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Multi-label prediction

Supervised learning in which more than one class may be correct.
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General abstract problem

Supervised learning of d real-value prediction tasks.

F:X — R

Challenge: output dimension d is typically very large
(e.g. several thousands).
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General abstract problem

Supervised learning of d real-value prediction tasks.

F:X —R?
Challenge: output dimension d is typically very large

(e.g. several thousands).

However, in many cases, the output vector is sparse
(i.e. only a few entries are non-zero).

e.g. although the total number of people is large,
only a few people are depicted in each image.
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One-Against-All: the simplest general approach

to multi-label prediction:
- learn d binary predictors, one for each label (class)
- highly inefficient when d is large

Many domain-specific solutions for coping
with large output spaces:
- leverage dependency structure (e.g. CRF)
- model relationships (e.g. hierarchy) among classes

Is there a general method for exploiting output sparsity?

Can we get away with « d predictors, e.g. O(log d)?



Our work

Develop a learning reduction method for
multi-label prediction that exploits output sparsity.
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Our work

Develop a learning reduction method for
multi-label prediction that exploits output sparsity.

—>
d-class multi-label . compressed : o(ﬁog d)
prediction prob]em SenSing : regession prob]ems

k is the sparsity level of the output.

- Focus is on high-dimensional outputs
- Exploiting output sparsity gives huge savings:

O(k log d) vs 0O(d)






Problem setup

Goal: learn a predictor F': X — R
from labeled training examples {(x;,7;)}", C X x R?
drawn iid from a fixed distribution.

We hope that [E|y|z]| is close to being k-sparse
(i.e. have at most k non-zero entries, for k « d),
but we want to be agnostic w.r.t. this condition.

Performance measure: mean squared error

|F(z) — Efy|z]||3
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Learning reduction

Two components:
Linear compression function A, Reconstruction algorithm R

Main idea:
Instead of predicting the label y,
predict the compressed label Ay.

1. Training:

Learn to predict compressed label Ay from x.
2. Prediction:

Reconstruct y from prediction of Ay.

Similar to ECOC (Dietterich & Bakiri, 1995),
but we exploit output sparsity.



Reduction - training

Learn to predict compressed labels Ay € R™, m < d.

1. Compress the training labels with m x d matrix A:

i, yi) b — (@, Ayi) }

2. Learn m predictors using the compressed labels:
—

{(z;, Ay;)} — H:X —R™
— =

) X d —-> Learnmg . . "
—>

{ (25, Ayz

H(z) — E[Aylz]||3

Learning should try to minimize It




Reduction - prediction

Decode predictions of compressed labels Ay.

1. Upon input x, predict compressed label H(x):
r — H (:C) c R™

2. Reconstruct O(k) sparse label y from H(x):

H(x) =y € RY




Reduction - prediction

Decode predictions of compressed labels Ay.

1. Upon input x, predict compressed label H(x):
€r +— H(:E) c R™

2. Reconstruct O(k)-sparse label y from H(x):

Reconstruction finds sparse y s.t. Ay approximates H(x).
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How to choose the components?

How to choose compression function A
& reconstruction algorithm R?

Compressed sensing

(e.g. Donoho, 2006;
Candes, Romberg, & Tao, 2006;
.. and many others ...)

Compressed sensing 101:

For all k-sparse y, we can compress to m = O(k log d) dimensions
so that perfect reconstruction of y is easy.



Component requirements

The compression fn. A & reconstruction alg. R
should have the following property:

Upon input c (the predicted compressed label),
if there exists k-sparse y s.t. Ay is close to c,
then R(c) is O(k)-sparse and close to y:

ly — R(e)||5 < C1 - || Ay — ¢|l3.

(approx. error)

*Also handle case when y is approximately k-sparse.



Compression and reconstruction

Examples of valid components:

¥ Compression function: random m x d matrix!
(Mendelson et al, 2008; Rudelson & Vershynin, 2006)

e.g. all entries iid Gaussians N(0,1/m) with m = O(k log d).
¥ Reconstruction algorithm: many greedy/iterative sparse

recovery algorithms.

e.g. Compressive Sampling Matching Pursuit (Needell & Tropp, 2007)
Forward-Backward Greedy (zhang, 2008),
Orthogonal Matching Pursuit (Mallat & Zhang, 1993) [almostl.

¥ Have to analyze the approximation error,
because typically don’t have Ay exactly, due to prediction error.






Regret transform bound

Theorem (regret transform):
Let A and R be a valid compression func. / reconstruct. alg. pair.

Let F(*) = R(H(*)) (i.e. composition of R and H). Then:
[F(z) — Elylz]llz < C1 - Eo||H(2) — E[Aylz]3
I
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average MSE from m = O(k log d) subproblems
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Regret transform bound

Theorem (regret transform):
Let A and R be a valid compression func. / reconstruct. alg. pair.

Let F(*) = R(H(*)) (i.e. composition of R and H). Then:

4”:13
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Ely|z]|l2 < C1 -

S
4"&3‘

H(x) —

[ Ay|z]||3
I

T

average MSE from m = O(k log d) subproblems
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But aren’t the subproblems more difficult to solve
than the original problem?



Linear prediction

Theorem (reverse regret transform):

If there is a linear predictor with MSE € for original problem,
then there are linear predictors with MSE (1+0(1))€ for subproblems.



Experimental validation

The ESP Game 0090

Experiment #1:
68k images from ESP game
(von Ahn & Dabbish, 2004)
Experiment #2:

16k webpages on del.icio.us

(curated by Tsoumakas et al, 2008)
d = 1000 most common tags L R
assigned by players/users

Compress to m = 200 subproblems

Precision @ k

See poster for details!

ruzee.com - Steffen Rusitschka » ShadedB r
g JavaScript Round Corners with Drop Shad



Recap

- Efficient reduction for multi-label prediction
in the presence of output sparsity.

- # subproblems logarithmic in d (number of classes).

- Regret transforms robustly from subproblems
to original problem (and vice versa for linear prediction).

- Empirical validation on (somewhat) large output spaces,
outperforms baseline ECOC methods.



Thanks!

- Thanks to Andy Cotter for help with ESP game data.
- Thank you for listening!




