribution

1: Pick initial distribution Q1 over policies Π.
2: for round t = 1, 2, . . . do
3: Nature draws (xt , r t) from dist. D over X × [0, 1]A.
4: Observe context xt .
5: Compute distribution Pt over A (using Qt and xt).
6: Pick action at ∼ Pt .
7: Collect reward rt(at).
8: Compute new distribution Qt+1 over policies Π.
9: end for

12



The “good policy distribution” problem

Convex feasibility problem for policy distribution Q

∑
π∈Π

Q(π) · R̂egt(π) ≤
√

K logN

t
(Low regret)

v̂arQ
(

R̂ewt(π)
)
≤ K

(
1 +

R̂egt(π)√
K log N

t

)
∀π ∈ Π (Low variance)

Theorem: Using feasible Qt in round t ⇒ near-optimal regret.

? Can implement efficient “coordinate descent” solver via AMO.
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Implementation via AMO
Finding “low variance” constraint violation for Q:

v̂arQ

(
R̂ewt(π)

)
≤ K

(
1 +

R̂egt(π)√
K log N

t

)
∀π ∈ Π (Low variance)

1. Create fictitious rewards for each i = 1, 2, . . . , t:

r̃i (a) := K · r̂i (a)√
K log N

t

+
1

Q(a|xi )
∀a ∈ A .

2. Obtain π̃ := AMO
(
{(xi , r̃ i )}ti=1

)
.

Fact: R̃ewt(π̃) > threshold iff π̃’s constraint is violated.
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Recap

Statistically optimal and efficient algorithm for contextual bandits
by reduction to supervised learning.

I Take advantage of advances in supervised learning technology
(e.g., deep learning)!

I Similar algorithm design strategy works for active learning
(Balcan, Beygelzimer, & Langford, 2006; Dasgupta, H., and Monteleoni,
2007; Beygelzimer, H., Langford, & Zhang, 2010; Zhang & Chaudhuri,
2014; Huang, Agarwal, H., Langford, and Schapire, 2015; Krishnamurthy,
Agarwal, Huang, Daumé, & Langford, 2017; . . . )

So what is the catch?
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2. Problems
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Major impediments with current reductions

Convex feasibility problem for policy distribution Q

∑
π∈Π

Q(π) · R̂egt(π) ≤
√

K logN

t
(Low regret)

v̂arQ
(

R̂ewt(π)
)
≤ K

(
1 +

R̂egt(π)√
K log N

t

)
∀π ∈ Π (Low variance)

Algorithm parameters depends critically on uniform generalization
bound for policy class Π.

I Used for balancing exploration & exploitation.
I Similar issue with active learning: generalization bounds

are crucially used to measure prediction “confidence”.

17



Major impediments with current reductions

Convex feasibility problem for policy distribution Q

∑
π∈Π

Q(π) · R̂egt(π) ≤
√

K logN

t
(Low regret)

v̂arQ
(

R̂ewt(π)
)
≤ K

(
1 +

R̂egt(π)√
K log N

t

)
∀π ∈ Π (Low variance)

Algorithm parameters depends critically on uniform generalization
bound for policy class Π.

I Used for balancing exploration & exploitation.
I Similar issue with active learning: generalization bounds

are crucially used to measure prediction “confidence”.

17



Major impediments with current reductions

Convex feasibility problem for policy distribution Q

∑
π∈Π

Q(π) · R̂egt(π) ≤
√

K logN

t
(Low regret)

v̂arQ
(

R̂ewt(π)
)
≤ K

(
1 +

R̂egt(π)√
K log N

t

)
∀π ∈ Π (Low variance)

Algorithm parameters depends critically on uniform generalization
bound for policy class Π.
I Used for balancing exploration & exploitation.

I Similar issue with active learning: generalization bounds
are crucially used to measure prediction “confidence”.

17



Major impediments with current reductions

Convex feasibility problem for policy distribution Q

∑
π∈Π

Q(π) · R̂egt(π) ≤
√

K logN

t
(Low regret)

v̂arQ
(

R̂ewt(π)
)
≤ K

(
1 +

R̂egt(π)√
K log N

t

)
∀π ∈ Π (Low variance)

Algorithm parameters depends critically on uniform generalization
bound for policy class Π.
I Used for balancing exploration & exploitation.
I Similar issue with active learning: generalization bounds

are crucially used to measure prediction “confidence”.

17



Problems with uniform / a posteriori generalization bounds

I Uniform convergence bounds (Vapnik & Chervonenkis, 1971):
Never use (except maybe when logN = O(1)).

I Margin/norm-based generalization bounds (e.g., Schapire,
Freund, Bartlett, & Lee, 1998; Bartlett, Foster, & Telgarsky, 2017; . . . ):
I Useful for heavily-regularized models, or if observe large margin

a posteriori.

Unclear if appropriate for (say) large neural nets, at least as
used in practice:
1. Find “overfitted” (interpolating) model with gradient descent.
2.

I Inductive bias (e.g., “gradient descent → least norm solution”)
is critical, but only part of the explanation for generalization.
E.g., under what circumstances will the norm small?

18
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1. Find “overfitted” (interpolating) model with gradient descent.
2. Then tune/regularize a bit.

I Inductive bias (e.g., “gradient descent → least norm solution”)
is critical, but only part of the explanation for generalization.

E.g., under what circumstances will the norm small?
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Some surprising behavior
(Belkin, H., Ma, & Mandal, 2018; Belkin, H., & Xu, 2019)

Fit two-layer neural network to training data with gradient descent.

Mean squared error train/test on MNIST vs. # parameters

×103

Number of parameters (∝ size of network)

We prove this happens for certain “linearized” two-layer neural nets
in some stylized settings. (Norm of predictor shows similar cusp.)

Why do we observe good performance even when “overfitted”?
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Risk bounds for prediction rules that interpolate
I Most of existing theory doesn’t provide a priori guarantees for

models that interpolate (noisy) training data.

I Notable exception: nearest neighbor (Cover & Hart, 1967)

Err(NN)
n→∞−→ 2× OPT (sort of)

I Other interpolating models (Belkin, H., & Mitra, 2018)
1. Simplicial interpolation (plausibly similar to ReLU networks)

Err(SI) n→∞−→ (1 + 2−Ω(d))× OPT

(under Massart noise condition, in Rd).

2. Weighted & interpolated nearest neighbor

MSE(WINN) ≤ OPT + O(n−2α/(2α+d))

when true regression function is α-Hölder smooth, in Rd .

Would be great to have such results for interpolating neural
nets, or even kernel machines.

20



Risk bounds for prediction rules that interpolate
I Most of existing theory doesn’t provide a priori guarantees for

models that interpolate (noisy) training data.
I Notable exception: nearest neighbor (Cover & Hart, 1967)

Err(NN)
n→∞−→ 2× OPT (sort of)

I Other interpolating models (Belkin, H., & Mitra, 2018)
1. Simplicial interpolation (plausibly similar to ReLU networks)

Err(SI) n→∞−→ (1 + 2−Ω(d))× OPT

(under Massart noise condition, in Rd).

2. Weighted & interpolated nearest neighbor

MSE(WINN) ≤ OPT + O(n−2α/(2α+d))

when true regression function is α-Hölder smooth, in Rd .

Would be great to have such results for interpolating neural
nets, or even kernel machines.

20



Risk bounds for prediction rules that interpolate
I Most of existing theory doesn’t provide a priori guarantees for

models that interpolate (noisy) training data.
I Notable exception: nearest neighbor (Cover & Hart, 1967)

Err(NN)
n→∞−→ 2× OPT (sort of)

I Other interpolating models (Belkin, H., & Mitra, 2018)
1. Simplicial interpolation (plausibly similar to ReLU networks)

Err(SI) n→∞−→ (1 + 2−Ω(d))× OPT

(under Massart noise condition, in Rd).

2. Weighted & interpolated nearest neighbor

MSE(WINN) ≤ OPT + O(n−2α/(2α+d))

when true regression function is α-Hölder smooth, in Rd .

Would be great to have such results for interpolating neural
nets, or even kernel machines.

20



Risk bounds for prediction rules that interpolate
I Most of existing theory doesn’t provide a priori guarantees for

models that interpolate (noisy) training data.
I Notable exception: nearest neighbor (Cover & Hart, 1967)

Err(NN)
n→∞−→ 2× OPT (sort of)

I Other interpolating models (Belkin, H., & Mitra, 2018)
1. Simplicial interpolation (plausibly similar to ReLU networks)

Err(SI) n→∞−→ (1 + 2−Ω(d))× OPT

(under Massart noise condition, in Rd).

2. Weighted & interpolated nearest neighbor

MSE(WINN) ≤ OPT + O(n−2α/(2α+d))

when true regression function is α-Hölder smooth, in Rd .

Would be great to have such results for interpolating neural
nets, or even kernel machines.

20



Risk bounds for prediction rules that interpolate
I Most of existing theory doesn’t provide a priori guarantees for

models that interpolate (noisy) training data.
I Notable exception: nearest neighbor (Cover & Hart, 1967)

Err(NN)
n→∞−→ 2× OPT (sort of)

I Other interpolating models (Belkin, H., & Mitra, 2018)
1. Simplicial interpolation (plausibly similar to ReLU networks)

Err(SI) n→∞−→ (1 + 2−Ω(d))× OPT

(under Massart noise condition, in Rd).

2. Weighted & interpolated nearest neighbor

MSE(WINN) ≤ OPT + O(n−2α/(2α+d))

when true regression function is α-Hölder smooth, in Rd .

Would be great to have such results for interpolating neural
nets, or even kernel machines.

20



Concluding remarks

How to manage exploration for interactive learning?

I Reductions provide way to use advances in supervised learning
to do better interactive learning.

I However:
Existing reductions crucially rely on generalization bounds.

I Perhaps consequence of statistical learning framework . . .
I Need better understanding of function classes we want to use

(e.g., “practical” neural nets)

Thanks!
Simons Institute for the Theory of Computing

National Science Foundation (CCF-1740833, DMR-153491)
Sloan Foundation
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3. Extra
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(Sub-optimal) alternative

Explore-then-exploit:
1. Pick uniformly random actions in first τ rounds.
2. Obtain π̂ := AMO({(xi , r̂ i}))τi=1.
3. Use π̂ in remaining T − τ rounds.

Optimal τ still depends on uniform generalization bound for Π.
I But seems more benign, and easy to “adapt” to favorable

conditions (Langford & Zhang, 2007).

Other alternatives: replace bounds with resampling methods
(e.g., permutation tests, bootstrap). Can these be made optimal?
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Simplicial interpolation

I IID training examples (x1, y1), . . . , (xn, yn) from Rd × [0, 1]

I Partition convex hull C of (xi )
n
i=1 into simplices with xi as

vertices (via Delaunay triangulation)

I Define η̂(x) on each simplex by affine interp. of vertices’ labels
I Result is piecewise linear on C . (Punt on what to do outside of C .)

I For classification, let f̂ be plug-in classifier via η̂.
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Comparison to nearest neighbor

Restrict attention to a single simplex, with vertices x1, . . . , xd+1.
I Suppose Pr(y = 1 | x) < 1/2 for all points in the simplex
I Suppose training data has

y1 = · · · = yd = 0

but yd+1 = 1 (due to noise, say).

x1

x3x2

0

0 1

Nearest neighbor rule

x1

x3x2

0

0 1

Simplicial interpolation

𝑓" 𝑥 = 1 here
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