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We have investigated a recently proposed halo-based model, CAMELUS, for predicting weak-lensing
peak counts, and compared its results over a collection of 162 cosmologies with those from N-body
simulations. While counts from both models agree for peaks with S=N > 1 (where S=N is the ratio of the
peak height to the r.m.s. shape noise), we find ≈50% fewer counts for peaks near S=N ¼ 0 and
significantly higher counts in the negative S=N tail. Adding shape noise reduces the differences to within
20% for all cosmologies. We also found larger covariances that are more sensitive to cosmological
parameters. As a result, credibility regions in the fΩm; σ8g are ≈30% larger. Even though the credible
contours are commensurate, each model draws its predictive power from different types of peaks. Low
peaks, especially those with 2 < S=N < 3, convey important cosmological information in N-body data, as
shown in previous studies, but CAMELUS constrains cosmology almost exclusively from high significance
peaks ðS=N > 3Þ. Our results confirm the importance of using a cosmology-dependent covariance with at
least a 14% improvement in parameter constraints. We identified the covariance estimation as the main
driver behind differences in inference, and suggest possible ways to make CAMELUS even more useful as a
highly accurate peak count emulator.
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I. INTRODUCTION

Weak gravitational lensing (WL) of background
sources by large-scale structure (LSS) is a promising
technique to study dark matter (DM) and dark energy
(DE) [1] as a consequence of its sensitivity to both
structure growth and the expansion history of the uni-
verse. Ongoing and future surveys such as the Dark
Energy Survey (DES[2]), the Euclid Mission[3], the Wide
Field Infrared Survey Telescope (WFIRST[4]) and the
Large Synoptic Survey Telescope (LSST[5]) will deliver
WL data sets with unprecedented precision, sky coverage
and depth. For a comprehensive treatment of weak
lensing in a cosmological context, we refer the reader
to the following reviews [6–8].
On small scales, WL probes the matter density field in

the non-linear regime, independent of the matter’s nature or
dynamic state. Thus, in order to optimally extract cosmo-
logical information from the upcoming WL surveys, we
need observables that go beyond quadratic statistics such as
the two-point correlation function or its Fourier transform,
the power spectrum. Various strategies have been proposed
to capture non-Gaussian information, from the use of
higher-order moments and correlation functions such as
the bispectrum ([9–12]), to the adoption of topological
features from WL maps such as Minkowski functionals
[13,14] or peak counts [15].

Lensing peaks, defined as local maxima of the con-
vergence or shear field, are particularly simple to extract
from mass-aperture maps, and have been shown to con-
strain cosmology both theoretically [16–18] and, recently,
observationally [19–21]. Peaks are usually classified based
on their absolute height or significance level, defined as
their signal-to-noise ratio ðS=N Þ, the noise being caused
by our imperfect knowledge of the intrinsic shapes of the
background galaxies.
Peak counts are also special because their physical origin

and sensitivity to cosmology can, in principle, be under-
stood and related to specific structures of the cosmic web.
While our understanding is not yet complete, it is clear that
halos are important contributors to peak counts. Shear
peaks were initially considered for cluster selection, and the
connection of high–significance peaks ðS=N > 4–5Þ to
single massive halos has been established in the literature
[22–24]. Lower–significance peaks are typically associated
with constellations of lower-mass halos [25,26] and con-
tribute significantly to the cosmological information in
convergence maps [17,25].
Predicting analytically the abundance of peaks is

difficult, as it depends on projections of nonlinear struc-
tures. N-body simulations can predict peak counts at a high
computational cost that will only increase with the high
volumes required by upcoming WL surveys. The need to
predict not only the peak number density but also its
covariance would further raise the total cost. The halo-peak
connection has inspired some models that would circum-
vent the need for full N-body simulations by using either*jz2596@columbia.edu
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analytical models based on Gaussian random fields [27–29]
or stochastic fast simulations based on the halo model
[30,31]. This could prove extremely useful by reducing the
computational requirements for N-body simulations by 2–3
orders of magnitude.
The main goal of this work is to assess the validity of

halo-based models for cosmological parameter inference.
In particular, we compare results from full N-body simu-
lations with those of a recent publicly available algorithm,
CAMELUS [31]. In previous work [31], this model was
found to predict accurately peak counts from N-body
simulations for a specific cosmology. Here, we expand
the comparison of peak counts to a wide range of different
cosmologies, and also examine their predicted covariance
matrices, showing how differences affect the resulting
parameter credibility regions. We also review the
importance of the cosmology-dependence of the covari-
ance matrix in the context of precision parameter infer-
ence [32].
The rest of the paper is organized as follows. In Sec. II

we describe the methods used to predict peak counts
using N-body simulations and CAMELUS, and infer con-
straints for cosmological parameters. In Sec. III we show
how both models compare in terms of peak counts,
covariance matrices, and credible contours. We then dis-
cuss our main findings (Sec. IV), identifying potential
origins for the differences between the two models and how
CAMELUS could be modified to match N-body predictions
more accurately. Our main conclusions are summarized
in Sec. V.

II. PREDICTING PEAK COUNTS

We generated convergence maps for a suite of 162 flat
ΛCDM cosmologies covering the fΩm; σ8g plane using
both N-body simulations and CAMELUS. Table I presents
the cosmological parameters for our fiducial cosmology,
which are consistent with the 9-year Wilkinson Microwave
Anisotropy Probe (WMAP) results [33] for ease of com-
parison with past simulation efforts.
We sampled the parameter space with a modified

latin hypercube algorithm implemented in the publicly
available lensing package LENSTOOLS [34], and based on a

coordinate transformation that converts a randomly
sampled rectangle into an ellipse:

ðr;ϕÞ → ðx ¼ arn cosϕ; y ¼ brn sinϕÞ ð1Þ

with ðr;ϕÞ ∈ ½0; 1� × ½0; 2π�. We adjusted the semiaxes a
and b so that the region explored covered all areas with a
significant likelihood according to past WL peak counts
studies [16]. We centered the ellipse on our fiducial
cosmology ðΩm ¼ 0.260; σ8 ¼ 0.800Þ, and rotated it so
that its semimajor axis became parallel to the direction of
maximum degeneracy between the two parameters. The
exponent n controls the sampling concentration, with
n > 1=2 yielding samples whose density grows toward
the center of the ellipse. We used n ¼ 3=2.
Based on the likelihood estimated from a first batch of

100 cosmologies, we added manually 62 cosmologies in
sparsely sampled regions, such as the contours’ tails. Doing
so reduced the sampling error in the likelihoods, as
discussed in Sec. IV.

A. N-body simulations

Our simulation pipeline is described in detail in [34]. For
each cosmology, we evolved a single ð240 h−1 MpcÞ3
volume with GADGET2 [35], large enough to cover the
intended 3.5 × 3.5 deg2 field of view to a distance beyond
the lensed sources’ redshifts. Every simulated box contains
5123 DM particles, which yields a mass resolution of
Mp ≈ 1010M⊙. All lensed source galaxies were placed at a
redshift of zs ¼ 1, and 80 h−1Mpc thick lens planes were
stacked between the galaxies and the observer. Each lens
plane is the result of slicing a snapshot along a coordinate
axis, and applying to it a random shift and rotation,
allowing us to generate 500 independent realizations from
a single N-body run. Lens planes were converted to
potential planes and a multiplane ray-tracing algorithm
was used to generate 1;024 × 1;024 pixels convergence
maps with a pixel size of ≈0.2 arcmin. We used a higher
resolution for the potential planes, 4; 096 × 4; 096 pixels,
to avoid a loss of power on small scales [25]. We deployed
and managed the simulations and their output using
LENSTOOLS [34].
Since the unperturbed galaxy shape is unknown, we

accounted for an intrinsic ellipticity noise following [36]
and added a 2-D Gaussian random noise with zero mean
and standard deviation

σpix ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2ϵ
2ngApix

s
ð2Þ

with intrinsic ellipticity σϵ ¼ 0.4 as in [31], a galaxy
density of ng ¼ 25 arcmin−1 and pixel area defined by
the field-of-view and map resolution. We smoothed the
noiseless and noise-only maps applying a Gaussian filter

TABLE I. Cosmological parameters for the fiducial model. All
other cosmologies share these parameters except Ωm and σ8.

Parameter Symbol Value

Matter density Ωm 0.260
Dark energy density ΩDE 1.0 − Ωm
Amplitude of fluctuations at 8 h−1 Mpc σ8 0.800
Hubble constant h 0.72
Dark energy eq. of state w −1.0
Scalar spectral index ns 0.96
Effective number of relativistic d.o.f. neff 3.04
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with a characteristic width of θG ¼ 1 arcmin—see
Eq. (3)—before combining them, and extracted their
local maxima, recording them in the form of peak
catalogues.

WðθÞ ¼ 1

πθ2G
exp

�
−
θ2

θ2G

�
ð3Þ

B. Camelus

CAMELUS is a halo-based model that generates fast
stochastic simulations of convergence maps. Instead of
evolving the matter density field from high redshift
dynamically, it assumes that halos are the primary con-
tributors to the lensing signal and discretizes the space
between the lensed galaxies and the observer in redshift
bins, populating them with halos whose masses are
sampled from an analytical function [37]. Each halo
follows a Navarro-Frenk-White (NFW) density profile
[38] and is placed randomly within its redshift bin. We
refer the reader to [31] for an in-depth description of
the model.
We ran CAMELUS for each of the same set of 162

cosmologies as with the N-body simulations, generating
500 independent realizations in each case. The resulting
smoothed, noiseless convergence maps were combined
with shape noise that is statistically the same as the one
used with the N-body maps, and their peaks extracted
with the same routines. The values we used for the
relevant tunable parameters in CAMELUS are given in
Table II.

C. Parameter inference

Bayes’ theorem relates the probability distribution for a
set of cosmological parameters, given an observation, to the
likelihood of the observed data given values for those
parameters

pðθjxobs;MÞ ¼ pðxobsjθ;MÞpðθ;MÞ
pðxobs;MÞ ð4Þ

where p is the probability, θ represents the set of param-
eters that determine the model M and xobs is a data vector
that depends on observations. Throughout this study we
assume ΛCDM is a correct description of the universe,
hence the evidence (denominator) acts just as a normalizing
factor and we can drop the implicit dependence on the
model. We use a nonzero prior within the parameter region
that we explore, and zero outside:

pðθjxobsÞ ∝ pðxobsjθÞ≡ LðθÞ: ð5Þ

Our observable is the peak function defined as the peak
counts binned by their height or significance level (S=N ,
height in units of the r.m.s. ellipticity noise).
If we assume that our observable follows a multivariate

Gaussian distribution, its log-likelihood, up to an additive
constant, has the form:

Lvg ¼ ln ½ð2dÞddetCðθÞ� þ ΔxTðθÞdC−1ðθÞΔxðθÞ ð6Þ

where Δx is the difference between the mean peak function
in each cosmology from its value in the fiducial ðΩm ¼
0.260; σ8 ¼ 0.800Þ cosmology, and dC−1 is the precision
matrix (the inverse of the covariance matrix), estimated
from the data. We follow the same notation as [32], and call
it Lvg, L indicating it is a “log-likelihood”, v that it includes
a “varying” (i.e. cosmology-dependent) covariance matrix,
and g that the assumed model is “Gaussian.”
Means and covariance matrices are computed from the

N ¼ 500 realizations available in each cosmology:

ΔxðθÞ ¼ x̄ðθÞ − x̄ðθfidÞ ð7Þ

CðθÞ ¼ 1

N − 1

XN
i¼1

ðxiðθÞ − x̄ðθÞÞðxiðθÞ − x̄ðθÞÞT: ð8Þ

In many cases, evaluating the covariance matrix at each
point of the parameter space becomes computationally too
expensive, and a constant covariance is used instead. As in
[32], we assess the effect of this simplification by evalu-
ating two approximations to the full Gaussian likelihood.
The first is to use a “semivarying” covariance matrix; i.e.,
we let the covariance matrix change with cosmology within
the χ2 term but not the determinant term in Eq. (6).
Following the notation in [32] we call it Lsvg. The second

TABLE II. The main tunable parameters of CAMELUS and their
values used in this study. Dark matter halos are assumed to have a
Navarro-Frenk-White (NFW) density profile, defined by its inner
slope (α), and its concentration parameter, the ratio between the
virial and scale radii, determined itself by c0 and β:
cNFW ≡ c0

1þz ðMM⋆Þβ, where z is the halo’s redshift, M its mass
and M⋆ its pivot mass (see [31] for a detailed description of the
halo density profile characterization).

Parameter Symbol Value

Field of view fov 210.0 × 210.0 arcmin2

Pixel size � � � 0.205 arcmin
Smoothing scale θG 1.0 arcmin
Minimum halo mass Mmin 1011h−1M⊙
Maximum halo mass Mmax 1017h−1M⊙
Maximum halo redshift zmax 1.0
No. of redshift bins nz 10
Halo profile inner slope α 1.0
Halo concentration (norm.) c0 11.0
Halo concentration (slope) β 0.13
Galaxies redshift zgal 1.0
Galaxy density ng 25.0 arcmin−2

Ellipticity noise σϵ 0.4
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is to compute the likelihood with a “constant” covariance
matrix, evaluated at the fiducial model, in all terms. We call
this Lcg:

Lsvg ¼ ΔxTðθÞdC−1ðθÞΔxðθÞ ð9Þ

Lcg ¼ ΔxTðθÞdC−1ðθfidÞΔxðθÞ ð10Þ

Note that the precision matrices in Eqs. (6), (9) and (10)
have a “hat” on top, while the covariance matrix in Eq. (8)
does not. That is because the inverse of a covariance matrix
estimated from data is not an unbiased estimator for the
precision matrix. There are two ways to correct for the bias.
The most common [39] is to rescale the inverse of the
estimated covariance matrix:

dC−1 ¼ N − d − 2

N − 1
C−1 ð11Þ

where N is the number of realizations per cosmology (500
in our case) and d the dimension of the observable (number
of bins in the peak function).
An alternative approach is to use a non-Gaussian like-

lihood, as described in [40]. In this case we can also use a
constant or varying covariance matrix in each of the log-
likelihood terms and, following the same notation, drop the
g subscript since the model is not a Gaussian anymore. The
functional form for these models is as follows:

Lv ¼ ln

�
detCðθÞ

c2p

�
þ N

�
1þ ΔxTðθÞC−1ðθÞΔxðθÞ

N − 1

�
ð12Þ

Lsv ¼ N

�
1þ ΔxTðθÞC−1ðθÞΔxðθÞ

N − 1

�
ð13Þ

Lc ¼ N

�
1þ ΔxTðθÞC−1ðθfidÞΔxðθÞ

N − 1

�
ð14Þ

with a normalizing factor

c̄p ¼ ΓðN
2
Þ

½πðN − 1Þ�d=2ΓðN−d
2
Þ ð15Þ

where Γ is the usual Gamma function and N > d.
In the limitN ≫ d both methods are equivalent. We used

peak functions with a relatively small number of bins (see
below) compared with the number of realizations per model
and there were no discernible differences between the
credible contours generated using the two approaches.
For inference, we decided to use few bins in the peak

function so that covariance bias is not an issue. We set an
edge at S=N ¼ 3.0, the threshold below which peak counts
are dominated by noise. This allowed us to separate clearly
analyses done with only high-significance peaks (as in
[32]) from analyses also including low-significance and
even negative peaks. The upper and lower S=N edges were
chosen to avoid the rejection of models due to the presence
of empty bins with their corresponding singular covariance
matrices. We also ensured that there are at least 10 peaks
from the fiducial cosmology in the bin with the lowest
number and defined the 10-bin peak function described in

Table III, xobs ≡ nð10Þ
pk , as the observable for this study. We

did not optimize the bins’ edges to maximize the predictive
power of the models.
Table III also displays nð100Þ

pk , a peak function with 100
equally spaced bins that was used to highlight differences
in peak counts from the two models.
We are forced to interpolate for all the ðΩm; σ8Þ combi-

nations not found in our collection of simulated cosmol-
ogies in order to compute smooth credible contours. Our
interpolation grid covers the region Ωm ∈ ½0.160; 0.600�
and σ8 ∈ ½0.150; 1.250� with a resolution of 0.001 on each
axis. Within that region we know that our sample repro-
duces 2σ (95.4%) contours from CAMELUS within 20%—
see Sec. IV—and we verified that a finer grid did not
change the results.
Interpolating peak counts is straightforward, and can be

done when using a constant covariance to calculate the
likelihood, but becomes problematic when an estimation
for the covariance matrix is also needed. We interpolated
the log-likelihood instead, and used a linear model because
its results are easy to interpret, it does not require any

TABLE III. Description of the thresholds used in this study to bin the convergence peak counts by their signal-to-
noise (S=N ) ratio, as well as the mean peak counts from data obtained from both the N-body and the CAMELUS

models in the fiducial cosmology, in the bins used for inference.

Observable S=N bins

nð100Þ
pk

100 equally-sized bins in ½−2.0; ...; 6.0�
nð10Þ
pk

½−∞;−1.0; 0.0; 1.0; 2.0; 3.0; 3.5; 4.0; 4.5; 5.0;þ∞�
Model n̄ð10Þ

pk

N-body [23.8, 292.5, 1125.7, 1457.3, 735.4, 130.5, 59.8, 27.8, 13.3, 17.7]
CAMELUS [15.3, 255.6, 1145.8, 1535.1, 721.7, 113.3, 48.1, 21.2, 10.4, 15.7]
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tunable parameter like smoothing, and it does not introduce
any spurious high-likelihood values from fitting high-order
polynomials. We verified that our results do not change
when using a different interpolator, such as radial basis
functions; this agrees with the findings in previous studies
such as [21].

III. RESULTS

Our main results are the comparison between the two
models regarding peak counts, covariance matrices and
credible contours, together with the impact of using a
cosmology-dependent covariance for inference.
Figure 1 shows mean peak counts as a function of their

height, with and without galaxy shape noise, for three
representative cosmologies that are characterized by the
degeneracy parameter defined as in [21], Σ8 ≡ σ8ðΩm

0.3Þ0.6. In
each cosmology, we calculated the average of the peak

function, n̄ð100Þ
pk , over 500 smoothed maps generated with

the two models. We did this before and after adding noise

as described in II A. Noiseless maps from N-body simu-
lations exhibit up to 50% fewer peaks around the maximum
of the distribution at S=N ∼ 0, with higher counts in the
tails. Nevertheless, the two models agree well for peaks
with S=N > 1, which constrain cosmology the most (see
below). The addition of noise dilutes the differences for
low-significance counts, especially for cosmologies with
small Σ8, and has the opposite effect for high-significance
peaks, with N-body noisy maps yielding more counts for
S=N > 3, especially for cosmologies with high Σ8.
As a global measure of how different the peak histo-

grams from the two models are, we integrated the area
between them, divided the result by the surface under the
N-body histograms—see Eq. (16)—and plotted it as a
function of Σ8 in Fig. 2.

Δð%Þ≡
PNbins

i¼1 jNpeaksiCAMELUS − NpeaksiN−bodyjPNbins
i¼1 NpeaksiN−body

: ð16Þ

FIG. 1. Comparison of mean peak counts as a function of their height between N-body simulations (blue) and CAMELUS (red). Counts
are normalized to 1 deg2 of sky and height is expressed in absolute value and as a signal-to-noise ratio ðS=N Þ. The upper panels show
the results from smoothed convergence maps without shape noise; the lower panels add shape noise. Three different cosmologies are
displayed with increasing parameter Σ8 from left to right (0.556, 0.734 and 1.244). In black, we show the fractional difference between
the two models ðΔ½%�≡ ðNCAMELUS − NN−bodyÞ=NNbodyÞ, and the area between the histograms is shaded. Adding noise reduces the
discrepancies between the models but the effect depends on cosmology. While the discrepancies are almost erased for cosmologies with
small Σ8, for the rest N-body data yield lower counts near the maximum of the distribution and higher counts in the tails. The differences
grow with Σ8.
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Counts from noiseless convergence maps generated with
the halo-based model are in better agreement with those
from N-body simulations as Σ8 increases, pointing to a
higher nonhalo contribution to peaks for small Σ8 cosmol-
ogies. Adding noise reduces the global differences to less
than 20% in all cases. As expected, the reduction is stronger
for cosmologies with small Σ8 where peak counts are
dominated by noise. Thus, the agreement between models
worsens as Σ8 increases.
Calculating the likelihood of a cosmological model

needs an estimate of the covariance matrix, as seen in
Sec. II C. We analyzed the covariances for nð10Þ

pk , the data
vector used to draw the credible contours. Figure 3 shows
this comparison for the fiducial cosmology. Specifically,
we display the correlation matrices after substituting their
diagonal terms with the variances divided by the mean peak
counts. These normalized matrices allow for a comparison
of the variance and correlations for each bin, irrespective of
its mean peak count.
N-body data yield higher absolute values in all matrix

elements. Positive and negative peaks have higher corre-
lations among themselves, while being anticorrelated
against one another. CAMELUS data, on the other hand,
gives weakly anticorrelated peak counts with a smaller
variance. The weak anticorrelation in the CAMELUS data
can be attributed to the condition that the total mass in all
halos is fixed: lens planes including an unusually large

number of massive halos will have room for fewer low-
mass halos, and vice-versa. Also, as we discuss in Sec. IV,
the covariance underestimation can be the consequence of
halos being randomly placed in the field of view.
To analyze the cosmology dependence of the covariance,

we plotted the value of selected normalized matrix elements
as a function of Σ8 for all cosmologies in Fig. 4. For N-body
data, all variances and correlations increase until Σ8 ≈ 0.6
and then plateau. This dependence may affect the like-
lihood calculations. Matrices computed with CAMELUS

show a very weak cosmology dependence and all their

FIG. 2. Global comparison of peak counts. For each cosmol-
ogy, the area between the N-body and CAMELUS histograms as a
percentage of the area enclosed by the N-body histogram
[Eq. (16)] is plotted against Σ8. Differences from noiseless maps
(crosses) are significantly reduced by adding noise (dots), so that
the difference stays below 20% in all cases. The reduction is more
important for cosmologies with small Σ8, for which noise
dominates.

FIG. 3. Covariance comparison between N-body (upper panel)
and CAMELUS (lower panel) for the fiducial cosmology. Each
normalized covariance matrix has diagonal elements equal to the
peak count variance divided by its mean, σ2ii

x̄ii
, and off-diagonal

elements equal to the correlation coefficients, ρij ≡ σij
σiσj

. We find

higher absolute values for all elements in the matrices, with
positive and negative peaks positively correlated and positive
peaks anticorrelated with negative ones. Peak counts from
CAMELUS are mildly anticorrelated. Selected matrix elements
whose value for all cosmologies is displayed in Fig. 4 are
indicated with a number.
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elements are smaller—in absolute value—than those from
N-body simulations, which would result in lower error
estimations.
After comparing peak counts and their covariances, we

combined these to estimate the Lcg likelihood for each
model. We show the 2σ (95.4%) credible contours in Fig. 5
by numerically integrating the interpolated likelihoods, and
compared the results in Table IV. We find thicker contours,
with a 30% larger overall area, which can be attributed to
the larger covariances (see below).
We also report any shifts in the credibility region’s

centroid position in Table IV. The centroid is defined as the
point whose position is the arithmetic mean of that of all
points within the region:

θcentroid ¼
R
CR dθdΘθ
AreaCR

≈
P

CRθ
iP

CR1
ð17Þ

where θ refers to the axis for which the centroid coordinate
is computed and Θ to all other dimensions in parameter
space. We did not use the maximum likelihood to estimate
shifts because it corresponds to the fiducial cosmology by

FIG. 4. The cosmology dependence of covariances. Each subplot shows the value of selected normalized covariance matrix elements
for all 162 cosmologies. The selected elements are indicated in Fig. 3, and correspond to a diagonal element (left panel) and off-diagonal
elements showing anticorrelation in N-body data (center panel) and correlation (right panel). N-body data exhibit higher absolute values
for all elements and stronger cosmology dependence.

FIG. 5. Comparison of 2σ (95.4%) credible contours from N-
body (blue) and CAMELUS (red) data, using a Gaussian likelihood
with constant covariance, Lcg. Solid lines show the contours
computed using all the peak counts. We find looser constrains,
with a thicker, ≈30% larger credibility region. Dashed lines show
the results including only high significance peaks ðS=N > 3Þ.
While constraints based on CAMELUS data do not change, the
predictive power from N-body data is severely reduced, with a
≈200% increase in the area of the credibility region. Dotted lines
show the degeneracies Σ8 ¼ σ8ðΩm

0.3Þα that minimize scatter in Lcg.
We find a steeper contour, α ¼ 0.67 vs α ¼ 0.58 for CAMELUS.
Grey dots show the simulated cosmologies (a green star the
fiducial cosmology), and grey areas the regions excluded from
contour measurements.

TABLE IV. Comparison of Lcg 2σ (95.4%) credible contours.
The figure-of-merit, FoM, is the inverse of the area of the
credibility regions. Also displayed are the percentage changes in
the area of the credibility region and its centroid (arithmetic
mean) shift. We find looser constraints ð≈30%Þ for N-body data,
whose predictive power is greatly diminished when low signifi-
cance peaks are excluded from the analysis.

FoM ΔArea ΔΩm Δσ8
N-body all peaks 26 � � � � � � � � �
N-body S=N > 3.0 9 þ198% þ0.05 −0.09
CAMELUS all peaks 36 −28% þ0.02 −0.00
CAMELUS S=N > 3.0 33 −21% þ0.03 −0.02
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construction. We found a significant shift exclusively
between N-body contours computed using all the peaks
and those computed using only high-significance peaks.
The contours from N-body simulations are more tilted in
fΩm; σ8g. To quantify the difference in tilt, we fitted the
exponent (α) of the degeneracy relation, Σ8 ≡ σ8ðΩm

0.3Þα to
minimize the scatter in Lcg. We restricted the data to
Σ8 ∈ ½0.6; 0.9�, since estimating the scatter for extreme
values of Σ8 where we have few data points is problematic.
We find an exponent of α ¼ 0.67 vs α ¼ 0.58 for
CAMELUS.
It is common to restrict analyses to the highly significant

peaks, since their counts are not dominated by shape noise.
We emphasize that the shape noise can be measured
accurately from the data themselves, and so there is no

reason a priori to discard the “noisy” peaks with a lower
S=N . Nevertheless, we investigated the impact of this
restriction. We find that it does not change the contours
obtained with CAMELUS, but has a drastic impact on those
from N-body simulations, as can be seen in Fig. 5. Previous
works ([16,17]) found that low-significance peaks carry
important cosmological information in WL maps from N-
body simulations. Table IV shows that the contours double
in size when only peaks with S=N > 3 are considered.
While both models yield similar constraints, they derive
their predictive power from different S=N peaks.
Finally, we assessed the impact of using a variable

covariance matrix when computing the likelihood in the
same way as was done in [32]. Estimating the covariance at
each point of the parameter space is computationally

FIG. 6. Effect on the credibility regions of using a cosmology-dependent covariance. In the left panels we show the change caused by
introducing a variable covariance in the χ2 term of a Gaussian likelihood (Lsvg, shaded areas) compared with a constant covariance (Lcg,
lines). On the right we display the change from using a variable covariance matrix in the determinant term as well (Lvg, shaded areas)
compared with Lsvg (lines). The upper panels show the result using only high-significance ðS=N > 3Þ peaks, while the lower panels
show results with all peaks included. Introducing a variable covariance in the χ2 has a larger impact than using it in the determinant term.
Also, the effects are larger when using only high significance peaks (see Table V).
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expensive, but as we have shown, the covariance can
change significantly. Figure 6 shows the effect on both
1σ (68.3%) and 2σ (95.4%) contours; the values for the
changes are listed in Table V. The effects are always more
important if only high-significance peaks are included.
Introducing a variable covariance in the χ2 term of a
Gaussian likelihood—i.e., using Lsvg instead of Lcg—
tightens constraints by 14%–19% (14%–32% for high
S=N peaks only). Incorporating it also to the determinant
term—i.e., going from Lsvg to Lvg—has a more limited
impact of 0%–1% (13%–19% for high S=N peaks-only). It
would be advisable then to use a cosmology-dependent
covariance for a precise determination of parameter con-
straints, with the exception of those cases in which most of
the parameter space has been rejected by previous experi-
ments and only a small region needs to be explored.

IV. DISCUSSION

Given the restricted scope of this paper—to assess the
accuracy of the halo-based model CAMELUS for cosmo-
logical inference using WL peaks—our main findings are
the differences between its credible contours and those
from N-body simulations.
We identified small discrepancies in peak counts and

significantly larger covariances from N-body data, with a

stronger dependence on cosmology. To disentangle the
effect of both elements on parameter inference, we com-
puted “hybrid” likelihoods mixing peak counts from one
model with covariance matrices from the other. Figure 7
shows the resulting 2σ credibility regions. Substituting the
covariance for that from CAMELUS data shrinks the N-body
contours to a thickness equivalent to that of CAMELUS. The
effect on the credibility region from CAMELUS of using
peak counts from N-body simulations is comparatively less
important, suggesting that more accurate estimation of
covariances have the highest potential for improvement.
The upper panels of Fig. 7 were plotted using only high
significance peaks and show even more clearly how
differences in the covariance matrices drive the size and
shape of the credible contours.
To understand the origin of the discrepancy in peak-

count variance, we compared halo counts from both
models, since there is an established connection between
halos and convergence peaks ([26]). To identify halos in
our N-body simulation we used the Amiga Halo Finder
(AHF) [41]. Since we evolved a single 240 h−1 Mpc box
per cosmology, we subdivided it into subvolumes to
compute the variance. We split our simulation volume in
33, 43 and 53 equally sized sub-boxes and scaled the counts
to a common reference volume. We ran CAMELUS to
generate halo catalogues corresponding to similar volumes
as those of the sub-boxes used for the N-body calculation,
and scaled the counts in the same way. The results are
shown in Fig. 8 and are in good agreement with analogous
findings for cluster counts [42]. Cumulative halo counts
from N-body simulations have a higher sample (cosmic)
variance than what would be expected if it were due solely
to shot noise that follows a Poisson distribution. We use
[37] for the mean counts in the shot noise calculation. This
is the same halo mass function used in CAMELUS, and we
verified that it was in good agreement with the halos
extracted from our N-body simulation. The excess sample
variance is caused by LSS clustering halos which increases
the correlation of their positions. As halos become more
massive and rarer, shot noise becomes more important and
the excess sample variance diminishes.
CAMELUS places halos randomly, and its halo sample

variance is dominated by shot noise except for the low-
mass tail of the halo distribution. Halos are sampled from
an analytical mass function until the total mass in a volume
reaches its expected mean value. This condition that the
total mass in halos is fixed links high- and low-mass halo
numbers, transferring variance to the low-mass halo range.
Nevertheless, this effect does not translate into larger
covariances, since low-mass halos do not contribute to
peak counts. We compared peak counts from CAMELUS

using different minimum halo masses (1010, 1011

and 1012M⊙) and found virtually no difference.
Convergence peaks resulting from the projected mass

density field exhibit a similar pattern. The upper panel

TABLE V. Effect of using a cosmology-dependent covariance
matrix. 1σ (68.3%) and 2σ (95.4%) credible contours are
computed using the three likelihoods described in II C (Lcg,
Lsvg and Lvg). The analysis is done twice, using only high
significance peaks ðS=N > 3Þ and all the peaks. We report the
figure of merit (FoM); defined as the inverse of the area of the
credibility region), changes in the credibility regions and shifts in
their centroid. Introducing a cosmology-dependent covariance
into the χ2 term of the Gaussian likelihood has a bigger impact
than introducing it in the determinant term. Also, the effect is
bigger when only high peaks are included.

S=N > 3 Peaks

Likelihood FoM ΔArea ΔΩm Δσ8
1σLcg 25 � � � � � � � � �
1σLsvg 29 −14% þ0.01 þ0.02
1σLvg 36 −19% −0.03 þ0.01
2σLcg 9 � � � � � � � � �
2σLsvg 13 −32% −0.01 þ0.09
2σLvg 15 −13% −0.01 −0.01

All peaks
Likelihood FoM ΔArea ΔΩm Δσ8
1σLcg 69 � � � � � � � � �
1σLsvg 81 −14% −0.00 þ0.01
1σLvg 81 −0% þ0.00 −0.01
2σLcg 26 � � � � � � � � �
2σLsvg 32 −19% −0.02 þ0.05
2σLvg 32 þ1% þ0.00 −0.01
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of Fig. 8 shows the variance in the cumulative peak
counts as a function of their height. Peak counts from
N-body data also have a higher sample variance
compared to a Poisson distribution and, as the peak
S=N increases, shot noise becomes more important. For
CAMELUS data, sample variance is smaller and is
dominated by shot noise. The counts come from 500
3.5 × 3.5 deg2 convergence maps for the fiducial
cosmology.
The parallel between halo and peak-count sample

variance suggests that modifying the CAMELUS algorithm
to account for halo clustering could enhance its accuracy by

yielding larger covariance matrices that would propagate
into looser parameter constraints.
We also found that including low-significance peaks in

the analysis improves the predictive power for N-body
simulations, while it does little for CAMELUS. Figure 9 and
Table VI show the effect of adding bins of decreasing
significance peaks to the contours’ computation. For
N-body simulations, the impact is particularly important
when peaks in the range S=N ∈ ½2; 3� are incorporated,
with 2σ contours reduced by 25%–48%. Those moderately
low-significance peaks have been associated with constel-
lations of small halos ([25,26]). These alignments are

FIG. 7. Impact of differences in peak counts and covariance matrices on credible contours. Solid lines are 2σ contours from N-body
(blue) and CAMELUS (red) data. Magenta lines are contours computed mixing peak counts from one model with the covariance matrices
from the other. The dashed contours combine N-body covariance matrices with CAMELUS peak counts, and the dotted contours combine
conversely N-body peak counts with CAMELUS covariances. The upper panels show the results using only S=N > 3 peaks while the
lower panels display the contours obtained including all peaks. On the left we show contours computed using a constant covariance, Lcg

and on the right those introducing a variable covariance in the χ2 term, Lsvg. In general, contours computed with the same covariance
matrices are closer than those calculated with the same peak counts. The effect is more noticeable for the cases which include only high-
significance peaks, since for these the N-body and CAMELUS contours exhibit a greater difference.
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missing in the halo catalogs generated with CAMELUS,
which constrains cosmology essentially through high peaks
which are caused by high-mass halos.
Our likelihood calculations rely on a precise estimation

of the precision matrix, C−1, and the determination of the
credible contours on the interpolation of the likelihood
beyond the discrete set of cosmologies for which we run
simulations.
For each cosmology, we estimated the covariance

matrices using 500 converge field realizations recycled

FIG. 8. Peak and halo count variance comparison between
N-body (blue) and CAMELUS (red). Upper panel: ratio of the
cumulative peak count standard deviation from its value
expected for a Poisson distribution, as a function of peak
height. For pure Poisson shot noise, this ratio is unity
(horizontal black dashed line). We find significantly higher
sample variance than the results from CAMELUS, and what
would be expected for a Poisson distribution. As the peak
height increases and the peak counts decrease, shot noise
starts to dominate. Lower panel: variance of the cumulative
halo number as a function of minimum halo mass. Sample
variance is estimated from different subvolumes, and scaled to
a common reference volume of ð250 h−1 MpcÞ3. Shot noise is
estimated from a Poisson distribution with mean value
adopted from a theoretical halo mass function [37]. N-body
cumulative halo counts exhibit a sample variance higher than
expected from a Poisson distribution. Shot noise becomes
more important at higher masses, as the halos become scarcer.
CAMELUS is dominated by shot noise.

FIG. 9. Influence on the credibility region of the lowest
significant peaks included in the ðLcgÞ likelihood calculation.
Upper panel: for N-body simulations, including peaks with
2.0 < S=N < 3.0 significantly improves the model’s predictive
power. Lower panel: for CAMELUS, little or no improvement in
predictive power is found when lower-significance peaks are
included.
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from a single N-body calculation by slicing, shifting and
rotating the simulated box. Previous work showed ([43])
that a single N-body run is sufficient to generate ≈104
convergence maps whose peak counts are statistically
independent, and two boxes would be enough to measure
feature means with an accuracy of 50% of the statistical
error. Therefore, we decided to use a single box, which
allowed us to maximize the number of cosmologies to
sample given our available computing resources.
While the inverse of a covariance matrix estimated from

data is not unbiased, since the number of realizations we
use (500) is much larger than the dimension of our data
vectors (10), the bias is negligible ð≈2%Þ. We verified that
the results with Gaussian likelihoods after debiasing the
covariances following [39] were the same as those from
using the non-Gaussian form of the likelihood found
in [40].
Interpolation can also introduce errors in the contours.

We verified this effect on the CAMELUS contours by
running an additional fine grid of 7,803 cosmologies—
described in Fig. 1 of Ref. [32]—and plotting the contours
obtained from these and our original models in Fig. 10. The
regions corresponding to low- and high-Ωm values are
undersampled, and as a result the contours in those regions
are underestimated. Therefore, we limited our contour
analyses to the interval Ωm ∈ ½0.160; 0.600�, where the
true and the estimated contours agree within 20%.
Since we could not reproduce this analysis for our

N-body simulations due to the computational cost, we

generated contours from bootstrap samples of our full
simulation set. That is, we sampled from the 162 cosmol-
ogies, with substitution, and drew the resulting contours in
Fig. 11. Each sample had an average of 102-103 unique
cosmologies in them. As with the analysis of the effect of
sampling on the CAMELUS contour, we found that dropping
models almost always results in a smaller area, and as a
result we may be underestimating the errors on the
parameters. We expect that underestimation to be moderate,
for 81% of the samples yield areas that lie within 10% of
the area computed with the full sample and 99% of the
samples fall within 20%. The highest risk is missing part of
the tail of the credibility region, which occurs in some of
the random bootstrap samplings.
We do not address the question of whether a Gaussian

likelihood is an appropriate model for our data, since the
focus of this study is to compare the results from the two
models. We will treat it in future work. For CAMELUS data,
the Gaussian approximation yields credible contours in
good agreement with those computed using the actual
distribution of peak counts, as can be seen in the left panel
of Fig. 8 in [32].
Other underlying simplifications common to both the

N-body and halo-based simulations used in this work are
the noninclusion of baryonic effects, the Born and flat sky
approximations, and the omission of any survey effects
such as masking, instrument systematics, etc. Baryons have

TABLE VI. Impact on the models’ predictive power of the
lowest significance peak bin included in analysis. Figure of merit
(FoM) and change in 2σ contour area (Δ%) for constant,
semivarying and variable covariance likelihoods.

Lcg Lsvg Lvg

N-body FoM Δð%Þ FoM Δð%Þ FoM Δð%Þ
S=N > 4.0 9 � � � 11 � � � 13 � � �
S=N > 3.5 8 −0 12 −2 14 −4
S=N > 3.0 9 −4 13 −11 15 −9
S=N > 2.0 17 −48 19 −32 20 −25
S=N > 1.0 22 −22 27 −31 27 −27
S=N > 0.0 24 −10 31 −11 30 −10
S=N > −1.0 25 −3 31 −1 31 −1
S=N > −inf 26 −6 32 −3 32 −4

Lcg Lsvg Lvg

CAMELUS FoM Δð%Þ FoM Δð%Þ FoM Δð%Þ
S=N > 4.0 26 � � � 27 � � � 27 � � �
S=N > 3.5 30 −12 30 −10 30 −10
S=N > 3.0 33 −10 33 −9 34 −9
S=N > 2.0 35 −4 36 −8 36 −8
S=N > 1.0 36 −3 37 −2 37 −2
S=N > 0.0 36 −1 37 −1 37 −1
S=N > −1.0 36 þ0 37 −0 38 −0
S=N > −inf 36 −0 38 −0 38 −1

FIG. 10. Effect on CAMELUS credible contours of finite
sampling of the cosmological parameter space. 2σ contours
obtained from a fine grid of 7,803 models (black) and interpo-
lated from our suite of 162 cosmologies (red). The interpolated
contour is smaller in the low- and high-Ωm tails. Thus we
excluded from our analyses the greyed-out regions, correspond-
ing to Ωm < 0.160 and Ωm > 0.600.
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been shown to increase the amplitude of the WL power
spectrum on small scales and to introduce a small bias in
high S=N peaks [44]. The precision requirements and large
sky coverage from future surveys will require the inclusion
of these baryonic effects [45], as well as revisiting some of
the approximations used in our models [8].

In future work, new modified ray-tracing simulations
using manipulated snapshots from N-body simulations may
clarify the specific sources of discrepancy between N-body
and halo-based models. Possible reasons can be enumer-
ated as follows:
(1) Non-halo contributions, e.g. filaments, walls,
(2) Halo clustering,
(3) Non NFW halo profiles, e.g. merging halos, triax-

iality, and
(4) Halo concentration; e.g., broad distribution instead

of a deterministic function.
Modifications to a model such as CAMELUS to

address points (ii)-(iv) could in principle be addressed
within the halo model framework and would make it even
more useful as a fast lensing emulator by improving its
accuracy.

V. CONCLUSIONS

In this work we compared the outcomes from the fast
halo-based algorithm CAMELUS with those of N-body
simulations for a suite of cosmologies spanning a wide
range of values in the fΩm; σ8g plane.
We found larger (by ≈30% in area), more significantly

tilted (by ≈13% in angle) credible contours from N-body
data. Importantly, the two models draw their predictive
power from a different types of peaks. While CAMELUS

constrains cosmology through high–S=N peaks associated
with massive halos, the N-body data are highly sensitive to
lower-S=N peaks.
The larger thickness and overall area of the N-body

credible contours are mostly driven by the covariances,
with peak counts showing a higher variance than expected
from pure shot noise. This suggests that modifying the
placement of halos in CAMELUS to account for the
correlations in their locations is a promising way to
improve its covariance estimation and accuracy as a WL
peak count emulator.
Using a cosmology-dependent covariance matrix for

likelihood estimation improves constraints by 14%–20%,
and thus will be needed in order to achieve high-precision
parameter estimations.
Finally, we have found that optimal sampling of a

high-dimensional parameter space with expensive N-body
simulations to define credibility regions with high
precision is a topic that requires further investigation,
and a fast simulator like CAMELUS could prove itself
particularly valuable by providing a first estimation of
the likelihood.
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