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Abstract

This work gives a simultaneous analysis of both the ordinary least squares estimator and
the ridge regression estimator in the random design setting under mild assumptions on the
covariate/response distributions. In particular, the analysis provides sharp results on the
“out-of-sample” prediction error, as opposed to the “in-sample” (fixed design) error. The
analysis also reveals the effect of errors in the estimated covariance structure, as well as
the effect of modeling errors; neither of which effects are present in the fixed design setting.
The proof of the main results are based on a simple decomposition lemma combined with
concentration inequalities for random vectors and matrices.

1. Introduction

In the random design setting for linear regression, we are provided with samples of covari-
ates and responses, (x1, y1), (x2, y2), . . . , (xn, yn), which are sampled independently from a
population, where the xi are random vectors and the yi are random variables. Typically,
these pairs are hypothesized to have the linear relationship

yi = 〈β, xi〉+ εi

for some linear function β (though this hypothesis need not be true). Here, the εi are error
terms, typically assumed to be normally distributed as N (0, σ2). The goal of estimation
in this setting is to find coefficients β̂ based on these (xi, yi) pairs such that the expected
prediction error on a new draw (x, y) from the population, measured as E[(〈β̂, x〉 − y)2],
is as small as possible. This goal can also be interpreted as estimating β with accuracy
measured under a particular norm.

The random design setting stands in contrast to the fixed design setting, where the
covariates x1, x2, . . . , xn are fixed (i.e., deterministic), and only the responses y1, y2, . . . , yn
treated as random. Thus, the covariance structure of the design points is completely known
and need not be estimated, which simplifies the analysis of standard estimators. However,
the fixed design setting does not directly address out-of-sample prediction, which is of
primary concern in many applications. For instance, in prediction problems, the estimator
β̂ is computed from an initial sample from the population, and the end-goal is to use β̂ as
a predictor of y given x where (x, y) is a new draw from the population. A fixed design
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analysis only assesses the accuracy of β̂ on data already seen, while a random design analysis
is concerned with the predictive performance on unseen data.

This work gives a detailed analysis of both the ordinary least squares and ridge esti-
mator (Hoerl, 1962) in the random design setting that quantifies the essential differences
between random and fixed design. In particular, the analysis reveals, through a simple de-
composition, the effect of errors in the estimated covariance structure, as well as the effect
of approximating the true regression function by a linear function in the case the model is
misspecified. Neither of these effects is present in the fixed design analysis of ridge regres-
sion. The random design analysis shows that the effect of errors in the estimated covariance
structure is minimal—it is typically a second-order effect as soon as the sample size is large
enough. The analysis also isolates the effect of approximation error in the main terms of the
estimation error bound so that the bound reduces to one that scales with the noise variance
when the approximation error vanishes.

One feature of the analysis in this work is that it applies to the ridge estimator with
an arbitrary setting of λ. The estimation error is given in terms of the spectrum of the
covariance E[x ⊗ x] and the particular choice of λ. When λ = 0, we obtain an analysis of
ordinary least squares, applicable when the spectrum is finite (i.e., when the covariates live
in a finite dimensional space). More generally, the convergence rate can be optimized by
appropriately setting λ based on assumptions about the spectrum.

Outline. Section 2 discusses the model, preliminaries, and related work. Section 3 presents
the main results on the excess mean squared error of the ordinary least squares and ridge
estimators under random design and discusses the relationship to the standard fixed design
analysis. An application to smoothing splines is provided in Appendix A, and the proof of
the main results are given in the Appendix B.

2. Preliminaries

2.1. Notation

Unless otherwise specified, all vectors in this work are assumed to live in a (possibly
infinite dimensional) separable Hilbert space with inner product 〈·, ·〉. Let ‖ · ‖M for a
self-adjoint positive semidefinite linear operator M � 0 denote the vector norm given by
‖v‖M :=

√
〈v,Mv〉. When M is omitted, it is assumed to be the identity, so ‖v‖ =

√
〈v, v〉.

Let u⊗u denote the outer product of a vector u, which acts as the rank-one linear operator
v 7→ (u ⊗ u)v = 〈v, u〉u. For a linear operator M , let ‖M‖ denote its spectral (opera-
tor) norm, i.e., ‖M‖ = supv 6=0 ‖Mv‖/‖v‖, and let ‖M‖F denote its Frobenius norm, i.e.,

‖M‖F =
√

tr(M∗M). If M is self-adjoint, ‖M‖F =
√

tr(M2). Let λmax[M ] and λmin[M ],
respectively, denote the largest and smallest eigenvalue of a self-adjoint linear operator M .

2.2. Linear regression

Let x be a random vector, and let y be a random variable. Let {vj} be the eigenvectors of

Σ := E[x⊗ x], (1)

so that they form an orthonormal basis. The corresponding eigenvalues are

λj := 〈vj , Σvj〉 = E[〈vj , x〉2]
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(assumed to be non-zero for convenience). Let β achieve the minimum mean squared error
over all linear functions, i.e.,

E[(〈β, x〉 − y)2] = min
w

{
E[(〈w, x〉 − y)2]

}
,

so that:

β :=
∑
j

βjvj where βj :=
E[〈vj , x〉y]

E[〈vj , x〉2]
. (2)

We also have that the excess mean squared error of w over the minimum is:

E[(〈w, x〉 − y)2]− E[(〈β, x〉 − y)2] = ‖w − β‖2Σ

(see Proposition 21).

2.3. The ridge and ordinary least squares estimators

Let (x1, y1), (x2, y2), . . . , (xn, yn) be independent copies of (x, y), and let Ê denote the em-
pirical expectation with respect to these n copies, i.e.,

Ê[f ] :=
1

n

n∑
i=1

f(xi, yi) Σ̂ := Ê[x⊗ x] =
1

n

n∑
i=1

xi ⊗ xi. (3)

Let β̂λ denote the ridge estimator with parameter λ ≥ 0, defined as the minimizer of
the λ-regularized empirical mean squared error, i.e.,

β̂λ := arg min
w

{
Ê[(〈w, x〉 − y)2] + λ‖w‖2

}
. (4)

The special case with λ = 0 is the ordinary least squares estimator, which minimizes the
empirical mean squared error. These estimators are uniquely defined if and only if Σ̂+λI �
0 (a sufficient condition is λ > 0), in which case

β̂λ = (Σ̂ + λI)−1Ê[xy].

2.4. Data model

We now specify the conditions on the random pair (x, y) under which the analysis applies.

2.4.1. Covariate model

The following conditions on the covariate x ensure that the second-moment operator Σ can
be estimated from a random sample with sufficient accuracy. The first requires that the
spectrum of Σ decays sufficiently fast at regularization level λ.

Condition 1 (Spectral decay at λ) For p ∈ {1, 2},

dp,λ :=
∑
j

(
λj

λj + λ

)p
<∞. (5)
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For technical reasons, we also use the quantity

d̃1,λ := max{d1,λ, 1} (6)

merely to simplify certain probability tail inequalities in the main result in the peculiar case
that λ → ∞ (upon which d1,λ → 0). We remark that d2,λ appears naturally arises in the
standard fixed design analysis of ridge regression (see Proposition 5), and that d1,λ was also
used by Zhang (2005) in his random design analysis of (kernel) ridge regression. It is easy
to see that d2,λ ≤ d1,λ, and that in in covariate spaces of finite dimension d < ∞, we have
dp,λ ≤ d with equality iff λ = 0.

The second condition requires that the squared length of (Σ + λI)−1/2x is never more
than a constant factor greater than its expectation (hence the name bounded statistical
leverage). The linear mapping x 7→ (Σ + λI)−1/2x is sometimes called whitening when
λ = 0. The reason for considering λ > 0, in which case we call the mapping λ-whitening, is
that the expectation E[‖(Σ + λI)−1/2x‖2] may only be small for sufficiently large λ (as in
Condition 1), as

E[‖(Σ + λI)−1/2x‖2] = tr((Σ + λI)−1/2Σ(Σ + λI)−1/2) =
∑
j

λj
λj + λ

= d1,λ.

Condition 2 (Bounded statistical leverage at λ) There exists finite ρλ ≥ 1 such that,
almost surely,

‖(Σ + λI)−1/2x‖√
E[‖(Σ + λI)−1/2x‖2]

=
‖(Σ + λI)−1/2x‖√

d1,λ
≤ ρλ.

The hard “almost sure” bound in Condition 2 may be relaxed to moment conditions simply
by using different probability tail inequalities in the analysis. We do not consider this
relaxation for sake of simplicity. We also remark that, in finite dimensional settings, it is
easy to replace Condition 2 with a subgaussian condition (specifically, a requirement that
every projection of (Σ + λI)−1/2x be subgaussian), which can lead to a sharper deviation
bound in certain cases.

Remark 1 (Finite dimensional setting and λ = 0) If λ = 0 and the dimension of the
covariate space is d, then Condition 2 reduces to the requirement that there exists a finite
ρ0 ≥ 1 such that, almost surely,

‖Σ−1/2x‖√
E[‖Σ−1/2x‖2]

=
‖Σ−1/2x‖√

d
≤ ρ0.

Remark 2 (Bounded ‖x‖) If ‖x‖ ≤ r almost surely, then

‖(Σ + λI)−1/2x‖√
d1,λ

≤ r√
(inf{λj}+ λ)d1,λ

in which case Condition 2 is satisfied with

ρλ ≤
r√
λd1,λ

.
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2.4.2. Response model

The response model considered in this work is a relaxation of the typical Gaussian model;
the model specifically allows for approximation error and general subgaussian noise. Define
the random variables

noise(x) := y − E[y|x] and approx(x) := E[y|x]− 〈β, x〉 (7)

where noise(x) corresponds to the response noise, and approx(x) corresponds to the ap-
proximation error of β. This gives the following modeling equation:

y = 〈β, x〉+ approx(x) + noise(x).

Conditioned on x, noise(x) is random, while approx(x) is deterministic.
The noise is assumed to satisfy the following subgaussian moment condition.

Condition 3 (Subgaussian noise) There exists finite σ ≥ 0 such that, almost surely,

E [exp(η noise(x))|x] ≤ exp(η2σ2/2) ∀η ∈ R.

Condition 3 is satisfied, for instance, if noise(x) is normally distributed with mean zero and
variance σ2.

For the next condition, define βλ to be the minimizer of the regularized mean squared
error, i.e.,

βλ := arg min
w

{
E[(〈w, x〉 − y)2] + λ‖w‖2

}
= (Σ + λI)−1E[xy], (8)

and also define
approxλ(x) := E[y|x]− 〈βλ, x〉. (9)

The final condition requires a bound on the size of approxλ(x).

Condition 4 (Bounded approximation error at λ) There exist finite bλ ≥ 0 such that,
almost surely,

‖(Σ + λI)−1/2x approxλ(x)‖√
E[‖(Σ + λI)−1/2x‖2]

=
‖(Σ + λI)−1/2x approxλ(x)‖√

d1,λ
≤ bλ.

The hard “almost sure” bound in Condition 4 can easily be relaxed to moment conditions,
but we do not consider it here for sake of simplicity. We also remark that bλ only appears
in lower-order terms in the main bounds.

Remark 3 (Finite dimensional setting and λ = 0) If λ = 0 and the dimension of the
covariate space is d, then Condition 4 reduces to the requirement that there exists a finite
b0 ≥ 0 such that, almost surely,

‖Σ−1/2x approx(x)‖√
E[‖Σ−1/2x‖2]

=
‖Σ−1/2x approx(x)‖√

d
≤ b0.
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Remark 4 (Bounded | approx(x)|) If | approx(x)| ≤ a almost surely and Condition 2
(with parameter ρλ) holds, then

‖(Σ + λI)−1/2x approxλ(x)‖√
d1,λ

≤ ρλ| approxλ(x)|

≤ ρλ(a+ |〈β − βλ, x〉|)
≤ ρλ(a+ ‖β − βλ‖Σ+λI‖x‖(Σ+λI)−1)

≤ ρλ(a+ ρλ
√
d1,λ‖β − βλ‖Σ+λI)

where the first and last inequalities use Condition 2, the second inequality uses the defini-
tion of approxλ(x) in (9) and the triangle inequality, and the third inequality follows from
Cauchy-Schwarz. The quantity ‖β−βλ‖Σ+λI can be bounded by

√
λ‖β‖ using the arguments

in the proof of Proposition 23. In this case, Condition 4 is satisfied with

bλ ≤ ρλ(a+ ρλ
√
λd1,λ‖β‖).

If in addition ‖x‖ ≤ r almost surely, then Condition 2 and Condition 4 are satisfied with

ρλ ≤
r√
λd1,λ

and bλ ≤ ρλ(a+ r‖β‖)

as per Remark 2.

2.5. Related work

Many classical analyses of the ridge and ordinary least squares estimators in the random
design setting (e.g., in the context of non-parametric estimators) do not actually show
non-asymptotic O(d/n) convergence of the mean squared error to that of the best linear
predictor, where d is the dimension of the covariate space. Rather, the error relative to the
Bayes error is bounded by some multiple c > 1 of the error of the optimal linear predictor
relative to Bayes error, plus a O(d/n) term (Györfi et al., 2004):

E[(〈β̂, x〉 − E[y|x])2] ≤ c · E[(〈β, x〉 − E[y|x])2] +O(d/n).

Such bounds are appropriate in non-parametric settings where the error of the optimal linear
predictor also approaches the Bayes error at an O(d/n) rate. Beyond these classical results,
analyses of ordinary least squares often come with non-standard restrictions on applicability
or additional dependencies on the spectrum of the second moment matrix (see the recent
work of Audibert and Catoni (2010b) for a comprehensive survey of these results). For
instance, a result of Catoni (2004, Proposition 5.9.1) gives a bound on the excess mean
squared error of the form

‖β̂ − β‖2Σ ≤ O

(
d+ log(det(Σ̂)/det(Σ))

n

)
,

but the bound is only shown to hold when every linear predictor with low empirical mean
squared error satisfies certain boundedness conditions.
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This work provides ridge regression bounds explicitly in terms of the vector β (as a se-
quence) and in terms of the eigenspectrum of the of the second moment matrix Σ. Previous
analyses of ridge regression make strong boundedness assumptions, or fail to give a bound
in the case λ = 0 (e.g., Zhang, 2005; Smale and Zhou, 2007; Caponnetto and Vito, 2007;
Steinwart et al., 2009). For instance, Zhang assumes ‖x‖ ≤ bx and |〈β, x〉 − y| ≤ bapprox

almost surely, and gives the bound ‖β̂λ − β‖2Σ ≤ λ‖β̂λ − β‖2 + c · d1,λ·(bapprox+bx‖β̂λ−β‖)
2

n
where d1,λ is a notion of effective dimension at scale λ (same as that in Condition 1). The

quantity ‖β̂λ − β‖ is then bounded by assuming ‖β‖ < ∞. Smale and Zhou assumes the
more stringent conditions that |y| ≤ by and ‖x‖ ≤ bx almost surely, and proves the bound

‖β̂λ − βλ‖2Σ ≤ c · b
2
xb

2
y

λ2n
(note that the bound becomes trivial when λ = 0); this is then used

to bound ‖β̂λ − β‖2Σ under explicit boundedness assumptions on β. Caponnetto and Vito
crucially require boundedness of |β‖ and λ > 0 in their analysis (in particular, in their
Theorem 4), and also have a worse tail behavior with a bound of the form d1,λt

2/n with
probability ≥ 1 − e−t. Finally, Steinwart et al. explicitly require |y| ≤ by and their bound
depends on by in the dominant term; moreover, their bounds require explicit decay condi-
tions on the eigenspectrum (Equation 6) and also trivial when λ = 0. Our result for ridge
regression is given explicitly in terms of ‖βλ − β‖2Σ (and therefore explicitly in terms of β
as a sequence, the eigenspectrum of Σ, and λ); this quantity vanishes when λ = 0 and can
be bounded even when ‖β‖ is unbounded. We note that ‖βλ − β‖2Σ is precisely the bias
term from the standard fixed design analysis of ridge regression, and therefore is natural to
expect in a random design analysis.

Recently, Audibert and Catoni (2010a,b) derived sharp risk bounds for the ordinary least
squares and ridge estimators (in addition to specially developed PAC-Bayesian estimators)
in a random design setting under very mild assumptions. Their bounds are proved using
PAC-Bayesian techniques, which allows them to achieve exponential tail inequalities under
remarkably minimal moment conditions. Their non-asymptotic bound for ordinary least
squares holds with probability at least 1 − e−t but only for t ≤ lnn. Our result requires
stronger assumptions in some respects, but it avoids this restriction on the probability tail
parameter t, and the analysis is arguably more transparent and yields more reasonable
quantitative bounds. The analysis of Audibert and Catoni (2010a) for the ridge estimator
is established only in an asymptotic sense and bounds the excess regularized mean squared
error rather than the excess mean squared error itself. Therefore, the results are not directly
comparable to those provided here. It should also be mentioned that a number of other
linear estimators have been considered in the literature with non-asymptotic prediction
error bounds (e.g., Koltchinskii, 2006; Audibert and Catoni, 2010a,b), but the focus of our
work is on the ordinary least squares and ridge estimators.

3. Random Design Regression

This section presents the main results of the paper on the excess mean squared error of the
ridge estimator under random design (and its specialization to the ordinary least squares
estimator). First, we review the standard fixed design analysis.
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3.1. Review of fixed design analysis

It is informative to first review the fixed design analysis of the ridge estimator. Recall
that in this setting, the design points x1, x2, . . . , xn are fixed (deterministic) vectors, and
the responses y1, y2, . . . , yn are independent random variables. Therefore, we define Σ :=
Σ̂ = n−1

∑n
i=1 xi ⊗ xi (which is non-random), and assume it has eigenvectors {vj} and

corresponding eigenvalues λj := 〈vj , Σvj〉. As in the random design setting, the linear
function β :=

∑
j βjvj where βj := (nλj)

−1∑n
i=1〈vj , xi〉E[yi] minimizes the expected mean

squared error, i.e.,

β := arg min
w

1

n

n∑
i=1

E[(〈w, xi〉 − yi)2].

Similar to the random design setup, define noise(xi) := yi−E[yi] and approx(xi) := E[yi]−
〈β, xi〉 for i = 1, 2, . . . , n, so the following modeling equations holds:

yi = 〈β, xi〉+ approx(xi) + noise(xi)

for i = 1, 2, . . . , n. Because Σ = Σ̂, the ridge estimator β̂λ in the fixed design setting is an
unbiased estimator of the minimizer of the regularized mean squared error, i.e.,

E[β̂λ] = (Σ + λI)−1

(
1

n

n∑
i=1

xiE[yi]

)
= arg min

w

{
1

n

n∑
i=1

E[(〈w, xi〉 − yi)2] + λ‖w‖2
}
.

This unbiasedness implies that the expected mean squared error of β̂λ has the bias-variance
decomposition

E[‖β̂λ − β‖2Σ ] = ‖E[β̂λ]− β‖2Σ + E[‖β̂λ − E[β̂λ]‖2Σ ]. (10)

The following bound on the expected excess mean squared error easily follows from this
decomposition and the definition of β (see, e.g., Proposition 23).

Proposition 5 (Ridge regression: fixed design) Fix λ ≥ 0, and assume Σ + λI is
invertible. If there exists σ ≥ 0 such that var(y2i ) ≤ σ2 for all i = 1, 2, . . . , n, then

E[‖β̂λ − β‖2Σ ] ≤
∑
j

λj

(
λj
λ + 1)2

β2j +
σ2

n

∑
j

(
λj

λj + λ

)2

with equality iff var(yi) = σ2 for all i = 1, 2, . . . , n.

Remark 6 (Effect of approximation error in fixed design) Observe that approx(xi)
has no effect on the expected excess mean squared error.

Remark 7 (Effective dimension) The second sum in the bound is equal to d2,λ from
Condition 1, which implies a notion of effective dimension at regularization level λ.

Remark 8 (Ordinary least squares in fixed design) In finite dimensional spaces of
dimension d, Σ has only d non-zero eigenvalues λj, and therefore setting λ = 0 gives the

following bound for the ordinary least squares estimator β̂0:

E[‖β̂0 − β‖2Σ ] ≤ σ2d

n

where, as before, equality holds iff var(yi) = σ2 for all i = 1, 2, . . . , n.
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3.2. Ordinary least squares in finite dimensions

Our analysis of the ordinary least squares estimator (under random design) is based on a
simple decomposition of the excess mean squared error, similar to the one from the fixed
design analysis. To state the decomposition, first let β̄0 denote the conditional expectation
of the least squares estimator β̂0 conditioned on x1, x2, . . . , xn, i.e.,

β̄0 := E[β̂0|x1, x2, . . . , xn] = Σ̂−1Ê[xE[y|x]]. (11)

Also, define the bias and variance as:

εbs := ‖β̄0 − β‖2Σ , εvr := ‖β̂0 − β̄0‖2Σ

Proposition 9 (Random design decomposition) We have:

‖β̂0 − β‖2Σ ≤ εbs + 2
√
εbsεvr + εvr

≤ 2(εbs + εvr)

Proof The claim follows from the triangle inequality and the fact (a+ b)2 ≤ 2(a2 + b2).

Remark 10 Note that, in general, E[β̂0] 6= β (unlike in the fixed design setting where
E[β̂0] = β). Hence, our decomposition differs from that in the fixed design analysis (see (10)).

Our first main result characterizes the excess loss of the ordinary least squares estimator.

Theorem 11 (Ordinary least squares regression) Let d be the dimension of the co-
variate space. Pick any t > max{0, 2.6 − log d}. Assume Condition 1, Condition 2 (with
parameter ρ0), Condition 3 (with σ), and Condition 4 (with b0) hold and that

n ≥ 6ρ20d(log d+ t).

With probability at least 1− 3e−t, the following holds.

1. Relative spectral norm error in Σ̂: Σ̂ is invertible, and

‖Σ1/2Σ̂−1Σ1/2‖ ≤ (1− δs)−1

where Σ is defined in (1), Σ̂ is defined in (3), and

δs :=

√
4ρ20d(log d+ t)

n
+

2ρ20d(log d+ t)

3n

(note that the lower-bound on n ensures δs ≤ 0.93 < 1).

2. Effect of bias due to random design:

εbs ≤
2

(1− δs)2

(
E[‖Σ−1/2x approx(x)‖2]

n
(1 +

√
8t)2 +

16b20dt
2

9n2

)

≤ 2

(1− δs)2

(
ρ20dE[approx(x)2]

n
(1 +

√
8t)2 +

16b20dt
2

9n2

)
,

and approx(x) is defined in (9).
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3. Effect of noise:

εvr ≤
1

1− δs
· σ

2(d+ 2
√
dt+ 2t)

n
.

Remark 12 (Simplified form) Suppressing the terms that are o(1/n), the overall bound
from Theorem 11 is

‖β̂0 − β‖2Σ ≤
2E[‖Σ−1/2x approx(x)‖2]

n
(1 +

√
8t)2 +

σ2(d+ 2
√
dt+ 2t)

n
+ o(1/n)

(so b0 appears only in the o(1/n) terms). If the linear model is correct ( i.e., E[y|x] = 〈β, x〉
almost surely), then

‖β̂0 − β‖2Σ ≤
σ2(d+ 2

√
dt+ 2t)

n
+ o(1/n). (12)

One can show that the constants in the first-order term in (12) are the same as those that
one would obtain for a fixed design tail bound.

Remark 13 (Tightness of the bound) Since

‖β̄0 − β‖2Σ = ‖(Σ1/2Σ̂−1Σ1/2)Ê[Σ−1/2x approx(x)]‖2

and
‖Σ1/2Σ̂−1Σ1/2 − I‖ → 0

as n → ∞ (Lemma 24), ‖β̄0 − β‖2Σ is within constant factors of ‖Ê[Σ−1/2x approx(x)]‖2
for sufficiently large n. Moreover,

E[‖Ê[Σ−1/2x approx(x)]‖2] =
E[‖Σ−1/2x approx(x)‖2]

n
,

which is the main term that appears in the bound for εbs. Similarly, ‖β̂0 − β̄0‖2Σ is within

constant factors of ‖β̂0 − β̄0‖2Σ̂ for sufficiently large n, and

E[‖β̂0 − β̄0‖2Σ̂ ] ≤ σ2d

n

with equality iff var(y) = σ2 (this comes from the fixed design risk bound in Remark 8).
Therefore, in this case where var(y) = σ2, we conclude that the bound Theorem 11 is tight
up to constant factors and lower-order terms.

3.3. Random design ridge regression

The analysis of the ridge estimator under random design is again based on a simple decom-
position of the excess mean squared error. Here, let β̄λ denote the conditional expectation
of β̂λ given x1, x2, . . . , xn, i.e.,

β̄λ := E[β̂λ|x1, x2, . . . , xn] = (Σ̂ + λI)−1Ê[xE[y|x]]. (13)

Define the bias from regularization, the bias from the random design, and the variance as:

εrg := ‖βλ − β‖2Σ , εbs := ‖β̄λ − βλ‖2Σ , εvr := ‖β̂λ − β̄λ‖2Σ
where βλ is the minimizer of the regularized mean squared error (see (8)).
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Proposition 14 (General random design decomposition)

‖β̂λ − β‖2Σ ≤ εrg + εbs + εvr + 2(
√
εrgεbs +

√
εrgεvr +

√
εbsεvr)

≤ 3(εrg + εbs + εvr)

Proof The claim follows from the triangle inequality and the fact (a+ b)2 ≤ 2(a2 + b2).

Remark 15 Again, note that E[β̂λ] 6= βλ in general, so the bias-variance decomposition
in (10) from the fixed design analysis is not directly applicable in the random design setting.

The following theorem is the main result of the paper.

Theorem 16 (Ridge regression) Fix some λ ≥ 0, and pick any t > max{0, 2.6−log d̃1,λ}.
Assume Condition 1, Condition 2 (with parameter ρλ), Condition 3 (with parameter σ),
and Condition 4 (with parameter bλ) hold; and that

n ≥ 6ρ2λd1,λ(log d̃1,λ + t)

where dp,λ for p ∈ {1, 2} is defined in (5), and d̃1,λ is defined in (6).
With probability at least 1− 4e−t, the following holds.

1. Relative spectral norm error in Σ̂ + λI: Σ̂ + λI is invertible, and

‖(Σ + λI)1/2(Σ̂ + λI)−1(Σ + λI)1/2‖ ≤ (1− δs)−1

where Σ is defined in (1), Σ̂ is defined in (3), and

δs :=

√
4ρ2λd1,λ(log d̃1,λ + t)

n
+

2ρ2λd1,λ(log d̃1,λ + t)

3n

(note that the lower-bound on n ensures δs ≤ 0.93 < 1).

2. Frobenius norm error in Σ̂:

‖(Σ + λI)−1/2(Σ̂ −Σ)(Σ + λI)−1/2‖F ≤
√
d1,λδf

where

δf :=

√
ρ2λd1,λ − d2,λ/d1,λ

n
(1 +

√
8t) +

4
√
ρ4λd1,λ + d2,λ/d1,λt

3n
.

3. Effect of regularization:

εrg ≤
∑
j

λj

(
λj
λ + 1)2

β2j .

If λ = 0, then εrg = 0.

11
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4. Effect of bias due to random design:

εbs ≤
2

(1− δs)2

(
E[‖(Σ + λI)−1/2(x approxλ(x)− λβλ)‖2]

n
(1 +

√
8t)2 +

16
(
bλ
√
d1,λ +

√
εrg
)2
t2

9n2

)

≤ 4

(1− δs)2

(
ρ2λd1,λE[approxλ(x)2] + εrg

n
(1 +

√
8t)2 +

(
bλ
√
d1,λ +

√
εrg
)2
t2

n2

)
,

and approxλ(x) is defined in (9). If λ = 0, then approxλ(x) = approx(x) as defined
in (7).

5. Effect of noise:

εvr ≤
σ2
(
d2,λ +

√
d1,λd2,λδf

)
n(1− δs)2

+

2σ2
√(

d2,λ +
√
d1,λd2,λδf

)
t

n(1− δs)3/2
+

2σ2t

n(1− δs)
.

We now discuss various aspects of Theorem 16.

Remark 17 (Simplified form) Ignoring the terms that are o(1/n) and treating t as a
constant, the overall bound from Theorem 16 is

‖β̂λ − β‖2Σ ≤ ‖βλ − β‖2Σ +O

(
E[‖(Σ + λI)−1/2(x approxλ(x)− λβλ)‖2] + σ2d2,λ

n

)

≤ ‖βλ − β‖2Σ +O

(
ρ2λd1,λE[approxλ(x)2] + ‖βλ − β‖2Σ + σ2d2,λ

n

)
≤ ‖βλ − β‖2Σ +O

(
ρ2λd1,λE[approx(x)2] + (ρ2λd1,λ + 1)‖βλ − β‖2Σ + σ2d2,λ

n

)
where the last inequality follows from the fact

√
E[approxλ(x)2] ≤

√
E[approx(x)2] + ‖βλ −

β‖Σ.

Remark 18 (Effect of errors in Σ̂) The accuracy of Σ̂ has a relatively mild effect on
the bound—it appears essentially through multiplicative factors (1− δs)−1 = 1 + O(δs) and
1 + δf , where both δs and δf are decreasing with n (as n−1/2), and therefore only contribute
to lower-order terms overall.

Remark 19 (Comparison to fixed design) As already discussed, the ridge estimator
behaves similarly under fixed and random designs, with the main differences being the lack
of errors in Σ̂ under fixed design, and the influence of approximation error under random
design. These are revealed through the quantities ρλ and d1,λ (and bλ in lower-order terms),
which are needed to apply the probability tail inequalities. Therefore, the scaling of ρ2λd1,λ
with λ crucially controls the effect of random design compared to fixed design.
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Appendix A. Application to smoothing splines

The applications of ridge regression considered by Zhang (2005) can also be analyzed using
Theorem 16. We specifically consider the problem of approximating a periodic function
with smoothing splines, which are functions f : R→ R whose s-th derivatives f (s), for some
s > 1/2, satisfy ∫ (

f (s)(t)
)2
dt <∞.

The one-dimensional covariate t ∈ R can be mapped to the infinite dimensional represen-
tation x := φ(t) ∈ R∞ where

x2k :=
sin(kt)

(k + 1)s
and x2k+1 :=

cos(kt)

(k + 1)s
, k ∈ {0, 1, 2, . . . }.

Assume that the regression function is

E[y|x] = 〈β, x〉

so approx(x) = 0 almost surely. Observe that ‖x‖2 ≤ 2s
2s−1 , so Condition 2 is satisfied with

ρλ :=

(
2s

2s− 1

)1/2 1√
λd1,λ

as per Remark 2. Therefore, the simplified bound from Remark 17 becomes in this case

‖β̂λ − β‖2Σ ≤ ‖βλ − β‖2Σ + C ·
(

2s

2s− 1
·
‖βλ − β‖2Σ

λn
+
‖βλ − β‖2Σ + σ2d2,λ

n

)
≤ λ‖β‖2

2
+ C ·

σ2d2,λ
n

+ C ·
(

2s

2s− 1
+
λ

2

)
· ‖β‖

2

n

for some constant C > 0, where we have used the inequality ‖βλ − β‖2Σ ≤ λ‖β‖2/2. Zhang
(2005, Section 5.3) shows that

d1,λ ≤ inf
k≥1

{
2k +

2/λ

(2s− 1)k2s−1

}
.

Since d2,λ ≤ d1,λ, it follows that setting λ := k−2s where k = b((2s − 1)n/(2s))1/(2s+1)c
gives the bound

‖β̂λ − β‖2Σ ≤
(
‖β‖2

2
+ 2Cσ2

)
·
(

2s− 1

2s
· n
)− 2s

2s+1

+ lower-order terms

which has the optimal data-dependent rate of n−
2s

2s+1 (Stone, 1982).
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Appendix B. Proofs of Theorem 11 and Theorem 16

The proof of Theorem 16 uses the decomposition of ‖β̂λ− β‖2Σ in Proposition 14, and then
bounds each term using the lemmas proved in this section.

The proof of Theorem 11 omits one term from the decomposition in Proposition 14 due
to the fact that β = βλ when λ = 0; and it uses a slightly simpler argument to handle the
effect of noise (Lemma 28 rather than Lemma 29), which reduces the number of lower-order
terms. Other than these differences, the proof is the same as that for Theorem 16 in the
special case of λ = 0.

Define

Σλ := Σ + λI, (14)

Σ̂λ := Σ̂ + λI, and (15)

∆λ := Σ
−1/2
λ (Σ̂ −Σ)Σ

−1/2
λ (16)

= Σ
−1/2
λ (Σ̂λ −Σλ)Σ

−1/2
λ .

Recall the basic decomposition from Proposition 14:

‖β̂λ − β‖2Σ ≤
(
‖βλ − β‖Σ + ‖β̄λ − βλ‖Σ + ‖β̂λ − β̄λ‖Σ

)2
.

Section B.1 first establishes basic properties of β and βλ, which are then used to bound
‖βλ − β‖2Σ ; this part is exactly the same as the standard fixed design analysis of ridge
regression. Section B.2 employs probability tail inequalities for the spectral and Frobenius
norms of random matrices to bound the matrix errors in estimating Σ with Σ̂. Finally,
Section B.3 and Section B.4 bound the contributions of approximation error (in ‖β̄λ−βλ‖2Σ)

and noise (in ‖β̂λ−β̄λ‖2Σ), respectively, using probability tail inequalities for random vectors

as well as the matrix error bounds for Σ̂.

B.1. Basic properties of β and βλ, and the effect of regularization

Proposition 20 (Normal equations) E[〈w, x〉y] = E[〈w, x〉〈β, x〉] for any w.

Proof It suffices to prove the claim for w = vj . Since E[〈vj , x〉〈vj′ , x〉] = 0 for j′ 6= j, it
follows that E[〈vj , x〉〈β, x〉] =

∑
j′ βj′E[〈vj , x〉〈vj′ , x〉] = βjE[〈vj , x〉2] = E[〈vj , x〉y], where

the last equality follows from the definition of β in (2).

Proposition 21 (Excess mean squared error) E[(〈w, x〉−y)2]−E[(〈β, x〉−y)2] = E[〈w−
β, x〉2] for any w.

Proof Directly expanding the squares in the expectations reveals that

E[(〈w, x〉 − y)2]− E[(〈β, x〉 − y)2]

= E[〈w, x〉2]− 2E[〈w, x〉y] + 2E[〈β, x〉y]− E[〈β, x〉2]
= E[〈w, x〉2]− 2E[〈w, x〉〈β, x〉] + 2E[〈β, x〉〈β, x〉]− E[〈β, x〉2]
= E[〈w, x〉2 − 2〈w, x〉〈β, x〉+ 〈β, x〉2]
= E[〈w − β, x〉2]

15
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where the third equality follows from Proposition 20.

Proposition 22 (Shrinkage) For any j,

〈vj , βλ〉 =
λj

λj + λ
βj .

Proof Since (Σ + λI)−1 =
∑

j(λj + λ)−1vj ⊗ vj ,

〈vj , βλ〉 = 〈vj , (Σ + λI)−1E[xy]〉 =
1

λj + λ
E[〈vj , x〉y] =

λj
λj + λ

E[〈vj , x〉y]

〈vj , x〉2
=

λj
λj + λ

βj .

Proposition 23 (Effect of regularization)

‖β − βλ‖2Σ =
∑
j

λj

(
λj
λ + 1)2

β2j .

Proof By Proposition 22,

〈vj , β − βλ〉 = βj −
λj

λj + λ
βj =

λ

λj + λ
βj .

Therefore,

‖β − βλ‖2Σ =
∑
j

λj

(
λ

λj + λ
βj

)2

=
∑
j

λj

(
λj
λ + 1)2

β2j .

B.2. Effect of errors in Σ̂

Lemma 24 (Spectral norm error in Σ̂) Assume Condition 1 and Condition 2 (with
parameter ρλ) hold. Pick t > max{0, 2.6− log d̃1,λ}. With probability at least 1− e−t,

‖∆λ‖ ≤

√
4ρ2λd1,λ(log d̃1,λ + t)

n
+

2ρ2λd1,λ(log d̃1,λ + t)

3n

where ∆λ is defined in (16).

Proof The claim is a consequence of the tail inequality from Lemma 32. First, define

x̃ := Σ
−1/2
λ x and Σ̃ := Σ

−1/2
λ ΣΣ

−1/2
λ

16
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(where Σλ is defined in (14)), and let

Z := x̃⊗ x̃− Σ̃

= Σ
−1/2
λ (x⊗ x−Σ)Σ

−1/2
λ

so ∆λ = Ê[Z]. Observe that E[Z] = 0 and

‖Z‖ = max{λmax[Z], λmax[−Z]} ≤ max{‖x̃‖2, 1} ≤ ρ2λd1,λ

where the second inequality follows from Condition 2. Moreover,

E[Z2] = E[(x̃⊗ x̃)2]− Σ̃2 = E[‖x̃‖2(x̃⊗ x̃)]− Σ̃2

so

λmax[E[Z2]] ≤ λmax[E[(x̃⊗ x̃)2]] ≤ ρ2λd1,λλmax[Σ̃] ≤ ρ2λd1,λ
tr(E[Z2]) ≤ tr(E[‖x̃‖2(x̃⊗ x̃)]) ≤ ρ2λd1,λ tr(Σ̃) = ρ2λd

2
1,λ.

The claim now follows from Lemma 32 (recall that d̃1,λ = max{1, d1,λ}).

Lemma 25 (Relative spectral norm error in Σ̂λ) If ‖∆λ‖ < 1 where ∆λ is defined
in (16), then

‖Σ1/2
λ Σ̂−1λ Σ

1/2
λ ‖ ≤

1

1− ‖∆λ‖

where Σλ is defined in (14) and Σ̂λ is defined in (15).

Proof Observe that

Σ
−1/2
λ Σ̂λΣ

−1/2
λ = Σ

−1/2
λ (Σλ + Σ̂λ −Σλ)Σ

−1/2
λ

= I +Σ
−1/2
λ (Σ̂λ −Σλ)Σ

−1/2
λ

= I + ∆λ,

and that
λmin[I + ∆λ] ≥ 1− ‖∆λ‖ > 0

by the assumption ‖∆λ‖ < 1 and Weyl’s theorem (Horn and Johnson, 1985, Theorem 4.3.1).
Therefore

‖Σ1/2
λ Σ̂−1λ Σ

1/2
λ ‖ = λmax[(Σ

−1/2
λ Σ̂λΣ

−1/2
λ )−1] = λmax[(I+∆λ)−1] =

1

λmin[I + ∆λ]
≤ 1

1− ‖∆‖
.
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Lemma 26 (Frobenius norm error in Σ̂) Assume Condition 1 and Condition 2 (with
parameter ρλ) hold. Pick any t > 0. With probability at least 1− e−t,

‖∆λ‖F ≤

√
E[‖Σ−1/2λ x‖4]− d2,λ

n
(1 +

√
8t) +

4
√
ρ4λd

2
1,λ + d2,λt

3n

≤

√
ρ2λd

2
1,λ − d2,λ
n

(1 +
√

8t) +
4
√
ρ4λd

2
1,λ + d2,λt

3n

where ∆λ is defined in (16).

Proof The claim is a consequence of the tail inequality in Lemma 31. As in the proof

of Lemma 24, define x̃ := Σ
−1/2
λ x and Σ̃ := Σ

−1/2
λ ΣΣ

−1/2
λ , and let Z := x̃ ⊗ x̃ − Σ̃ so

∆λ = Ê[Z]. Now endow the space of self-adjoint linear operators with the inner product
given by 〈A,B〉F := tr(AB), and note that this inner product induces the Frobenius norm
‖M‖F = 〈M,M〉F. Observe that E[Z] = 0 and

‖Z‖2F = 〈x̃⊗ x̃− Σ̃, x̃⊗ x̃− Σ̃〉F
= 〈x̃⊗ x̃, x̃⊗ x̃〉F − 2〈x̃⊗ x̃, Σ̃〉F + 〈Σ̃, Σ̃〉F
= ‖x̃‖4 − 2‖x̃‖2

Σ̃
+ tr(Σ̃2)

= ‖x̃‖4 − 2‖x̃‖2
Σ̃

+ d2,λ

≤ ρ4λd21,λ + d2,λ

where the inequality follows from Condition 2. Moreover,

E[‖Z‖2F] = E[〈x̃⊗ x̃, x̃⊗ x̃〉F]− 〈Σ̃, Σ̃〉F
= E[‖x̃‖4]− d2,λ
≤ ρ2λd1,λE[‖x̃‖2]− d2,λ
= ρ2λd

2
1,λ − d2,λ

where the inequality again uses Condition 2. The claim now follows from Lemma 31.

B.3. Effect of approximation error

Lemma 27 (Effect of approximation error) Assume Condition 1, Condition 2 (with
parameter ρλ), and Condition 4 (with parameter bλ) hold. Pick any t > 0. If ‖∆λ‖ < 1
where ∆λ is defined in (16), then

‖β̄λ − βλ‖Σ ≤
1

1− ‖∆λ‖
‖Ê[x approxλ(x)− λβλ]‖Σ−1

λ
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where β̄λ is defined in (13), βλ is defined in (8), approxλ(x) is defined in (9), and Σλ is
defined in (14). Moreover, with probability at least 1− e−t,

‖Ê[x approxλ(x)− λβλ]‖Σ−1
λ

≤

√
E[‖Σ−1/2λ (x approxλ(x)− λβλ)‖2]

n
(1 +

√
8t) +

4(bλ
√
d1,λ + ‖β − βλ‖Σ)t

3n

≤

√
2(ρ2λd1,λE[approxλ(x)2] + ‖β − βλ‖2Σ)

n
(1 +

√
8t) +

4(bλ
√
d1,λ + ‖β − βλ‖Σ)t

3n
.

Proof By the definitions of β̄λ and βλ,

β̄λ − βλ = Σ̂−1λ

(
Ê[xE[y|x]]− Σ̂λβλ

)
= Σ

−1/2
λ (Σ

1/2
λ Σ̂−1λ Σ

1/2
λ )Σ

−1/2
λ

(
Ê[x(approx(x) + 〈β, x〉)]− Σ̂βλ − λβλ

)
= Σ

−1/2
λ (Σ

1/2
λ Σ̂−1λ Σ

1/2
λ )Σ

−1/2
λ

(
Ê[x(approx(x) + 〈β, x〉 − 〈βλ, x〉)]− λβλ

)
= Σ

−1/2
λ (Σ

1/2
λ Σ̂−1λ Σ

1/2
λ )Σ

−1/2
λ

(
Ê[x approxλ(x)− λβλ]

)
.

Therefore, using the sub-multiplicative property of the spectral norm,

‖β̄λ − βλ‖Σ ≤ ‖Σ1/2Σ
−1/2
λ ‖‖Σ1/2

λ Σ̂−1λ Σ
1/2
λ ‖‖Ê[x approxλ(x)− λβλ]‖Σ−1

λ

≤ 1

1− ‖∆λ‖
‖Ê[x approxλ(x)− λβλ]‖Σ−1

λ

where the second inequality follows from Lemma 25 and because

‖Σ1/2Σ
−1/2
λ ‖2 = λmax[Σ

−1/2
λ ΣΣ

−1/2
λ ] = max

i

λi
λi + λ

≤ 1.

The second part of the claim is a consequence of the tail inequality in Lemma 31. Observe
that E[x approx(x)] = E[x(E[y|x]−〈β, x〉)] = 0 by Proposition 20, and that E[x〈β−βλ, x〉]−
λβλ = Σβ − (Σ + λI)βλ = 0. Therefore,

E[Σ
−1/2
λ (x approxλ(x)− λβλ)] = Σ

−1/2
λ E[x(approx(x) + 〈β − βλ, x〉)− λβλ] = 0.

Moreover, by Proposition 22 and Proposition 23,

‖λΣ−1/2λ βλ‖2 =
∑
j

λ2

λj + λ
〈vj , βλ〉2

=
∑
j

λ2

λj + λ

(
λj

λj + λ
βj

)2

≤
∑
j

λ2

λj + λ

(
λj

λj + λ

)
β2j

=
∑
j

λj

(
λj
λ + 1)2

β2j

= ‖β − βλ‖2Σ . (17)
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Combining the inequality from (17) with Condition 4 and the triangle inequality, it follows
that

‖Σ−1/2λ (x approxλ(x)− λβλ)‖ ≤ ‖Σ−1/2λ x approxλ(x)‖+ ‖λΣ−1/2λ βλ‖
≤ bλ

√
d1,λ + ‖β − βλ‖Σ .

Finally, by the triangle inequality, the fact (a+ b)2 ≤ 2(a2 + b2), the inequality from (17),
and Condition 2,

E[‖Σ−1/2λ (x approxλ(x)− λβλ)‖2] ≤ 2(E[‖Σ−1/2λ x approxλ(x)‖2] + ‖βλ − β‖2Σ)

≤ 2(ρ2λd1,λE[approxλ(x)2] + ‖βλ − β‖2Σ).

The claim now follows from Lemma 31.

B.4. Effect of noise

Lemma 28 (Effect of noise, λ = 0) Assume the dimension of the covariate space is d <
∞ and that λ = 0. Assume Condition 3 (with parameter σ) holds. Pick any t > 0. With
probability at least 1− e−t, either ‖∆0‖ ≥ 1, or

‖∆0‖ < 1 and ‖β̄0 − β̂0‖2Σ ≤
1

1− ‖∆0‖
· σ

2(d+ 2
√
dt+ 2t)

n
,

where ∆0 is defined in (16).

Proof Observe that

‖β̄0 − β̂0‖2Σ ≤ ‖Σ1/2Σ̂−1/2‖2‖β̄0 − β̂0‖2Σ̂ = ‖Σ1/2Σ̂−1Σ1/2‖‖β̄0 − β̂0‖2Σ̂ ;

and if ‖∆0‖ < 1, then ‖Σ1/2Σ̂−1Σ1/2‖ ≤ 1/(1− ‖∆0‖) by Lemma 25.
Let ξ := (noise(x1),noise(x2), . . . ,noise(xn)) be the random vector whose i-th compo-

nent is noise(xi) = yi − E[yi|xi]. By the definition of β̂0 and β̄0

‖β̂0 − β̄0‖2Σ̂ = ‖Σ̂−1/2Ê[x(y − E[y|x])]‖2 = ξ>K̂ξ

where K̂ ∈ Rn×n is the symmetric matrix whose (i, j)-th entry is K̂i,j := n−2〈Σ̂−1/2xi, Σ̂−1/2xj〉.
Note that the non-zero eigenvalues of K̂ are the same as those of

1

n
Ê
[
(Σ̂−1/2x)⊗ (Σ̂−1/2x)

]
=

1

n
Σ̂−1/2Σ̂Σ̂−1/2 =

1

n
I.

By Lemma 30, with probability at least 1− e−t (conditioned on x1, x2, . . . , xn),

ξ>K̂ξ ≤ σ2(tr(K̂) + 2

√
tr(K̂2)t+ 2λmax(K̂)t) =

σ2(d+ 2
√
dt+ 2t)

n
.

The claim follows.
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Lemma 29 (Effect of noise, λ ≥ 0) Assume Condition 1 and Condition 3 (with param-
eter σ) hold. Pick any t > 0. Let K be the n × n symmetric matrix whose (i, j)-th entry
is

Ki,j :=
1

n2
〈Σ1/2Σ̂−1λ xi, Σ

1/2Σ̂−1λ xj〉

where Σ̂λ is defined in (15). With probability at least 1− e−t,

‖β̄λ − β̂λ‖2Σ ≤ σ2(tr(K) + 2
√

tr(K)λmax(K)t+ 2λmax(K)t).

Moreover, if ‖∆λ‖ < 1 where ∆λ is defined in (16), then

λmax(K) ≤ 1

n(1− ‖∆λ‖)
and tr(K) ≤

d2,λ +
√
d2,λ‖∆λ‖2F

n(1− ‖∆λ‖)2
.

Proof Let ξ := (noise(x1), noise(x2), . . . ,noise(xn)) be the random vector whose i-th com-
ponent is noise(xi) = yi − E[yi|xi]. By the definition of β̂λ, β̄λ, and K,

‖β̂λ − β̄λ‖2Σ = ‖Σ̂−1λ Ê[x(y − E[y|x])]‖2Σ = ξ>Kξ.

By Lemma 30, with probability at least 1− e−t (conditioned on x1, x2, . . . , xn),

ξ>Kξ ≤ σ2(tr(K) + 2
√

tr(K2)t+ 2λmax(K)t)

≤ σ2(tr(K) + 2
√

tr(K)λmax(K)t+ 2λmax(K)t)

where the second inequality follows from von Neumann’s theorem (Horn and Johnson, 1985,
page 423).

Note that the non-zero eigenvalues of K are the same as that of

1

n
Ê
[
(Σ1/2Σ̂−1λ x)⊗ (Σ1/2Σ̂−1λ x)

]
=

1

n
Σ1/2Σ̂−1λ Σ̂Σ̂−1λ Σ1/2.

To bound λmax(K), observe that by the sub-multiplicative property of the spectral norm
and Lemma 25,

nλmax(K) = ‖Σ1/2Σ̂−1λ Σ̂1/2‖2

≤ ‖Σ1/2Σ
−1/2
λ ‖2‖Σ1/2

λ Σ̂
−1/2
λ ‖2‖Σ̂−1/2λ Σ̂1/2‖2

≤ ‖Σ1/2
λ Σ̂

−1/2
λ ‖2

= ‖Σ1/2
λ Σ̂−1λ Σ

1/2
λ ‖

≤ 1

1− ‖∆λ‖
.

To bound tr(K), first define the λ-whitened versions of Σ, Σ̂, and Σ̂λ:

Σw := Σ
−1/2
λ ΣΣ

−1/2
λ

Σ̂w := Σ
−1/2
λ Σ̂Σ

−1/2
λ

Σ̂λ,w := Σ
−1/2
λ Σ̂λΣ

−1/2
λ .
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Using these definitions with the cycle property of the trace,

n tr(K) = tr(Σ1/2Σ̂−1λ Σ̂Σ̂−1λ Σ1/2)

= tr(Σ̂−1λ Σ̂Σ̂−1λ Σ)

= tr(Σ̂−1λ,wΣ̂wΣ̂
−1
λ,wΣw).

Let {λj [M ]} denote the eigenvalues of a linear operator M . By von Neumann’s theo-
rem (Horn and Johnson, 1985, page 423),

tr(Σ̂−1λ,wΣ̂wΣ̂
−1
λ,wΣw) ≤

∑
j

λj [Σ̂
−1
λ,wΣ̂wΣ̂

−1
λ,w]λj [Σw]

and by Ostrowski’s theorem (Horn and Johnson, 1985, Theorem 4.5.9),

λj [Σ̂
−1
λ,wΣ̂wΣ̂

−1
λ,w] ≤ λmax[Σ̂−2λ,w]λj [Σ̂w].

Therefore

tr(Σ̂−1λ,wΣ̂wΣ̂
−1
λ,wΣw) ≤ λmax[Σ̂−2λ,w]

∑
j

λj [Σ̂w]λj [Σw]

≤ 1

(1− ‖∆λ‖)2
∑
j

λj [Σ̂w]λj [Σw]

=
1

(1− ‖∆λ‖)2
∑
j

(
λj [Σw]2 + (λj [Σ̂w]− λj [Σw])λj [Σw]

)

≤ 1

(1− ‖∆λ‖)2

∑
j

λj [Σw]2 +

√∑
j

(λj [Σ̂w]− λj [Σw])2
√∑

j

λj [Σw]2


=

1

(1− ‖∆λ‖)2

d2,λ +

√∑
j

(λj [Σ̂w]− λj [Σw])2
√
d2,λ


≤ 1

(1− ‖∆λ‖)2
(
d2,λ + ‖Σ̂w −Σw‖F

√
d2,λ

)
=

1

(1− ‖∆λ‖)2
(
d2,λ + ‖∆λ‖F

√
d2,λ

)
where the second inequality follows from Lemma 25, the third inequality follows from
Cauchy-Schwarz, and the fourth inequality follows from Mirsky’s theorem (Stewart and
Sun, 1990, Corollary 4.13).

Appendix C. Probability tail inequalities

The following probability tail inequalities are used in our analysis. These specific inequalities
were chosen in order to satisfy the general conditions setup in Section 2.4; however, our
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analysis can specialize or generalize with the availability of other tail inequalities of these
sorts.

The first tail inequality is for positive semidefinite quadratic forms of a subgaussian
random vector. It generalizes a standard tail inequality for Gaussian random vectors based
on linear combinations of χ2 random variables (Laurent and Massart, 2000). We give the
proof for completeness.

Lemma 30 (Quadratic forms of a subgaussian random vector; Hsu et al., 2011)
Let ξ be a random vector taking values in Rn such that for some c ≥ 0,

E[exp(〈u, ξ〉)] ≤ exp(c‖u‖2/2), ∀u ∈ Rn.

For all symmetric positive semidefinite matrices K � 0, and all t > 0,

Pr

[
ξ>Kξ > c

(
tr(K) + 2

√
tr(K2)t+ 2‖K‖t

)]
≤ e−t.

Proof Let z ∈ Rn be a vector of n i.i.d. standard normal random variables (independent
of ξ). For any τ ≥ 0 and λ ≥ 0, let η := cλ2/2, so

E
[
exp(λ〈z,K1/2ξ〉)

]
≥ E

[
exp(λ〈z,K1/2ξ〉)|‖K1/2ξ‖2 > c(tr(K) + τ)

]
· Pr
[
‖K1/2ξ‖2 > c(tr(K) + τ)

]
≥ exp(λ2c(tr(K) + τ)/2) · Pr

[
‖K1/2ξ‖2 > c(tr(K) + τ)

]
= exp(η(tr(K) + τ)) · Pr

[
‖K1/2ξ‖2 > c(tr(K) + τ)

]
(18)

since E[exp(〈u, z〉)] = exp(‖u‖2/2) for any u ∈ Rn. Moreover, by independence of ξ and z,

E
[
exp(λ〈z,K1/2ξ〉)

]
= E

[
E
[
exp(λ〈K1/2z, ξ〉)|z

]]
≤ E

[
exp(cλ2‖K1/2z‖2/2)

]
= E

[
exp(η‖K1/2z‖2)

]
.

Since K is symmetric and positive semidefinite, K = V DV > for some orthogonal ma-
trix V = [u1|u2| · · · |ur] and diagonal matrix D = diag(ρ1, ρ2, . . . , ρr), where r is the rank
of K. By rotational symmetry, the vector V >z is equal in distribution to a vector of
r i.i.d. standard normal random variables q1, q2, . . . , qr, and ‖K1/2z‖2 = ‖D1/2V >z‖2 =
ρ1q

2
1 + ρ2q

2
2 + · · ·+ ρrq

2
r . Therefore,

E
[
exp(λ〈z,K1/2ξ〉)

]
≤ E

[
exp(η‖K1/2z‖2)

]
= E

[
exp(η(ρ1q

2
1 + ρ2q

2
2 + · · ·+ ρrq

2
r ))
]
. (19)

Combining (18) and (19) gives

Pr
[
‖K1/2ξ‖2 > c(tr(K) + τ)

]
≤ exp(−η(tr(K) + τ)) · E

[
exp(η(ρ1q

2
1 + ρ2q

2
2 + · · ·+ ρrq

2
r ))
]
.

The expectation on the right-hand side is the moment generating function for a linear
combination of r independent χ2 random variables, each with one degree of freedom. Since
tr(K) = ρ1 + ρ2 + · · ·+ ρr, tr(K2) = ρ21 + ρ22 + · · ·+ ρ2r , and ‖K‖ = max{ρ1, ρ2, . . . , ρr}, the
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conclusion follows from standard facts about χ2 random variables (Laurent and Massart,
2000):

Pr
[
‖K1/2ξ‖2 > c(tr(K) + τ)

]
≤ exp

(
−tr(K2)

2‖K‖
· h1
(
‖K‖τ
tr(K2)

))
where h1(a) := 1 + a−

√
1 + 2a.

The next lemma is a tail inequality for sums of bounded random vectors; it is a standard
application of Bernstein’s inequality.

Lemma 31 (Vector Bernstein bound; see, e.g., Hsu et al., 2011) Let x1, x2, . . . , xn
be independent random vectors such that

n∑
i=1

E[‖xi‖2] ≤ v and ‖xi‖ ≤ r

for all i = 1, 2, . . . , n, almost surely. Let s := x1 + x2 + · · ·+ xn. For all t > 0,

Pr
[
‖s‖ >

√
v(1 +

√
8t) + (4/3)rt

]
≤ e−t

The last tail inequality concerns the spectral accuracy of an empirical second moment
matrix.

Lemma 32 (Matrix Bernstein bound; Hsu et al., 2012) Let X be a random matrix,
and r > 0, v > 0, and k > 0 be such that, almost surely,

E[X] = 0, λmax[X] ≤ r, λmax[E[X2]] ≤ v, tr(E[X2]) ≤ vk.

If X1, X2, . . . , Xn are independent copies of X, then for any t > 0,

Pr

[
λmax

[
1

n

n∑
i=1

Xi

]
>

√
2vt

n
+
rt

3n

]
≤ kt(et − t− 1)−1.

If t ≥ 2.6, then t(et − t− 1)−1 ≤ e−t/2.
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