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Problem

I Irreducible, aperiodic, time-homogeneous Markov chain

X1 → X2 → X3 → · · ·

I There is a unique stationary distribution π with

lim
t→∞

L(Xt | X1 = x) = π , for all x ∈ X .

I The mixing time tmix is the earliest time t with

sup
x∈X
‖L(Xt | X1 = x)− π‖tv ≤ 1/4 .

Problem:
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L(Xt | X1 = x) = π , for all x ∈ X .

I The mixing time tmix is the earliest time t with

sup
x∈X
‖L(Xt | X1 = x)− π‖tv ≤ 1/4 .

Problem:

Determine (confidently) if t ≥ tmix after seeing X1,X2, . . . ,Xt .
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Problem

I Irreducible, aperiodic, time-homogeneous Markov chain

X1 → X2 → X3 → · · ·

I There is a unique stationary distribution π with

lim
t→∞

L(Xt | X1 = x) = π , for all x ∈ X .

I The mixing time tmix is the earliest time t with

sup
x∈X
‖L(Xt | X1 = x)− π‖tv ≤ 1/4 .

Problem:

Given δ ∈ (0, 1) and X1:t , determine non-trivial It ⊆ [0,∞] with

P(tmix ∈ It) ≥ 1− δ .
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Some motivation from machine learning and statistics
Chernoff bounds for Markov chains X1 → X2 → · · · :
for suitably well-behaved f : X → R, with probability at least 1− δ,∣∣∣∣∣∣1t

t∑
i=1

f (Xi )− Eπ f

∣∣∣∣∣∣ ≤ Õ

(√
tmix log(1/δ)

t

)
︸ ︷︷ ︸

deviation bound

.

Bound depends on tmix, which may be unknown a priori.

Examples:
Bayesian inference Posterior means & variances via MCMC
Reinforcement learning Mean action rewards in an MDP
Supervised learning Error rates of hypotheses from non-iid data

Need observable deviation bounds.
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Observable deviation bounds from mixing time bounds?

Suppose an estimator t̂mix = t̂mix(X1:t) of tmix satisfies:

P(tmix ≤ t̂mix + εt) ≥ 1− δ .

Then with probability at least 1− 2δ,∣∣∣∣∣∣1t
t∑

i=1

f (Xi )− Eπ f

∣∣∣∣∣∣ ≤ Õ

(√
(t̂mix + εt) log(1/δ)

t

)
.

But t̂mix is computed from X1:t , so εt may also depend on tmix.

Deviation bounds for point estimators are insufficient.
Need (observable) confidence intervals for tmix.
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(√
(t̂mix + εt) log(1/δ)

t

)
.

But t̂mix is computed from X1:t , so εt may also depend on tmix.

Deviation bounds for point estimators are insufficient.
Need (observable) confidence intervals for tmix.

4



Observable deviation bounds from mixing time bounds?

Suppose an estimator t̂mix = t̂mix(X1:t) of tmix satisfies:

P(tmix ≤ t̂mix + εt) ≥ 1− δ .

Then with probability at least 1− 2δ,∣∣∣∣∣∣1t
t∑

i=1

f (Xi )− Eπ f

∣∣∣∣∣∣ ≤ Õ
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What we do

1. Shift focus to relaxation time trelax to enable spectral methods.

2. Lower/upper bounds on sample path length for point
estimation of trelax.

3. New algorithm for constructing confidence intervals for trelax.
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Relaxation time

I Let P be the transition operator of the Markov chain,
and let λ? be its second-largest eigenvalue modulus
(i.e., largest eigenvalue modulus other than 1).

I Spectral gap: γ? := 1− λ?.
Relaxation time: trelax := 1/γ?.

(trelax − 1) ln 2 ≤ tmix ≤ trelax ln
4
π?

for π? := minx∈X π(x).

Assumptions on P ensure γ?, π? ∈ (0, 1).

Spectral approach: construct CI’s for γ? and π?.

6



Relaxation time

I Let P be the transition operator of the Markov chain,
and let λ? be its second-largest eigenvalue modulus
(i.e., largest eigenvalue modulus other than 1).

I Spectral gap: γ? := 1− λ?.
Relaxation time: trelax := 1/γ?.

(trelax − 1) ln 2 ≤ tmix ≤ trelax ln
4
π?

for π? := minx∈X π(x).

Assumptions on P ensure γ?, π? ∈ (0, 1).

Spectral approach: construct CI’s for γ? and π?.

6



Relaxation time

I Let P be the transition operator of the Markov chain,
and let λ? be its second-largest eigenvalue modulus
(i.e., largest eigenvalue modulus other than 1).

I Spectral gap: γ? := 1− λ?.
Relaxation time: trelax := 1/γ?.

(trelax − 1) ln 2 ≤ tmix ≤ trelax ln
4
π?

for π? := minx∈X π(x).

Assumptions on P ensure γ?, π? ∈ (0, 1).

Spectral approach: construct CI’s for γ? and π?.

6



Relaxation time

I Let P be the transition operator of the Markov chain,
and let λ? be its second-largest eigenvalue modulus
(i.e., largest eigenvalue modulus other than 1).

I Spectral gap: γ? := 1− λ?.
Relaxation time: trelax := 1/γ?.

(trelax − 1) ln 2 ≤ tmix ≤ trelax ln
4
π?

for π? := minx∈X π(x).

Assumptions on P ensure γ?, π? ∈ (0, 1).

Spectral approach: construct CI’s for γ? and π?.

6



Our results (point estimation)
We restrict to reversible Markov chains on finite state spaces.
Let d be the (known a priori) cardinality of the state space X .

1. Lower bound:
To estimate γ? within a constant multiplicative factor,
every algorithm needs (w.p. 1/4) sample path of length

≥ Ω

(
d log d
γ?

+
1
π?

)
.

2. Upper bound:
Simple algorithm estimates γ? and π? within a constant
multiplicative factor (w.h.p.) with sample path of length

Õ

(
log d
π?γ3

?

)
(for γ?) , Õ

(
log d
π?γ?

)
(for π?) .

But point estimator 6⇒ confidence interval.

7



Our results (point estimation)
We restrict to reversible Markov chains on finite state spaces.
Let d be the (known a priori) cardinality of the state space X .

1. Lower bound:
To estimate γ? within a constant multiplicative factor,
every algorithm needs (w.p. 1/4) sample path of length

≥ Ω

(
d log d
γ?

+
1
π?

)
.

2. Upper bound:
Simple algorithm estimates γ? and π? within a constant
multiplicative factor (w.h.p.) with sample path of length

Õ

(
log d
π?γ3

?

)
(for γ?) , Õ
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Our results (confidence intervals)

3. New algorithm: Given δ ∈ (0, 1) and X1:t as input,
constructs intervals I γ?t and Iπ?t such that

P
(
γ? ∈ I γ?t

)
≥ 1− δ and P

(
π? ∈ Iπ?t

)
≥ 1− δ .

Widths of intervals converge a.s. to zero at
√

log log t
t rate.

4. Hybrid approach: Use new algorithm to turn error bounds for
point estimators into observable CI’s.
(This improves asymptotic rate for π? interval.)
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Plug-in estimator

I Reversibility grants the symmetry of

M := diag(π)P =
{
PX1∼π(X1 = x ,X2 = x ′)

}
x ,x ′∈X

(doublet state probabilities in stationary chain).

I Moreover, eigenvalues of

L := diag(π)−1/2M diag(π)−1/2

are real, and satisfy

1 = λ1 > λ2 ≥ · · · ≥ λd > −1 ,
γ? = 1−max{λ2, |λd |} .

I Plug-in estimator: estimate π and M from X1:t (using
empirical frequencies), then plug-in to formula for γ?.
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Chicken-and-egg problem
(Matrix) Chernoff bound (for Markov chains) gives error bounds for
estimates of π and M (and ultimately of L and γ?): e.g., w.h.p.,

|γ̂? − γ?| ≤ ‖L̂− L‖ ≤ O

√ log(d) log(t/π?)

γ?π?t

 .

This has inverse dependence on γ?.

Can’t “solve the bound” for γ?
(unlike “empirical Bernstein” inequalities).
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Direct estimation of P
Alternative: directly estimate P from X1:t .

I Key advantage: observable confidence intervals for P via
“empirical Bernstein” inequality for martingales.

Two problems:

1. Without appealing to symmetry structure, can argue

‖P̂ − P‖ ≤ ε =⇒ |γ̂? − γ?| ≤ O(ε1/(2d)) ,

but this implies exponential slow-down in rate.

2. Direct appeal to symmetry structure of

L = diag(π)1/2P diag(π)−1/2

gives bounds that depend on π, which is unknown.

Our approach:
Directly estimate P , and indirectly estimate π via P̂ .
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Indirect estimation of π

1. We ensure that P̂ is transition operator for an ergodic chain
(easy via Laplace smoothing).

2. Key step: estimate π via P̂ via group inverse Â# of I − P̂ .

I Â# contains “virtually everything that one would want to know
about the chain” [with transition operator P̂] (Meyer, 1975).

I Reveals unique stationary distribution π̂ w.r.t. P̂.
This is our indirect estimate of π.

I Tells us how to bound ‖π̂ − π‖∞ in terms of ‖P̂ − P‖.
Hence, from this, we construct a confidence interval for π.

12



Indirect estimation of π

1. We ensure that P̂ is transition operator for an ergodic chain
(easy via Laplace smoothing).

2. Key step: estimate π via P̂ via group inverse Â# of I − P̂ .
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Overall algorithm (outline)

1. Form empirical estimate and confidence intervals for P
(exploit Markov property & “empirical Bernstein”-type bounds).

2. Form estimate and confidence intervals for π
(via group inverse of I − P̂).

3. Form estimate and confidence interval for γ?
(via confidence intervals for π and P, & eigenvalue perturbation theory).
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Recap and future work

I We resolve “chicken-and-egg” problem of observable
confidence intervals for mixing time from a single sample path.

I Strongly exploit Markov property and ergodicity in confidence
intervals for P and π.

I Problem #1: close gap between lower and upper bounds on
sample path length (for point estimation).

I Problem #2: overcome computational bottlenecks from
matrix operations.

I Problem #3: handle large/continuous state spaces under
suitable assumptions.

Thanks!
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