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Part 1.  Learning and privacy model



Data analytics with 
sensitive information

eCommerce:  customers’ browsing & purchase histories
Clinical studies:  patients’ medical records & test results
Genomic studies:  subjects’ genetic sequences

age 34

test #1 1.76

test #2 86.6

has flu? 1

Patient 1

age 31

test #1 1.62

test #2 67.5

has flu? 0

Patient 2

...

Learn something useful about whole 
population from data about individuals.
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This work: learning a binary classifier 
from labeled examples, where each 
training example is an individual’s 
sensitive information.
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Q:  If a classifier is learned from some individuals’ sensitive data,
can releasing / deploying the classifier in public violate the 
privacy of individuals from the training data?
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Q:  If a classifier is learned from some individuals’ sensitive data,
can releasing / deploying the classifier in public violate the 
privacy of individuals from the training data?
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A:   Yes!  Even after standard “anonymization”,
and even when just releasing aggregate statistics,
because an adversary could have side-information.

Data analytics with 
sensitive information



Example:  genome-wide 
association studies

Wang et al (2009):  able to combine side-information and 
published correlation statistics to determine whether an 
individual from the study was in disease group or healthy group.

Has disease Healthy

Correlations statistics Correlations statistics



Goals:  learn an accurate classifier from sensitive data
while also preserving the privacy of the data.

Privacy-preserving
machine learning

This work:  how many labeled examples are needed 
to achieve both of these goals simultaneously?
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Differential privacy guarantee [Dwork et al, 2006]:
an individual’s inclusion in the training data does not 
change (much) what an adversary could learn about 
that individual’s sensitive information.

What kind of privacy guarantee can a good learning
algorithm provide?

Goal 1:  Differential privacy



(Definition from [Dwork, et al 2006], specialized to learning [Kasiviswanathan, et al 2008])

- Probability is over internal randomness of the learning algorithm.
- Algorithm must behave similarly given similar training sets.
- Smaller α ∈ [0,1] corresponds to stronger guarantee.

A learning algorithm A : (X × {0, 1})∗ → H

is α-differentially private if:

Goal 1:  Differential privacy

For all training sets S and S� differing in at most
one example,

∀G ⊆ H,
PrA[A(S) ∈ G]

PrA[A(S�) ∈ G]
≤ eα.



Goal 2:  Learning

Standard statistical learning guarantees:

If S is an i.i.d. sample from a distribution P over X × {0, 1},
then A(S) returns a hypothesis h ∈ H such that w.p. ≥ 1 − δ
(over random draw of S and randomness in A)

errP(h) ≤ min
h�∈H

errP(h
�) + �

where errP(h̃) = Pr(x,y)∼P [h̃(x) �= y].



What was known
(previous work)

• Sample complexity for finite hypothesis classes or 
VC classes over discrete data domains.
[Kasiviswanathan et al, 2008], [Blum et al, 2008], [Beimel et al, 2010]

• Related problems:  (synthetic) data set release.
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What was known
(previous work)

• Sample complexity for finite hypothesis classes or 
VC classes over discrete data domains.
[Kasiviswanathan et al, 2008], [Blum et al, 2008], [Beimel et al, 2010]

• Related problems:  (synthetic) data set release.

What about infinite classes & continuous data domains?
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Part 2.  Sample complexity bounds 
for differentially-private learning



Our results

1. Some bad news:  no distribution-independent 
sample complexity upper bound possible for 
differentially-private learning.

2. Some hope:  differentially-private learning possible if

a. learner allowed some prior-knowledge,  or

b. privacy requirement is relaxed.



1.  No distribution-independent 
sample complexity upper bound

Let H be the class of threshold functions on the unit in-
terval [0, 1], and pick any positive real number M .

For every α-differentially private algorithm A : ([0, 1] ×
{0, 1})∗ → H, there is a distribution P (with full support)
over [0, 1]× {0, 1} such that:

1. There exists a threshold h∗ ∈ H with errP(h∗) = 0.

2. If S is an i.i.d. sample of size m ≤ M from P, then

PrS∼Pm,A

�
errP(A(S)) >

1
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Implications:
1. No direct analogue of  VC theorem

for differentially-private learning.

2. Qualitative difference between finite 
hypothesis class / discrete data domains 
and infinite classes / continuous data 
domains.

vs

1.  No distribution-independent 
sample complexity upper bound



1.  No distribution-independent 
sample complexity upper bound

0 1z 0 1z´

Proof idea: find data distributions P and P´ such that a 
“successful” distribution over thresholds for P differs 
significantly from a “successful” distribution over 
thresholds for P´.

P P´

A differentially-private learner using just a small number 
of examples must behave similarly in both cases; 
therefore, it must fail for at least one of the cases.



2.  Some hope for differentially-
private learning

Possible ways around the lower-bound:

a. Allow learner access to prior-knowledge 
(or prior belief) about unlabeled data 
distribution.

b. Only guarantee the differential privacy of 
the labels in the training data.



2(a).  Upper bounds based on prior 
knowledge of unlabeled data distribution

• Allow learner access to a reference distribution U 
over unlabeled data X, chosen independently of 
the training data.

• Sample complexity upper bound depends on 
how close U is to D (true unlabeled data distribution).

U and D close U and D far



dU : doubling-dimension of disagreement metric w.r.t. U .
κ(U ,D): divergence measure between distributions U and D.

2(a).  Upper bounds based on prior 
knowledge of unlabeled data distribution
Let P be any distribution over X ×{0, 1} with marginal D
over X . There is a constant C > 0 and an α-differentially
private algorithm A1 s.t. given an i.i.d. sample S of size
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w.p. ≥ 1 − δ, A1(S) returns a hypothesis h ∈ H with
errP(h) ≤ minh�∈H errP(h�) + �.
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• H = n-dimensional linear separators 
through the origin

• U = uniform distribution on unit sphere 
(so dU = O(n))

• Unlabeled data distribution D close to 
uniform:  D(x) ≤ c⋅U(x)

• Sample complexity upper bound:

2(a).  Upper bounds based on prior 
knowledge of unlabeled data distribution
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Example:



2(b).  Label privacy

• Weaker privacy guarantee: only guarantee 
differential-privacy of the labels.

• Can still protect against some privacy 
attacks on training data. 

A learning algorithm A : (X × {0, 1})∗ → H

is α-label private if:

For all training sets S, S� ⊆ X × {0, 1}
differing in at most one label,

PrA[A(S) ∈ G] ≤ PrA[A(S�) ∈ G] · eα (∀G ⊆ H)



• Label privacy avoids complications that 
arise with infinite hypothesis classes and 
continuous data domains

• Can obtain upper- and lower-bounds in 
terms of certain distribution-dependent 
complexity measures (covering number, 
doubling dimension).

• Bounds are (roughly) within 1/α factor of 
non-private sample complexity bounds.

2(b).  Label privacy



Recap & future work
1. Differential-privacy requirement rules out 

distribution-independent proper learning.

2. Some ways out:

a. Data-dependent bounds based on prior-
knowledge.

b. Relaxed notion of privacy (label privacy).

3. Future directions:

a. Improper learning (some work in discrete 
settings by [Beimel et al, 2010]).

b. Other weaker notions of privacy.

c. More general statistical estimation tasks.



Thanks!



1.  Bad news:  no distribution-
independent sample complexity 

upper bound
Idea:  Consider a set of distributions { Pz } for z ∈ 
[0,1]:  the marginal of each Pz over X is an even 
mixture of

(1) uniform on [0,1], and
(2) uniform on [z-η,z+η] (where η = Θ(exp(-αΜ)));

and labels are given by threshold hz(x) = 1[x≥z].

0 1z

To show:  Every α-differentially private learning 
algorithm using at most M training examples will 
fail on at least one distribution Pz.



Example:

• H = n-dimensional linear separators 
through the origin

• U = uniform distribution on unit sphere
(so dU = n)

• Unlabeled data distribution D uniform 
outside Θ(1)-width band around equator.

• Sample complexity upper bound:

2(a).  Upper bounds based on prior 
knowledge of unlabeled data distribution
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Doubling dimension

• Hypothesis class H + unlabeled data distribution D 
➙ disagreement metric space

• Doubling dimension is d if every ball of radius r 
can be covered by 2d balls of radius r/2 (and no 
fewer).

• (Non-private) sample complexity bound due to 
Bshouty et al (2009) for noiseless setting:

(H, ρD)

ρD(h, h
�) = Prx∼D[h(x) �= h�(x)]
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Divergence κ(U,D)

κ(U ,D) = inf
�
k > 0: Pr

x∼D
[x ∈ A] ≤ k · Pr

x∼U
[x ∈ A]

∀ measurable A
�

(Quantifies absolute continuity of D w.r.t. U.)


