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ABSTRACT

We propose a method-of-moments algorithm for parameter learning
in Left-to-Right Hidden Markov Models. Compared to the conven-
tional Expectation Maximization approach, the proposed algorithm
is computationally more efficient, and hence more appropriate for
large datasets. It is also asymptotically guaranteed to estimate the
correct parameters. We show the validity of our approach with a
synthetic data experiment and a word utterance onset detection ex-
periment.

Index Terms— Method of Moments, Left-to-Right Hidden
Markov Models

1. INTRODUCTION

Left-to-Right Hidden Markov Models (LR-HMMSs) comprise an
important subclass of Hidden Markov Models (HMMSs) for mod-
eling time series data [1]. In an LR-HMM, the hidden state space
is linearly ordered; as time progresses, the state index either in-
creases or stays the same. Imposing this one directional structure
is extremely helpful in applications such as speech recognition and
DNA sequence alignment [2].

Learning the parameters of HMMs from data is a non-trivial
task because of the presence of hidden variables, which makes
the standard maximum likelihood based objective analytically in-
tractable, and hence there doesn’t exist a closed form maximum
likelihood estimator for HMMs. A very popular search heuristic
for maximum likelihood learning in latent variable models such as
HMMs is Expectation Maximization (EM). Despite its popularity,
EM can be computationally expensive for large datasets, slow to
converge and it doesn’t have learning guarantees.

Recently, Method of Moments (MoM) algorithms for parameter
learning in latent variable models have become popular alternatives
to (or initializers for) EM in the machine learning community due to
their computational advantages and theoretical guarantees [3, 4, 5,
6]. However, current MoM algorithms are unsuitable for LR-HMM
because of the structural constraints of the model.

In this work, we adapt the two-stage estimation procedure pro-
posed in [7] and [8] to develop an efficient algorithm for LR-HMM.
The two-stage estimation procedure separates the learning of the
emission and transition matrix. This separation allows us to form a
moment-based objective function, in which we are able to enforce
the structural left-to-right constraint.

Our main contribution is to provide two algorithms which esti-
mate the left-to-right structure in a general LR-HMM, and a more
constrained non-state-skipping version, which is also known as
Bakis HMM [1]. The overall algorithm is a statistically consistent
estimator of the true model parameters. We experimentally show

on synthetic data that the proposed approach is computationally
cheaper than EM, and can be used as an economical initializer for
EM. We also provide a real data experiment on speech data, where
we detect the onsets of a word in a recording of repeated utterances.

2. DEFINITIONS

2.1. Notation

We use the MATLAB colon notation A(:, ), A(4,:), B(:,:, ),
which in this case picks, respectively, the j’th column and
row of a matrix A, and the j’th slice of the third-order ten-
sor B. We use the subscript notation zi.r to denote the set

{21,22,...,27}. The probability simplex in RY is denoted by
AN = {(p1,p2,...,on) €RY 1 py 2 0 Vi, S, pi = 1},
and AN 71XN s the space of column-stochastic matrices in RY.

The indicator function is denoted by 1(arg): If arg is true then the
output is 1, otherwise the output is zero. For a positive integer N,
let [N] := {1,...,N}. Lete; € R" denote an indicator vector,
where only the 7’th entry is one and the rest is zero. We use diag(z)
to put the vector = on the diagonal entries of a matrix. All ones
vectors of length IV is denoted by 1. Element-wise multiplication
of A and B matrices is denoted by A ® B.

2.2. Hidden Markov Models

HMMs are statistical sequence models where observations x1.7
are generated independently conditioned on a latent Markov chain
r1 — 72 — ---. The observation at time ¢ is denoted by a random
vector z; in R” (where discrete observations are encoded using in-
dicator vectors), and the corresponding latent state is denoted by
r¢ € [M]. HMM distributions with discrete observations in the
set eq.r, are parametrized by § = (O, A,v): an emission matrix
O € AF=1XM 4 transition matrix A € AM =M and an initial
state distribution v € AM~! (We use column-stochastic matri-
ces.) For HMMs with continuous observations, the emission ma-
trix O is replaced by (parameters of) M emission distributions over
RY; in this case, we regard O as the conditional mean matrix where
O(:,7) = Elz¢|r¢=j] (which is consistent with the discrete obser-
vations case). Overall, the generative model of an HMM is defined
as follows:

r1 ~ Categorical(v),
relre—1 ~ Categorical(A(:,r¢—1)), Vt € {2,...,T},
xe|re ~ pr,, Yt € [T],

where p.., is the emission density corresponding to the r;’th state.
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2.3. Left-to-Right and Bakis HMMs

As mentioned in the introduction, in an LR-HMM, the state index
increases or stays the same as time progresses. This means that the
transition matrix A of an LR-HMM is a lower triangular matrix with
the entries above the main diagonal equal to zero, and there exists
at least one non-zero entry below the diagonal per column.

For a family of transition matrices A C AM=1 M ye say
S € {0,1}M*M js the binary mask for A if S;; = 1(34 €
As.t. A; ;>0),50 A= A®S forall A € A. Therefore, the binary
mask St r for LR-HMMs is given by (Str)i; = 1(i > j).

As can be inferred from the above paragraph, general LR-
HMMs allow transitions between non-adjacent states (e.g., a tran-
sition from state 2 to 5). In some applications such as speech
recognition [1], it is desirable to further constrain the transition
structure so that only transitions among neighboring states are al-
lowed. Such models are called Bakis HMMs. In this work, we
consider Bakis HMMs with one-step transitions (i.e., from state ¢ to
i + 1). The transition matrix structure in a Bakis HMM is such that
only the main diagonal and the first lower diagonal are non-zero.
Thus, the binary mask Sg for Bakis HMMs is given by (Sg):,; =
1(i=j or i=j+1). We also consider Bakis HMMs where transi-
tions from the final state to the initial state are permitted, so the
corresponding mask Sp- in this case also has (Sg/)1,m = 1.

3. LEARNING

The dominant method for learning LR-HMMs is the Expectation
Maximization (EM) algorithm [9]. EM is a heuristic for maximum
likelihood estimation that locally optimizes the likelihood objective.
Due to the non-convexity of the likelihood objective, EM may re-
turn a local maximizer, and hence the performance of EM depends
strongly on the initial parameter setting. It is common to run EM
many times with different (random) initializations, but this can be
computationally inefficient. Another drawback of EM is that each
iteration requires a computationally expensive forward-backward
message passing for each sequence.

In this work, we adapt the two-stage HMM learning algorithm
in [7], which separates the learning of the emission matrix and the
transition matrix. Since the estimation of the transition matrix is
formulated as an individual convex optimization problem, we are
able to enforce the left-to-right structure with an affine constraint in
the form of A ® (1p1}; — Sr) = 0. The main obstacle from
directly applying the true mask St r is due to the fact that we do
not know the left-to-right ordering of the states after the parameter
estimation step. For this reason, we first need to learn the permuted
binary mask M := PS.rP", where P is the permutation matrix
that corresponds to the permutation mapping introduced by the pa-
rameter estimation procedure. We propose two algorithms to learn
the state index ordering for the general LR-HMM and Bakis HMM.

The resulting general learning algorithm (outlined in Algo-
rithm 1) is computationally cheaper than EM and is scalable to large
datasets, as we demonstrate in Section 4.1.

Algorithm 1 Outline of the overall learning procedure

1. Estimate O and mixing weights 7. (Section 3.1).

2. Estimate A using the output of stage 1 (Section 3.2).

3. Learn the mask M to suppress unwanted entries for the ap-
propriate model (Section 3.3).

4. Refine A using the mask M (Section 3.4).
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3.1. Estimation of the Emission Matrix

In an HMM, the emission density can be learnt independently of
the transition matrix by treating the observations as i.i.d. and fitting
a mixture distribution. The generative model that corresponds to
this i.i.d. ‘interpretation’ is as follows,
r|i ~ 7,

iNu[T]7 T~ Pr,y (1)

where ¢ is a random index drawn from a uniform distribution |7
over time indices [T, m; is the state marginal distribution for (ran-
dom) time #, r is a hidden state variable, and x is an observation.
Marginalizing out the random index ¢, we see that « has a mixture
distribution with mixing weights 7 := & >>7_ 7.

Following this rationale, an MoM subroutine can be used to es-
timate O and 7, up to some unknown permutation P of the state
labels (given as a permutation matrix). Let O and 7 denote these
estimates, and let O, := OP~ " and e := P77 be the corre-
sponding estimates after un-permuting the state labels. One choice
for the mixture learning subroutine is the tensor power method [5].
This procedure uses second- and third-order moments to learn the
emission parameters of the mixture model, and requires that O has
full column rank.

3.2. Initial Estimation of the Transition Matrix

The second-order moment of an HMM is decomposed in terms of
model parameters as follows [4, 3]:

T T
1 1 .
Q2,1 : T ;:1 E[xH_l:rtT] =7 E O A diag(m) o’

t=1

= OAdiag(r)OT, 2

where 7 is the mixing weight vector defined in the previous subsec-
tion. (For simplicity, we assume the sequence that corresponds to
(2,1 has length T 4 1.) Given estimates 6, 7 from the first stage,
and an empirical second-order moment ng\l we compute a tran-
sition matrix that minimizes the Frobenius norm of the deviation
between the empirical moment and the factorization from Equation
(2) by solving the following convex program:

A\ = arg min ||Cj;1 — OA dlag(%) aT HF 3)
A
S.t. 1]7;114 - 1X17 A > 0.

As before, let A, := P 'AP~" denote the estimate after un-
permuting the state labels. Note that the estimate A is (yet) not
constrained to be in a lower triangular (or Bakis) form; we address
this issue in the next subsections.

3.3. Learning the Refinement Mask

We now discuss how to recover the left-to-right ordering of the
states which is needed to enforce the lower triangular (or Bakis)
structure in A.

Let P: [M] — [M] denote the permutation corresponding to
the permutation matrix P from the first step of the algorithm. Once
again note that M = PSP denotes the permuted binary mask that
corresponds to transition matrix structure (e.g., M = PSprP’
in the general LR-HMM case). We give an algorithm to estimate
M for both the general LR-HMM and the more constrained Bakis
HMM.
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3.3.1. Depermutation for a general LR-HMM

In the case of general LR-HMM, the transition matrix is lower tri-
angular in its original form. This means that for each ¢ € [M],
the i’th row in A has the fewest non-zero entries among all rows
i’ > i after excluding the diagonal entries of A and columns j < 3.
Thus, a simple greedy algorithm recovers the permutation P from
a sufficiently accurate estimate A of the transition matrix A (Algo-
rithm 2).

Algorithm 2 The Depermutation Algorithm for General LR-HMM

1: Input: Transition matrix ,Z{, threshold v > 0 (default: v = 0).

2: Output: Binary mask M.

3: Initialize M, ; := 1(A,; > ~) for all (i,) € [M]?* v =
[M].

fori=1,2,...,M do s

P(i) == argming ¢, e, 1y Mir -

vi=v\{P()}.

: end for

. return M = PS_rP", where P is the permutation matrix
corresponding to P.

Algorithm 2 takes a threshold parameter « as input, which in
practice can be tuned using cross-validation (e.g., try several values
for v and choose the result yielding the model with highest held-out
likelihood). In the next section, we describe an algorithm specifi-
cally tailored for Bakis HMMs that avoids this extra parameter.

3.3.2. Learning the refinement mask for Bakis HUM

The state transition structure of a Bakis HMM defines an Hamilto-
nian path (a tour along the vertices, with each vertex visited exactly
once) in the state space. Finding an Hamiltonian path is known to
be NP-Hard [10]. We therefore propose a greedy algorithm in Algo-
rithm 3. This algorithm finds Hamiltonian paths starting from every
state, and then picks the one yielding the highest likelihood.

Next, we show that if the estimated transition matrix is close to
the true transition matrix, the algorithm returns the correct answer,
and consequently as the number of observed sequences tends to in-
finity, the Algorithm is guaranteed to return the true parameters up
to a permutation of the state indices.

Definition: Let ¢ := ||[A — PAP" ||y, where |||y computes the
sum of absolute values of the entries of the argument.

Lemma: If ¢ < min; max;«; As,j, then the output of Algorithm 3
satisfies (1p 13, — M)O A= 0.

Proof: The condition requires that the deviation € should be smaller
than the smallest of second largest column entries in A. If this is
satisfied, then then the algorithm will find the true Hamiltonian

path since the true path will remain unaltered in A. g

Theorem: As the number of observed sequences N — 0o,
Algorithm 3 is guaranteed to find the true mask M.

Proof Sketch: As N — oo, the estimates of the tensor power
method converges to the true emission matrix O and the mix-
ing weights m. Furthermore, due to law of large numbers

the empirical moment converges to the true moment: (2,1 —
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Algorithm 3 The greedy algorithm for Bakis HMM

1: Input: Noisy and Permuted Transition Matrix A.
2: Output: Binary Mask M.

3:

4: fork=1: M do

5: Initialize Masks(:,:, k) = 0;

6: 1=17=k;vsts={j};

7: while 7 < M do N

8: J'=argmaxic(y arp vets Al

9: vsts = {vsts, j'}; > Add j' to the list of visited

vertices.

10: Masks(5', j, k) = 1;

11: i=3" > Next state to visit is j'.
12: t=1+4+1;

13: end while

14: Masks(k, j', k) = 1;
cycle.

15 A'(:,:, k) = Normalize(A © (Masks(:, :, k) + I));
> Normalize A according to the estimated mask

16: end for N

17: k' = argmax p(z1.7|A'(:,:,1));

le{1,...,M}

> Pick the mask with the largest likelihood.

18: return M = Masks(:,:, k') + I;

> Optional step to complete the

(@Q2,1. When this is the case, one can show that a pseudo-
inverse estimator 6T®(6T)Tdiag(%)71 converges to A. Since
argmin 4, ||Q2,1 — OA’diag(m)OT || is in the feasible region, the
solution of the optimization problem in Section 3.2 is equal to this
pseudo inverse estimator, and therefore ¢ — 0. This results in the
condition in Lemma 3 being satisfied, and therefore Algorithm 3 is
guaranteed to return the true mask M. |

3.4. Refinement of the estimated transition matrix

As discussed earlier, once the mask M is learned, we re-run the
convex optimization procedure described in Section 3.2 with an ad-
ditional constraint defined by M to suppress the unwanted non-zero
elements in the estimated transition matrix.

Aves = argmin ||Q21 — OAdiag(7)0 " ||r @)
A
st. 1y A=13, A>0, A® (1pmly — M) =0.

Once the refined transition matrix is obtained with this second
round of convex optimization, the learning procedure is concluded.
Note that besides the computational advantage of the method which
is illustrated in Section 4.1, the overall method is very easy to im-
plement. Once the emission matrix is obtained, one can use an off-
the shelf convex programming language such as CVX [11] for the
estimation of the transition matrix.

4. EXPERIMENTS

4.1. Synthetic Data Experiment

In this Section, we experimentally studied the time-accuracy trade-
oft for the proposed algorithm (MoM), expectation maximization
(EM), and EM initialized by MoM for various number of EM itera-
tions. For sequence lengths 400, 4000, and 40000 we generated 10
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sequences for two classes from Bakis HMM, with 4 hidden states
and Gaussian emission model. The means of the Gaussians were
drawn from a zero mean unit variance Gaussian. The observation
model was a Gaussian with variance 8. We learned Bakis HMMs
from these sequences. We then did Viterbi decoding on 10 test se-
quences generated from the same Bakis HMMs used in training.
For EM learning we used a code which has the E-step of EM im-
plemented in MEX. For EM, we did 5 random initializations, and
accepted the new set of parameters when we observed an increase
in the log-likelihood. We repeated the experiment for 5 times. Er-
ror bars show the standard deviation of accuracy over the random
repeats. We observed that the variance of the repeats vanished for
longer sequences. The time-accuracy tradeoff curves averaged over
5 repeats are given in Figure 1. We see that MoM is faster for longer

Viterbi decoding accuracy
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Figure 1: Time-Accuracy tradeoff curve for Synthetic Experiment.
Different colors correspond to different sequence lengths. Trian-
gles show the performance of randomly initialized EM. Different
points with the same color correspond to an random EM initial-
ization. (The further to the right, the larger the number of initial-
izations) The solid curves show the performance of EM initialized
with MoM. The numbers correspond to the number of EM iterations
after initialization (0 means MoM only). Time axis is logarithmic.

sequences and thus more scalable than EM.

4.2. Real Data Experiment

In this section, we work on detecting the speech onsets on a long
sequence consisted of 48 concatenated utterances of digit 7 by the
same person. We trained an ergodic Bakis HMM on the sequence,
and used the Viterbi state sequence decoding to detect the utterance
onsets. We defined an onset as a transition from the last state to the
first state of the HMM, which are respectively determined by set-
ting the first state as the very first and last elements of the Viterbi
sequence. We used 29-dimensional MFCC features. To measure the
performance of the onset detection we used the precision, recall and
F-measure criterions defined in [12]. Similar to the previous section
we compared the proposed algorithm (MoM), randomly initialized
EM (we used 5 random restarts and report only the restarts until
the best F-measure), and EM initialized by MoM. Note that, the
forward-backward part of the EM code is implemented with MEX,
and the proposed method is implemented in MATLAB, with the op-
timization part implemented with CVX [11]. The F-measure - time
tradeoff curves for 4 different sequence lengths are given in Figure
2. We are able to use sequences longer than 48 utterances by repli-
cating the sequence. The numbers given in the legend correspond
to the number of replicates.

As can be seen from the figure, the proposed Algorithm pro-
vides a more scalable alternative to EM. Even though the forward
backward part of the EM code is implemented with MEX, the pro-
posed algorithm is faster in longer sequence lengths. We also see
that it’s a fast way for initializing EM.
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Figure 2: F-measure/time tradeoff curves. Different colors corre-
spond to different number of replicates. Triangles correspond to
randomly initialized EM. The solid curves correspond to EM ini-
tialized with MoM. The numbers show the number of EM iterations
after initialization (0 means MoM only). Time axis is logarithmic.

5. CONCLUSIONS

We have proposed a novel algorithm based on Method of Moments
for learning Left-to-Right HMMs. As we see in synthetic and real
data experiments, the proposed algorithm is a scalable alternative
for EM and also can be used to initialize EM. Unlike EM, the pro-
posed algorithm also has asymptotic convergence guarantee.
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