Confidence intervals for the mixing time of a reversible Markov chain from a single sample path

Daniel Hsu[†] Aryeh Kontorovich[‡] Csaba Szepesvári^{*}

[†]Columbia University, [#]Ben-Gurion University, ^{*}University of Alberta

ITA 2016

► Irreducible, aperiodic, time-homogeneous Markov chain

$$X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow \cdots$$

Irreducible, aperiodic, time-homogeneous Markov chain

$$X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow \cdots$$

• There is a unique stationary distribution π with

$$\lim_{t\to\infty}\mathcal{L}(X_t\mid X_1=x)\ =\ \pi\,,\quad\text{for all }x\in\mathcal{X}\,.$$

Irreducible, aperiodic, time-homogeneous Markov chain

$$X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow \cdots$$

• There is a unique stationary distribution π with

$$\lim_{t\to\infty}\mathcal{L}(X_t\mid X_1=x) \ = \ \pi\,,\quad\text{for all }x\in\mathcal{X}\,.$$

• The mixing time t_{mix} is the earliest time t with

$$\sup_{x \in \mathcal{X}} \|\mathcal{L}(X_t \mid X_1 = x) - \pi\|_{\mathsf{tv}} \leq 1/4.$$

Irreducible, aperiodic, time-homogeneous Markov chain

$$X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow \cdots$$

• There is a unique stationary distribution π with

$$\lim_{t\to\infty}\mathcal{L}(X_t\mid X_1=x) \ = \ \pi\,,\quad\text{for all }x\in\mathcal{X}\,.$$

• The mixing time t_{mix} is the earliest time t with

$$\sup_{x \in \mathcal{X}} \|\mathcal{L}(X_t \mid X_1 = x) - \pi\|_{tv} \leq 1/4.$$

Problem:

Determine (confidently) if $t \ge t_{mix}$ after seeing X_1, X_2, \ldots, X_t .

Irreducible, aperiodic, time-homogeneous Markov chain

$$X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow \cdots$$

• There is a unique stationary distribution π with

$$\lim_{t\to\infty}\mathcal{L}(X_t\mid X_1=x) \ = \ \pi\,,\quad\text{for all }x\in\mathcal{X}\,.$$

• The mixing time t_{mix} is the earliest time t with

$$\sup_{\mathsf{x}\in\mathcal{X}}\|\mathcal{L}(X_t\mid X_1=\mathsf{x})-\pi\|_{\mathsf{tv}} \leq 1/4.$$

Problem:

Given $\delta \in (0,1)$ and $X_{1:t}$, determine non-trivial $I_t \subseteq [0,\infty]$ with

$$\mathbb{P}(t_{\mathsf{mix}} \in I_t) \geq 1 - \delta.$$

Some motivation from machine learning and statistics

Chernoff bounds for Markov chains $X_1 \rightarrow X_2 \rightarrow \cdots$: for suitably well-behaved $f: \mathcal{X} \rightarrow \mathbb{R}$, with probability at least $1 - \delta$,

$$\left| \frac{1}{t} \sum_{i=1}^{t} f(X_i) - \mathbb{E}_{\pi} f \right| \leq \underbrace{\tilde{O}\left(\sqrt{\frac{t_{\mathsf{mix}} \log(1/\delta)}{t}} \right)}_{\text{deviation bound}}$$

Bound depends on t_{mix} , which may be unknown a priori.

٠

Some motivation from machine learning and statistics

Chernoff bounds for Markov chains $X_1 \rightarrow X_2 \rightarrow \cdots$: for suitably well-behaved $f: \mathcal{X} \rightarrow \mathbb{R}$, with probability at least $1 - \delta$,

$$\left| \frac{1}{t} \sum_{i=1}^{t} f(X_i) - \mathbb{E}_{\pi} f \right| \leq \underbrace{\tilde{O}\left(\sqrt{\frac{t_{\mathsf{mix}} \log(1/\delta)}{t}} \right)}_{\mathsf{deviation \ bound}}$$

Bound depends on t_{mix} , which may be unknown a priori.

Examples:

Bayesian inference <u>Posterior means & variances</u> via MCMC Reinforcement learning <u>Mean action rewards</u> in an MDP Supervised learning Error rates of hypotheses from non-iid data Some motivation from machine learning and statistics

Chernoff bounds for Markov chains $X_1 \rightarrow X_2 \rightarrow \cdots$: for suitably well-behaved $f: \mathcal{X} \rightarrow \mathbb{R}$, with probability at least $1 - \delta$,

$$\left|\frac{1}{t}\sum_{i=1}^{t}f(X_{i})-\mathbb{E}_{\pi}f\right| \leq \underbrace{\tilde{O}\left(\sqrt{\frac{t_{\mathsf{mix}}\log(1/\delta)}{t}}\right)}_{\mathsf{deviation \ bound}}$$

Bound depends on t_{mix} , which may be unknown a priori.

Examples:

Bayesian inference <u>Posterior means & variances</u> via MCMC Reinforcement learning <u>Mean action rewards</u> in an MDP Supervised learning Error rates of hypotheses from non-iid data

Need observable deviation bounds.

Suppose an estimator $\hat{t}_{\mathsf{mix}} = \hat{t}_{\mathsf{mix}}(X_{1:t})$ of t_{mix} satisfies:

$$\mathbb{P}(t_{\mathsf{mix}} \leq \hat{t}_{\mathsf{mix}} + \varepsilon_t) \geq 1 - \delta$$
.

Suppose an estimator $\hat{t}_{\mathsf{mix}} = \hat{t}_{\mathsf{mix}}(X_{1:t})$ of t_{mix} satisfies:

$$\mathbb{P}(t_{\mathsf{mix}} \leq \hat{t}_{\mathsf{mix}} + arepsilon_t) \ \geq \ 1 - \delta$$
 .

Then with probability at least $1-2\delta$,

$$\left|\frac{1}{t}\sum_{i=1}^{t}f(X_i)-\mathbb{E}_{\pi}f\right| \leq \tilde{O}\left(\sqrt{\frac{(\hat{t}_{\mathsf{mix}}+\varepsilon_t)\log(1/\delta)}{t}}\right)$$

Suppose an estimator $\hat{t}_{\mathsf{mix}} = \hat{t}_{\mathsf{mix}}(X_{1:t})$ of t_{mix} satisfies:

$$\mathbb{P}(t_{\mathsf{mix}} \leq \hat{t}_{\mathsf{mix}} + arepsilon_t) \ \geq \ 1 - \delta$$
 .

Then with probability at least $1-2\delta$,

$$\left|\frac{1}{t}\sum_{i=1}^t f(X_i) - \mathbb{E}_{\pi} f\right| \leq \tilde{O}\left(\sqrt{\frac{(\hat{t}_{\mathsf{mix}} + \varepsilon_t)\log(1/\delta)}{t}}\right).$$

But \hat{t}_{mix} is computed from $X_{1:t}$, so ε_t may also depend on t_{mix} .

Suppose an estimator $\hat{t}_{\mathsf{mix}} = \hat{t}_{\mathsf{mix}}(X_{1:t})$ of t_{mix} satisfies:

$$\mathbb{P}(t_{\mathsf{mix}} \leq \hat{t}_{\mathsf{mix}} + arepsilon_t) \ \geq \ 1 - \delta$$
 .

Then with probability at least $1-2\delta$,

$$\left|\frac{1}{t}\sum_{i=1}^t f(X_i) - \mathbb{E}_{\pi} f\right| \leq \tilde{O}\left(\sqrt{\frac{(\hat{t}_{\mathsf{mix}} + \varepsilon_t)\log(1/\delta)}{t}}\right).$$

But \hat{t}_{mix} is computed from $X_{1:t}$, so ε_t may also depend on t_{mix} .

Deviation bounds for point estimators are insufficient. Need (observable) confidence intervals for t_{mix} .

What we do

1. Shift focus to relaxation time t_{relax} to enable spectral methods.

What we do

- 1. Shift focus to relaxation time t_{relax} to enable spectral methods.
- 2. Lower/upper bounds on sample path length for point estimation of t_{relax} .

What we do

- 1. Shift focus to relaxation time t_{relax} to enable spectral methods.
- 2. Lower/upper bounds on sample path length for point estimation of t_{relax} .
- 3. New algorithm for constructing confidence intervals for t_{relax} .

 Let P be the transition operator of the Markov chain, and let λ_{*} be its second-largest eigenvalue modulus (i.e., largest eigenvalue modulus other than 1).

- Let P be the transition operator of the Markov chain, and let λ_{*} be its second-largest eigenvalue modulus (i.e., largest eigenvalue modulus other than 1).
- Spectral gap: $\gamma_{\star} := 1 \lambda_{\star}$. Relaxation time: $t_{\text{relax}} := 1/\gamma_{\star}$.

$$(t_{\mathsf{relax}} - 1) \ln 2 \le t_{\mathsf{mix}} \le t_{\mathsf{relax}} \ln \frac{4}{\pi_{\star}}$$

for $\pi_{\star} := \min_{x \in \mathcal{X}} \pi(x)$.

- Let P be the transition operator of the Markov chain, and let λ_{*} be its second-largest eigenvalue modulus (i.e., largest eigenvalue modulus other than 1).
- Spectral gap: $\gamma_{\star} := 1 \lambda_{\star}$. Relaxation time: $t_{\text{relax}} := 1/\gamma_{\star}$.

$$(t_{
m relax} - 1) \ln 2 \leq t_{
m mix} \leq t_{
m relax} \ln \frac{4}{\pi_{\star}}$$

for $\pi_{\star} := \min_{x \in \mathcal{X}} \pi(x)$.

Assumptions on P ensure $\gamma_{\star}, \pi_{\star} \in (0, 1)$.

- Let P be the transition operator of the Markov chain, and let λ_{*} be its second-largest eigenvalue modulus (i.e., largest eigenvalue modulus other than 1).
- Spectral gap: $\gamma_{\star} := 1 \lambda_{\star}$. Relaxation time: $t_{relax} := 1/\gamma_{\star}$.

$$(t_{
m relax} - 1) \ln 2 \leq t_{
m mix} \leq t_{
m relax} \ln \frac{4}{\pi_{\star}}$$

for $\pi_{\star} := \min_{x \in \mathcal{X}} \pi(x)$.

Assumptions on P ensure $\gamma_{\star}, \pi_{\star} \in (0, 1)$.

Spectral approach: construct CI's for γ_{\star} and π_{\star} .

We restrict to reversible Markov chains on finite state spaces. Let d be the (known *a priori*) cardinality of the state space \mathcal{X} .

We restrict to reversible Markov chains on finite state spaces. Let d be the (known *a priori*) cardinality of the state space \mathcal{X} .

1. Lower bound:

To estimate γ_{\star} within a constant multiplicative factor, every algorithm needs (w.p. 1/4) sample path of length

$$\geq \ \Omega igg(rac{d \log d}{\gamma_\star} + rac{1}{\pi_\star} igg)$$

We restrict to reversible Markov chains on finite state spaces. Let d be the (known *a priori*) cardinality of the state space \mathcal{X} .

1. Lower bound:

To estimate γ_{\star} within a constant multiplicative factor, every algorithm needs (w.p. 1/4) sample path of length

$$\geq \ \Omega igg(rac{d\log d}{\gamma_\star} + rac{1}{\pi_\star} igg) \, .$$

2. Upper bound:

Simple algorithm estimates γ_{\star} and π_{\star} within a constant multiplicative factor (w.h.p.) with sample path of length

$$\widetilde{O}\left(rac{\log d}{\pi_\star\gamma_\star^3}
ight) \quad (ext{for } \gamma_\star) \,, \qquad \widetilde{O}\left(rac{\log d}{\pi_\star\gamma_\star}
ight) \quad (ext{for } \pi_\star) \,.$$

We restrict to reversible Markov chains on finite state spaces. Let d be the (known *a priori*) cardinality of the state space \mathcal{X} .

1. Lower bound:

To estimate γ_{\star} within a constant multiplicative factor, every algorithm needs (w.p. 1/4) sample path of length

$$\geq \ \Omega igg(rac{d\log d}{\gamma_\star} + rac{1}{\pi_\star} igg) \, .$$

2. Upper bound:

Simple algorithm estimates γ_{\star} and π_{\star} within a constant multiplicative factor (w.h.p.) with sample path of length

$$\widetilde{O}\left(rac{\log d}{\pi_\star\gamma_\star^3}
ight) \quad (ext{for } \gamma_\star)\,, \qquad \widetilde{O}\left(rac{\log d}{\pi_\star\gamma_\star}
ight) \quad (ext{for } \pi_\star)\,.$$

But point estimator \neq confidence interval.

Our results (confidence intervals)

3. New algorithm: Given $\delta \in (0, 1)$ and $X_{1:t}$ as input, constructs intervals $I_t^{\gamma_{\star}}$ and $I_t^{\pi_{\star}}$ such that

$$\mathbb{P}\big(\gamma_\star \in \mathit{I}_t^{\gamma_\star}\big) \ \ge \ 1-\delta \quad \text{and} \quad \mathbb{P}\big(\pi_\star \in \mathit{I}_t^{\pi_\star}\big) \ \ge \ 1-\delta \,.$$

Widths of intervals converge a.s. to zero at $\sqrt{\frac{\log \log t}{t}}$ rate.

Our results (confidence intervals)

3. New algorithm: Given $\delta \in (0, 1)$ and $X_{1:t}$ as input, constructs intervals $I_t^{\gamma_*}$ and $I_t^{\pi_*}$ such that

$$\mathbb{P}\big(\gamma_\star \in \mathit{I}_t^{\gamma_\star}\big) \ \geq \ 1-\delta \quad \text{and} \quad \mathbb{P}\big(\pi_\star \in \mathit{I}_t^{\pi_\star}\big) \ \geq \ 1-\delta \,.$$

Widths of intervals converge a.s. to zero at $\sqrt{\frac{\log \log t}{t}}$ rate.

 Hybrid approach: Use new algorithm to turn error bounds for point estimators into observable Cl's. (This improves asymptotic rate for π_{*} interval.)

Reversibility grants the symmetry of

$$M := \text{diag}(\pi)P = \{\mathbb{P}_{X_{1} \sim \pi}(X_{1} = x, X_{2} = x')\}_{x, x' \in \mathcal{X}}$$

(doublet state probabilities in stationary chain).

Reversibility grants the symmetry of

$$M := \operatorname{diag}(\pi)P = \{\mathbb{P}_{X_1 \sim \pi}(X_1 = x, X_2 = x')\}_{x, x' \in \mathcal{X}}$$

(doublet state probabilities in stationary chain).

Moreover, eigenvalues of

$$L := \operatorname{diag}(\pi)^{-1/2} M \operatorname{diag}(\pi)^{-1/2}$$

are real, and satisfy

$$1 = \lambda_1 > \lambda_2 \ge \cdots \ge \lambda_d > -1,$$

$$\gamma_{\star} = 1 - \max\{\lambda_2, |\lambda_d|\}.$$

Reversibility grants the symmetry of

$$M := \text{diag}(\pi)P = \{\mathbb{P}_{X_1 \sim \pi}(X_1 = x, X_2 = x')\}_{x, x' \in \mathcal{X}}$$

(doublet state probabilities in stationary chain).

Moreover, eigenvalues of

$$L := \operatorname{diag}(\pi)^{-1/2} M \operatorname{diag}(\pi)^{-1/2}$$

are real, and satisfy

$$1 = \lambda_1 > \lambda_2 \ge \cdots \ge \lambda_d > -1,$$

$$\gamma_{\star} = 1 - \max\{\lambda_2, |\lambda_d|\}.$$

Plug-in estimator: estimate π and M from X_{1:t} (using empirical frequencies), then plug-in to formula for γ_{*}.

Chicken-and-egg problem

(Matrix) Chernoff bound (for Markov chains) gives error bounds for estimates of π and M (and ultimately of L and γ_{\star}): e.g., w.h.p.,

$$|\hat{\gamma}_{\star} - \gamma_{\star}| \leq \|\widehat{L} - L\| \leq O\left(\sqrt{rac{\log(d)\log(t/\pi_{\star})}{\gamma_{\star}\pi_{\star}t}}
ight).$$

Chicken-and-egg problem

(Matrix) Chernoff bound (for Markov chains) gives error bounds for estimates of π and M (and ultimately of L and γ_{\star}): e.g., w.h.p.,

$$|\hat{\gamma}_{\star} - \gamma_{\star}| \leq \|\widehat{L} - L\| \leq O\left(\sqrt{rac{\log(d)\log(t/\pi_{\star})}{\gamma_{\star}\pi_{\star}t}}\right)$$

This has *inverse* dependence on γ_{\star} .

Chicken-and-egg problem

(Matrix) Chernoff bound (for Markov chains) gives error bounds for estimates of π and M (and ultimately of L and γ_{\star}): e.g., w.h.p.,

$$|\hat{\gamma}_{\star} - \gamma_{\star}| \leq \|\widehat{L} - L\| \leq O\left(\sqrt{\frac{\log(d)\log(t/\pi_{\star})}{\gamma_{\star}\pi_{\star}t}}\right)$$

This has *inverse* dependence on γ_{\star} .

Can't "solve the bound" for γ_{\star} (unlike "empirical Bernstein" inequalities).

Alternative: directly estimate *P* from $X_{1:t}$.

Alternative: directly estimate *P* from $X_{1:t}$.

Key advantage: observable confidence intervals for P via "empirical Bernstein" inequality for martingales.

Alternative: directly estimate *P* from $X_{1:t}$.

- Key advantage: observable confidence intervals for P via "empirical Bernstein" inequality for martingales.
- Two problems:

Alternative: directly estimate *P* from $X_{1:t}$.

Key advantage: observable confidence intervals for P via "empirical Bernstein" inequality for martingales.

Two problems:

1. Without appealing to symmetry structure, can argue

$$\|\widehat{P} - P\| \leq \varepsilon \implies |\widehat{\gamma}_{\star} - \gamma_{\star}| \leq O(\varepsilon^{1/(2d)}),$$

but this implies exponential slow-down in rate.

Alternative: directly estimate *P* from $X_{1:t}$.

Key advantage: observable confidence intervals for P via "empirical Bernstein" inequality for martingales.

Two problems:

1. Without appealing to symmetry structure, can argue

$$\|\widehat{P}-P\| \leq arepsilon \quad \Longrightarrow \quad |\hat{\gamma}_{\star}-\gamma_{\star}| \leq O(arepsilon^{1/(2d)}),$$

but this implies exponential slow-down in rate.

2. Direct appeal to symmetry structure of

$$L = diag(\pi)^{1/2} P diag(\pi)^{-1/2}$$

gives bounds that depend on π , which is unknown.

Alternative: directly estimate *P* from $X_{1:t}$.

Key advantage: observable confidence intervals for P via "empirical Bernstein" inequality for martingales.

Two problems:

1. Without appealing to symmetry structure, can argue

$$\|\widehat{P}-P\| \leq arepsilon \quad \Longrightarrow \quad |\hat{\gamma}_{\star}-\gamma_{\star}| \leq O(arepsilon^{1/(2d)}),$$

but this implies exponential slow-down in rate.

2. Direct appeal to symmetry structure of

$$L = diag(\pi)^{1/2} P diag(\pi)^{-1/2}$$

gives bounds that depend on π , which is unknown.

Our approach:

Directly estimate P, and *indirectly* estimate π via \widehat{P} .

1. We ensure that \widehat{P} is transition operator for an ergodic chain (easy via Laplace smoothing).

- 1. We ensure that \widehat{P} is transition operator for an ergodic chain (easy via Laplace smoothing).
- 2. Key step: estimate π via \widehat{P} via group inverse $\widehat{A}^{\#}$ of $I \widehat{P}$.

- 1. We ensure that \widehat{P} is transition operator for an ergodic chain (easy via Laplace smoothing).
- 2. Key step: estimate π via \widehat{P} via group inverse $\widehat{A}^{\#}$ of $I \widehat{P}$.
 - $\widehat{A}^{\#}$ contains "virtually everything that one would want to know about the chain" [with transition operator \widehat{P}] (Meyer, 1975).

- 1. We ensure that \widehat{P} is transition operator for an ergodic chain (easy via Laplace smoothing).
- 2. Key step: estimate π via \widehat{P} via group inverse $\widehat{A}^{\#}$ of $I \widehat{P}$.
 - $\widehat{A}^{\#}$ contains "virtually everything that one would want to know about the chain" [with transition operator \widehat{P}] (Meyer, 1975).
 - Reveals unique stationary distribution $\hat{\pi}$ w.r.t. \hat{P} . This is our indirect estimate of π .

- 1. We ensure that \widehat{P} is transition operator for an ergodic chain (easy via Laplace smoothing).
- 2. Key step: estimate π via \widehat{P} via group inverse $\widehat{A}^{\#}$ of $I \widehat{P}$.
 - $\widehat{A}^{\#}$ contains "virtually everything that one would want to know about the chain" [with transition operator \widehat{P}] (Meyer, 1975).
 - Reveals unique stationary distribution $\hat{\pi}$ w.r.t. \hat{P} . This is our indirect estimate of π .
 - Tells us how to bound $\|\hat{\pi} \pi\|_{\infty}$ in terms of $\|\hat{P} P\|$. Hence, from this, we construct a confidence interval for π .

Overall algorithm (outline)

- Form empirical estimate and confidence intervals for P (exploit Markov property & "empirical Bernstein"-type bounds).
- 2. Form estimate and confidence intervals for π (via group inverse of $I \hat{P}$).
- 3. Form estimate and confidence interval for γ_{\star} (via confidence intervals for π and P, & eigenvalue perturbation theory).

We resolve "chicken-and-egg" problem of observable confidence intervals for mixing time from a single sample path.

- We resolve "chicken-and-egg" problem of observable confidence intervals for mixing time from a single sample path.
- Strongly exploit Markov property and ergodicity in confidence intervals for P and π.

- We resolve "chicken-and-egg" problem of observable confidence intervals for mixing time from a single sample path.
- Strongly exploit Markov property and ergodicity in confidence intervals for P and π.
- Problem #1: close gap between lower and upper bounds on sample path length (for point estimation).

- We resolve "chicken-and-egg" problem of observable confidence intervals for mixing time from a single sample path.
- Strongly exploit Markov property and ergodicity in confidence intervals for P and π.
- Problem #1: close gap between lower and upper bounds on sample path length (for point estimation).
- Problem #2: overcome computational bottlenecks from matrix operations.

- We resolve "chicken-and-egg" problem of observable confidence intervals for mixing time from a single sample path.
- Strongly exploit Markov property and ergodicity in confidence intervals for P and π.
- Problem #1: close gap between lower and upper bounds on sample path length (for point estimation).
- Problem #2: overcome computational bottlenecks from matrix operations.
- Problem #3: handle large/continuous state spaces under suitable assumptions.

- We resolve "chicken-and-egg" problem of observable confidence intervals for mixing time from a single sample path.
- Strongly exploit Markov property and ergodicity in confidence intervals for P and π.
- Problem #1: close gap between lower and upper bounds on sample path length (for point estimation).
- Problem #2: overcome computational bottlenecks from matrix operations.
- Problem #3: handle large/continuous state spaces under suitable assumptions.

Thanks!