Learning Mixtures of Spherical Gaussians:
Moment Methods and Spectral Decompositions

Daniel Hsu and Sham M. Kakade

Microsoft Research, New England

Also based on work with Anima Anandkumar (UCI),
Rong Ge (Princeton), Matus Telgarsky (UCSD).



Unsupervised machine learning

» Many applications in machine learning and statistics:
» Lots of high-dimensional data, but mostly unlabeled.



Unsupervised machine learning

» Many applications in machine learning and statistics:
» Lots of high-dimensional data, but mostly unlabeled.

» Unsupervised learning: discover interesting structure of
population from unlabeled data.

» This talk: learn about sub-populations in data source.
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Learning mixtures of Gaussians

Mixture of Gaussians: ZL w; N (jij, X))

k sub-populations;
each modeled as multivariate Gaussian N (i, )
. together with mixing weight w;.

Goal: efficient algorithm that approximately recovers
parameters from samples.

(Alternative goal: density estimation. Not in this talk.)
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Learning setup

» Input: i.i.d. sample S ¢ R? from unknown mixtures of
Gaussians with parameters 0* := {(ji;*, 27, w;*) : i € [K]}.

» Each data point drawn from one of k Gaussians N (", 2%)
(choose N/ (ji;*, X*) with probability w;*.)

» But “labels” are not observed.
» Goal: estimate parameters 0 = {(ji;, X, w;) : i € [K]}
such that 6 ~ 0*.

» In practice: local search for maximume-likelihood
parameters (E-M algorithm).
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Well-separated mixtures: estimation is easier if there is large
minimum separation between component means (Dasgupta, '99):
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sep :=min —————
@ J@ = iz max{ci, o}

» sep = Q(d°) or sep = Q(k°): simple clustering methods,
perhaps after dimension reduction
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Well-separated mixtures: estimation is easier if there is large
minimum separation between component means (Dasgupta, '99):

12 — Al
sep :=min —————
@ @ = iz max{ci, o}

» sep = Q(d°) or sep = Q(k°): simple clustering methods,
perhaps after dimension reduction
(Dasgupta, '99; Vempala-Wang, '02; and many more.)

Recent developments:
» No minimum separation requirement, but current methods
require exp(£2(k)) running time / sample size
(Kalai-Moitra-Valiant, ’10; Belkin-Sinha, '10; Moitra-Valiant, '10)
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Information-theoretic barrier:

Gaussian mixtures in R' can require
exp(Q(k)) samples to estimate parameters,
even when components are well-separated
(Moitra-Valiant, ’10).
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Overcoming barriers to efficient estimation
Information-theoretic barrier:
Gaussian mixtures in R' can require

M exp(Q2(k)) samples to estimate parameters,
\\\ even when components are well-separated

(Moitra-Valiant, ’10).
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These hard instances are degenerate in high-dimensions!
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Our result: efficient algorithms for non-degenerate models
in high-dimensions (d > k) with spherical covariances.




Main result

Theorem (H-Kakade, '13)

Assume {ji1*, iio*, ..., [ix*} linearly independent, w;* > 0 for
alli € [k], and ¥t = o2*1 for all i € [K].

There is an algorithm that, given independent draws from a
mixture of k spherical Gaussians, returns e-accurate
parameters (up to permutation, under (2 metric) w.h.p.

The running time and sample complexity are

pOIV(da K, 1/57 1/Wmina 1/)\min)

where \min = k"-largest singular value of [ji1*|jio*| - - - |jix*].

(Also using new technigues from Anandkumar-Ge-H-Kakade-Telgarsky, '12.)




2. Learning algorithm

Learning algorithm
Method-of-moments
Choice of moments
Solving the moment equations
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Let S ¢ RY be an i.i.d. sample from an unknown mixture of
spherical Gaussuans
~ Z WI ,U'I 701 )

Estimation via method-of-moments (Pearson, 1894)
Find parameters 6 such that

Eo[ p(X)] ~ Ezes[p(X)]

for some functions p : R — R (typically multivar. polynomials).

Q1 Which moments to use?
Q2 How to (approx.) solve moment equations?
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1st. and 2"9-order moments (e.g., mean, covariance)
» Fairly easy to get reliable estimates.
Ezes[X ® X] =~ Eg« [X ® X]
» Can have multiple solutions to moment equations.
Eg, [X® X] = Ezcg[X ® X] = Ep, [X®@ X], 01 # 02
[Chaudhuri-Rao, '08]
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moment order | reliable estimates? | unique solution?
1st, 2nd X
Q(k)M X

Q(k)™-order moments (e.g., Eg[degree-k-poly(X)])

» Uniquely pins down the solution.
» Empirical estimates very unreliable.

[Chaudhuri-Rao, '08]
[Achlioptas-McSherry, '05]
[Vempala-Wang, ’02]
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Which moments to use?

moment order | reliable estimates? | unique solution?
1st, 2nd X
Q(k)M X

Can we get best-of-both-worlds?
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Which moments to use?

moment order | reliable estimates? | unique solution?
1st, 2nd X
Q(k)M X

Can we get best-of-both-worlds? Yes!

In high-dimensions (d > k),
low-order multivariate moments suffice.
(1t-, 2"d- and 3'9-order moments)

[Belkin-Sinha, '10]

[Chaudhuri-Rao, '08] this work [Moitra-Valiant, *10]
[Achlioptas-McSherry, '05] [Lindsay, '89]
[Vempala-Wang, '02] [Prony, 1795]
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Structure of low-order multivariate moments
Second- and third-order multivariate moments:

K
Ey[X® X] = Z Wi [ij ® [ij + some sparse matrix;
i—1
K
EylX@ X0 X = Z Wi [ij ® [i; ® fij + some sparse tensor.

i=1

Trick: “sparse stuff” can be estimated and thus removed.

Upshot: the following can be readily estimated (with M, T).

K K
My = Z Wit " @ and  Tys = Z T T T

i=1 i=1

Claim: {(/i;, w;)} uniquely determined by M, and T,.
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Variational argument for parameter uniquness

View My : R xR > Rand Ty : RY x R x RY — R
as bi-linear and tri-linear functions.

Lemma
If{fi;} are linearly independent and all w; > 0, then
each of the k distinct, isolated local maximizers u* of

max Ty(d, d,d) s.t. My(d,d) <1
uerd

satisfies, for some i € [K],

Tk — TR Tk Tk 1
MH('?“): \/Wl',u‘h TG(“?“:“):

N

A, wy) - i e [K]} uniquely determined by My, T,.
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k k
max Y " w; (i, 0)° st > w; (jij, 0)? <1
i—1

deRd “
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Main idea for variational lemma

maxZW, /1,, ZW/ /117 _1

Combine with constraints w;{ji;, 0*)? < 1 to get

K K
= <Z w; ﬁ/®ﬁi>t7* = > w i, 0F) = £/ i
e i—1
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How to solve the moment equations?

Effectively want to solve
ming || Ty — T|? st My =M. (1)

Not convex in parameters 0 = {(i;, w;)}.

What we do: find one component (i;, w;) at a time, using
local optimization of related (also non-convex) objective function.
(fiz*, w2*)

(1™, wi*) T ({3, w3*)

7% 7% 1%
uj u; 7

New robust algorithm for “tensor eigen-decomposition”
efficiently approximates all local optima, each corresponding to
a component. — Near-optimal solution to (}). |
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Local optimization

Want to find all local maximizers of

max T(d,d,0) st M(d,a) <1. ()
uerd

Must address initialization and convergence issues.

Crucially using special tensor structure of T~ To+,
together with non-linearity of 4 — T( -, 4, d):
» Random initialization is good with significant probability.
(“Good” = simple iteration will quickly converge to some local max.)

» Can check if initialization was good by checking objective
value after a few steps.

» If value large enough: initialization was good; improve by
taking a few more steps.

» Else: abandon and restart.
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Some open problems

» Can also handle mixtures of Gaussians with somewhat
more general covariances, under incoherence conditions

K
Eg[X® X] = _w fij®fij + some sparse matrix

i=1

low-rank

» Question #1: What about mixtures of Gaussians with
arbitrary covariances?

» Question #2: How to handle degenerate cases / k > d?
(Practical relevance: automatic speech recognition)
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Summary

» Learning mixtures of spherical Gaussians:
worst-case (information-theoretically) hard, but
non-degenerate cases are easy.

» Structure in low-order multivariate moments uniquely
determines model parameters under natural
non-degeneracy condition;

= permits computationally efficient algorithm for estimation.

» Similar story for many other statistical models
(e.g., HMMs (Mossel-Roch, '06; H-Kakade-Zhang, '09),
topic models (Arora-Ge-Moitra, '12; Anandkumar et al, '12),
ICA (Arora et al, '12)).

» Open problem: efficient estimators for highly
over-complete and general mixture models (k > d).



Thanks!

Related survey/overview-ish paper:

» Tensor decompositions for latent variable models
(with Anandkumar, Ge, Kakade, and Telgarsky):
http://arxiv.org/abs/1210.7559


http://arxiv.org/abs/1210.7559

Structure of low-order moments

» First-order moments:
k
EX] = Y wiji
i=1
» Second-order moments:

k
Ex® X = ZWiﬁi®ﬁf + 5%
i—1

where 52 := 3K . w; o2,

Fact: 52 is the smallest eigenvalue of
Cov(X) = E[X @ X] — E[X] ® E[X].
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Structure of low-order moments

» Third-order moments:

K
EX@X®@X = Y W[ [i® i
i—1
d
+Y Mee®e+e@MRe+660mM
i—1
7 . Kk 2-
where m =", w; o7 [i;.

Fact: m=E[ (07 (X — E[x]))? X] for any unit-norm
eigenvector U of Cov(X) corresponding to eigenvalue 2.
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Proof idea for optimization lemma

max T (U, d,d) s.t. M(d,d) <1
ueRrd
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Proof idea for optimization lemma

K
maxz wi(jis, )% st Y wilji, U)2 < 1
i—
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Proof idea for optimization lemma

K
maxz s.t. ZG,?§1
i1

ERk/ 1
(0; := /wi(ii;, 4).)

,LWZ, ..., achieved at

Isolated local maxima are

Ex

(1,0,0,...), (0,1,0,...),
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