Multi-label prediction via compressed sensing

Daniel Hsu UCSD

Sham M. Kakade John Langford **UPenn**

Yahoo!

Tong Zhang Rutgers

Single-pixel camera

Single-pixel camera

Outline

- 1. Multi-label prediction (introduction)
- 2. The reduction
- 3. Compression & reconstruction
- 4. Results

Part 1 Multi-label prediction (introduction)

Multi-label prediction

Supervised learning in which more than one class may be correct.

$$F: \mathcal{X} \to \{0, 1\}^d \qquad (d = |\mathcal{Y}|)$$

e.g.

$$x \in \mathcal{X}$$

{ Alyssa, David, James, Jim, → Joe, Mark, Rahm, Robert }

$$y \in \{0, 1\}^d$$

General abstract problem

Supervised learning of *d* real-value prediction tasks.

$$F:\mathcal{X} \to \mathbb{R}^d$$

Challenge: output dimension *d* is typically very large (*e.g.* several thousands).

General abstract problem

Supervised learning of *d* real-value prediction tasks.

$$F:\mathcal{X} o \mathbb{R}^d$$

Challenge: output dimension *d* is typically very large (*e.g.* several thousands).

However, in many cases, the output vector is *sparse* (*i.e.* only a few entries are non-zero).

General abstract problem

Supervised learning of *d* real-value prediction tasks.

$$F:\mathcal{X}
ightarrow \mathbb{R}^d$$

Challenge: output dimension *d* is typically very large (*e.g.* several thousands).

However, in many cases, the output vector is *sparse* (i.e. only a few entries are non-zero).

e.g. although the total number of people is large, only a few people are depicted in each image.

Previous work and context

One-Against-All: the simplest general approach to multi-label prediction:

- learn d binary predictors, one for each label (class)
- highly inefficient when d is large

Previous work and context

One-Against-All: the simplest general approach to multi-label prediction:

- learn d binary predictors, one for each label (class)
- highly inefficient when d is large

Many domain-specific solutions for coping with large output spaces:

- leverage dependency structure (e.g. CRF)
- model relationships (e.g. hierarchy) among classes

Previous work and context

One-Against-All: the simplest general approach to multi-label prediction:

- learn d binary predictors, one for each label (class)
- highly inefficient when d is large

Many domain-specific solutions for coping with large output spaces:

- leverage dependency structure (e.g. CRF)
- model relationships (e.g. hierarchy) among classes

Is there a general method for exploiting *output sparsity*? Can we get away with $\langle\langle d \rangle\rangle$ predictors, *e.g.* $O(\log d)$?

Our work

Develop a *learning reduction* method for multi-label prediction that exploits output sparsity.

k is the sparsity level of the output.

Our work

Develop a *learning reduction* method for multi-label prediction that exploits output sparsity.

k is the sparsity level of the output.

- Focus is on high-dimensional outputs
- Exploiting output sparsity gives huge savings:

 $O(k \log d)$ vs O(d)

Part 2 The reduction

Problem setup

Goal: learn a predictor $F: \mathcal{X} \to \mathbb{R}^d$ from labeled training examples $\{(x_i, y_i)\}_{i=1}^n \subset \mathcal{X} \times \mathbb{R}^d$ drawn iid from a fixed distribution.

We hope that $\mathbb{E}[y|x]$ is close to being k-sparse (i.e. have at most k non-zero entries, for $k \ll d$), but we want to be agnostic w.r.t. this condition.

Performance measure: mean squared error

$$\mathbb{E}_x || F(x) - \mathbb{E}[y|x] ||_2^2$$

Two components:

Linear compression function A, Reconstruction algorithm R

Two components:

Linear compression function A, Reconstruction algorithm R

Main idea: Instead of predicting the label *y*, predict the compressed label *Ay*.

Two components:

Linear compression function A, Reconstruction algorithm R

Main idea: Instead of predicting the label *y*, predict the compressed label *Ay*.

- 1. Training: Learn to predict compressed label *Ay* from *x*.
- 2. Prediction: Reconstruct *y* from prediction of *Ay*.

Two components:

Linear compression function A, Reconstruction algorithm R

Main idea: Instead of predicting the label *y*, predict the compressed label *Ay*.

- 1. Training: Learn to predict compressed label *Ay* from *x*.
- 2. Prediction: Reconstruct *y* from prediction of *Ay*.

Similar to ECOC (Dietterich & Bakiri, 1995), but we exploit output sparsity.

Reduction - training

Learn to predict compressed labels $Ay \in \mathbb{R}^m, m \ll d$.

1. Compress the training labels with $m \times d$ matrix A:

$$\{(x_i, y_i)\} \mapsto \{(x_i, Ay_i)\}$$

2. Learn *m* predictors using the compressed labels:

$$\{(x_i, Ay_i)\} \mapsto H: \mathcal{X} \to \mathbb{R}^m$$

$$\{(x_i,y_i)\} \longrightarrow A \in \mathbb{R}^{m \times d}$$
 Learning algorithm L $H: \mathcal{X} \to \mathbb{R}^m$ $\{(x_i,Ay_i)\}$

Learning should try to minimize $\mathbb{E}_x \|H(x) - \mathbb{E}[Ay|x]\|_2^2$

Reduction - prediction

Decode predictions of compressed labels Ay.

1. Upon input x, predict compressed label H(x):

$$x \mapsto H(x) \in \mathbb{R}^m$$

2. Reconstruct O(k)-sparse label y from H(x):

$$H(x) \mapsto \mathsf{R}(H(x)) = y \in \mathbb{R}^d$$

Reduction - prediction

Decode predictions of compressed labels Ay.

1. Upon input x, predict compressed label H(x):

$$x \mapsto H(x) \in \mathbb{R}^m$$

2. Reconstruct O(k)-sparse label y from H(x):

$$H(x) \mapsto \mathsf{R}(H(x)) = y \in \mathbb{R}^d$$

Reconstruction finds sparse y s.t. Ay approximates H(x).

Part 3 Compression & reconstruction

How to choose the components?

How to choose compression function *A* & reconstruction algorithm *R*?

How to choose the components?

How to choose compression function *A* & reconstruction algorithm *R*?

Compressed sensing

(e.g. Donoho, 2006; Candes, Romberg, & Tao, 2006; ... and many others ...)

Compressed sensing 101:

For all k-sparse y, we can compress to $m = O(k \log d)$ dimensions so that perfect reconstruction of y is easy.

Component requirements

The compression fn. *A* & reconstruction alg. *R* should have the following property:

Upon input c (the predicted compressed label), if there exists k-sparse y s.t. Ay is close to c, then R(c) is O(k)-sparse and close to y:

$$||y - R(c)||_2^2 \le C_1 \cdot ||Ay - c||_2^2$$
. (approx. error)

*Also handle case when *y* is approximately *k*-sparse.

Compression and reconstruction

Examples of valid components:

- * Compression function: random $m \times d$ matrix! (Mendelson *et al*, 2008; Rudelson & Vershynin, 2006)
 - e.g. all entries iid Gaussians N(0,1/m) with $m = O(k \log d)$.
- * Reconstruction algorithm: many greedy/iterative sparse recovery algorithms.
 - e.g. Compressive Sampling Matching Pursuit (Needell & Tropp, 2007) Forward-Backward Greedy (Zhang, 2008), Orthogonal Matching Pursuit (Mallat & Zhang, 1993) [almost].
- ★ Have to analyze the approximation error, because typically don't have Ay exactly, due to prediction error.

Part 4 Results

Regret transform bound

Theorem (regret transform):

Let A and R be a valid compression func. / reconstruct. alg. pair.

Let $\overline{F(\cdot)} = R(H(\cdot))$ (i.e. composition of R and H). Then:

$$\mathbb{E}_{x} \| F(x) - \mathbb{E}[y|x] \|_{2}^{2} \le C_{1} \cdot \mathbb{E}_{x} \| H(x) - \mathbb{E}[Ay|x] \|_{2}^{2}$$

k log d) subproblem

average MSE from $m = O(k \log d)$ subproblems

Regret transform bound

Theorem (regret transform):

Let A and R be a valid compression func. / reconstruct. alg. pair.

Let $F(\cdot) = R(H(\cdot))$ (i.e. composition of R and H). Then:

$$\mathbb{E}_{x} \| F(x) - \mathbb{E}[y|x] \|_{2}^{2} \le C_{1} \cdot \mathbb{E}_{x} \| H(x) - \mathbb{E}[Ay|x] \|_{2}^{2}$$

average MSE from $m = O(k \log d)$ subproblems

But aren't the subproblems more difficult to solve than the original problem?

Linear prediction

Theorem (reverse regret transform):

If there is a linear predictor with MSE ε for original problem, then there are linear predictors with MSE (1+o(1)) ε for subproblems.

Experimental validation

Experiment #1:

68k images from ESP game (von Ahn & Dabbish, 2004)

Experiment #2:

16k webpages on del.icio.us (curated by Tsoumakas et al, 2008)

d = 1000 most common tags
assigned by players/users

Compress to m = 200 subproblems

See poster for details!

Recap

- Efficient reduction for multi-label prediction in the presence of *output sparsity*.
 - # subproblems *logarithmic* in *d* (number of classes).
- Regret transforms robustly from subproblems to original problem (and vice versa for linear prediction).
- Empirical validation on (somewhat) large output spaces, outperforms baseline ECOC methods.

Thanks!

- Thanks to Andy Cotter for help with ESP game data.
- Thank you for listening!

