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Abstract Topic modeling is a generalization of clustering that posits that observations
(words in a document) are generated by multiple latent factors (topics), as opposed to
just one. The increased representational power comes at the cost of a more challenging
unsupervised learning problem for estimating the topic-word distributions when only
words are observed, and the topics are hidden. This work provides a simple and efficient
learning procedure that is guaranteed to recover the parameters for a wide class of
multi-view models and topic models, including latent Dirichlet allocation (LDA).
For LDA, the procedure correctly recovers both the topic-word distributions and the
parameters of the Dirichlet prior over the topic mixtures, using only trigram statistics
(i.e., third order moments, which may be estimated with documents containing just
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three words). The method is based on an efficiently computable orthogonal tensor
decomposition of low-order moments.

Keywords Topic models · Mixture models · Method of moments · Latent Dirichlet
allocation

1 Introduction

Topic models use latent variables to explain the observed (co-)occurrences of words
in documents. They posit that each document is associated with a (possibly sparse)
mixture of active topics, and that each word in the document is accounted for (in fact,
generated) by one of these active topics. In latent Dirichlet allocation (LDA) [12], a
Dirichlet prior gives the distribution of active topics in documents. LDA and related
models possess a rich representational power because they allow for documents to be
comprised of words from several topics, rather than just a single topic. This increased
representational power comes at the cost of a more challenging unsupervised esti-
mation problem, when only the words are observed and the corresponding topics are
hidden.

In practice, the most common unsupervised estimation procedures for topic mod-
els are based on finding maximum likelihood estimates, through either local search or
sampling based methods, e.g., Expectation-Maximization [43], Gibbs sampling [22],
and variational approaches [12]. Another body of tools is based on matrix factoriza-
tion [26,36]. For document modeling, a typical goal is to form a sparse decomposition
of a term-document matrix (which represents the word counts in each document) into
two parts: one which specifies the active topics in each document and the other which
specifies the distributions of words under each topic.

This work provides an alternative approach to parameter recovery based on the
method of moments [42], which attempts to match the observed moments with those
posited by the model. Our approach does this efficiently through a particular decompo-
sition of the low-order observable moments, which can be extracted using an orthog-
onal tensor decomposition. This method is simple and efficient to implement, and is
guaranteed to recover the parameters of a wide class of topic models, including the
LDA model. We exploit exchangeability of the observed variables and, more gener-
ally, the availability of multiple views drawn independently from the same hidden
component.

1.1 Summary of Contributions

We present a spectral approach to topic model estimation based on decomposing the
low-order (cross) moments of observed variables. The approach differs from other
spectral methods (e.g., those based on Principal Component Analysis and Canonical
Correlation Analysis) in that it is based on an orthogonal tensor decomposition of a
k × k × k third-order moment tensor, where k is the number of latent factors (topics).
In many applications, k is typically much smaller than the dimension of the observed
space d (number of words).
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The method is applicable to a wide class of latent variable models including
exchangeable and multi-view models. We first consider the class of exchangeable
variables with independent latent factors. We show that the low-order moment tensors
possess a decomposition known as a canonical polyadic decomposition [34] (Lemma 1
and Lemma 2 in Sect. 3.1). We then consider LDA and show that, even though it does
not directly possess an independent latent factor, it nearly does so in a rigorous sense,
and hence a simple combination of lower-order moments has the required decompo-
sition just as in the previous case (Lemma 3 in Sect. 3.2). Given these moments from
either the independent latent factors model or LDA, a simple and computationally
efficient algebraic procedure [23] recovers the model parameters exactly under a mild
rank condition (Theorem 2 in Sect. 3.3). Informally, we have the following.

Theorem 1 (Informal) Given low-order (i.e., order ≤ 3 or ≤ 4) moments from either
the independent latent factors model or LDA satisfying a rank condition, there is a
polynomial time randomized algorithm that returns the model parameters up to scaling
and permutation.

We describe the parameter recovery procedures assuming exact moments as input,
but it is straightforward to write down analogous “plug-in” estimators that use estimates
of these moments based on sampled data. We do just this using a particular tensor
decomposition procedure from [5], and analyze the error of the resulting parameter
estimates in terms of the errors in the moment estimates (Theorem 3).

1.2 Related Work

Under the assumption that a single active topic occurs in each document, the work of
[41] provides the first theoretical guarantees for recovering the topic distributions (i.e.,
the distribution of words under each topic), albeit with a rather stringent separation
condition (where the words in each topic are essentially non-overlapping). Under-
standing what separation conditions permit efficient learning is a natural question; in
the clustering literature, a line of work has focussed on understanding the relationship
between the separation of the mixture components and the complexity of learning.
For clustering, the first learnability result [19] was under a rather strong separation
condition; subsequent results relaxed [1,10,16,17,20,33,45] or removed these condi-
tions [11,28,32,38]; roughly speaking, learning under a weaker separation condition
is more challenging, both computationally and statistically. For the topic modeling
problem in which only a single active topic is present per document, [6] provides an
algorithm for learning topics with no separation requirement, but under a certain full
rank assumption on the topic probability matrix.

For the case of LDA (where each document may be about multiple topics), the recent
work of [8] provides the first theoretical result under a natural separation condition. The
condition requires that each topic be associated with “anchor words” that only occur
in documents about that topic. This is a significantly milder assumption than the one
in [41]. Under this assumption, [8] provides the first rigorously analyzed algorithm for
learning the topic distributions. Their work also justifies the use of non-negative matrix
(NMF) as a provable procedure for this problem (the original motivation for NMF was
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as a topic modeling technique, though, prior to this work, formal guarantees as such
were rather limited). Furthermore, [8] provides results for certain correlated topic
models. Our approach makes further progress on this problem by relaxing the need
for this separation condition and providing a simpler parameter estimation procedure.

The underlying approach we take is a certain diagonalization technique of the
observed moments. We know of at least three different settings which use this idea for
parameter estimation.

The algebraic tensor decomposition technique of [23] (see also [35,37])1 was
rediscovered by [15] for parameter estimation in discrete Markov models. The idea
has been extended to other discrete mixture models such as discrete hidden Markov
models (HMMs) and mixture models with a single active topic in each document
(see [6,29,39]). For such single topic models, the work in [6] demonstrates the gener-
ality of the eigenvector method and the irrelevance of the noise model for the obser-
vations, making it applicable to both discrete models like HMMs as well as certain
Gaussian mixture models (see also [28]).

Another set of related techniques is the body of algebraic methods used for the prob-
lem of blind source separation [14]. These approaches are tailored for independent
source separation with additive noise (usually Gaussian) [18]. Much of the literature
focuses on understanding the effects of measurement noise, which often requires more
sophisticated algebraic tools (typically, knowledge of noise statistics or the availability
of multiple views of the latent factors is not assumed). These ideas are also used by
[21,40] for learning a linear transformation (in a noiseless setting) and provides a dif-
ferent algorithm, based on a certain ascent algorithm (rather than joint diagonalization
approach, as in [14]), and a provably correct algorithm for the noisy case was only
recently obtained [9].

The models we consider, including LDA, are distinguished by the presence of
exchangeable (or multi-view) variables (e.g., multiple words in a document), drawn
independently conditioned on the same hidden state. This allows us to exploit ideas
from the aforementioned works [14,15,23]. In particular, we show that the topic mod-
eling problem exhibits a similarly simple algebraic solution as in previous works.
Furthermore, the exchangeability assumption permits us to have an arbitrary noise
model (rather than an additive Gaussian noise, which is not appropriate for multino-
mial and other discrete distributions). A key technical contribution is that we show
how the basic diagonalization approach can be adapted for Dirichlet models, through a
rather careful construction. This construction bridges the gap between mixture models
and independent latent factors models.

The multi-view approach has been exploited in previous works for semi-supervised
learning and for learning mixtures of well-separated distributions (e.g., [7,16,17,31]).
These previous works essentially use variants of canonical correlation analysis [27]
between the two views. This present work follows [6] in showing that having a third
view of the data permits rather simple estimation procedures for parameter recovery
without separation conditions.

1 The technique of [23] is actually attributed to Robert Jennrich.
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Fig. 1 Directed graphical
model representation of the
multi-view models

h

x1 x2 · · · x�

A preliminary version of this work [3,4] proposed a method based on using two
singular value decompositions—essentially a symmetrized version of the algorithm
from [6]. However, that method is not particularly robust, as it depends on randomiza-
tion to create separation between eigenvalues of a particular matrix. In this article, we
propose to use the robust orthogonal tensor decomposition method from [5], which is
more robust than the previous method and still computationally efficient.

2 The Multi-view Models

Let h = (h1, h2, . . . , hk) ∈ R
k be a random vector specifying the latent factors

(i.e., h is the hidden state) in a model, where hi is the value of the i th factor. Let
x1, x2, . . . , x� ∈ R

d be random vectors which we take to be observable. Throughout,
we assume � ≥ 3, and the reason will become clear in the sequel. The primary
modeling assumption is that the observable random vectors and latent factors satisfy the
following conditional independence and linearity condition; we assume this condition
holds the remainder of this paper.

Condition 1 [Multi-view model] The observations x1, x2, . . . , x� are conditionally
independent given h. Moreover, for each v ∈ [�] := {1, 2, . . . , �}, there exists a matrix
O(v) ∈ R

d×k such that

E[xv|h] = O(v)h.

The conditional independence assumption from Condition 1 is depicted in the directed
graphical model in Fig. 1. This model generalizes the multi-view model from [6] in that
h is not assumed to only take values in {e1, e2, . . . , ek}, where ei ∈ {0, 1}k is the i th
coordinate basis vector. We note that at this stage, we have not made any assumptions
on the noise model; it need not be additive nor even independent of h.2

We also assume throughout that the following rank condition on the matrices O(v)

from Condition 1.

Condition 2 (Rank condition) Each O(v) has full column rank.

Condition 2 allows for the identifiability of the columns of O(v) and was used in
previous works on parameter estimation [6,8,9,15,21,28,39,40].

As shown in [6] (for the case where h has support only on k points), the multi-view
model captures a number of interesting statistical models, including certain Gaussian

2 By additive noise, we mean a model in which xv = O(v)h + ηv where ηv is a zero-mean random vector
independent of h.
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mixture models and HMMs. In our setting, h is allowed to have a more general
distribution, thus enhancing the flexibility of the model. Our goal in this work is to
given estimators of the matrices O(v) (and possibly parameters related to the latent
factor h), solely from repeated observations (independent copies of x1, x2, . . . , x�).

We now consider two specializations of this multi-view model in which the different
views x1, x2, . . . , x� are naturally exchangeable. For these cases, the conditional
means of the different views are the same. That is, the following condition holds.

Condition 3 O(v) = O for all v ∈ [�].
In the context of topic models, the common matrix O is referred to as the topic matrix,
as it specifies parameters associated with each topic in the model. Borrowing this
terminology, we generally refer to all O(v) as topic matrices.

2.1 Independent Latent Factors Model

In the independent latent factors model, we assume h has a product distribution,
i.e., h1, h2, . . . , hk are independent. In the case where the xv are deterministic linear
functions of h, (i.e., xv = Oh), the model reduces to the noiseless ICA model of [30],
which was reinterpreted as a parallelepiped learning problem in [21,40].

Two important examples of this setting with noise are as follows.

Mixture of Gaussians Suppose xv = Oh + η, where η is zero-mean Gaussian noise
and h has a product distribution over {0, 1}k . Here, the i th column oi of O can be
considered to be the mean of the i th Gaussian component. This generalizes the classic
mixture of k Gaussians, as the model now permits any number of Gaussians to be
responsible for generating an observation (i.e., h is permitted to be any of the 2k

vectors on the hypercube, while in the classic mixture problem, only one component
is responsible). Alternatively, the model can be viewed as a classical mixture of 2k

Gaussians, where the mean of a component S ∈ 2[k] is
∑

i∈S oi and its mixing weight
is Pr(hi = 1∀i ∈ S) [9]. Note that η is allowed to be heteroskedastic (i.e., the noise
may depend on h), so the Gaussians need not have the same covariance.

Poisson topic model This is a model proposed by Canny [13]. Suppose [Oh] j specifies
the Poisson rate of counts for [xv] j . For example, xv could be a vector of word counts
in the vth sentence of a document. Here, O would be a matrix with positive entries,
and hi would scale the rate at which topic i generates words in a sentence (as specified
by the i th column of O). The linearity assumption in Condition 1 is satisfied as
E[xv|h] = Oh (note the noise is not additive in this case, in contrast to the mixture
of Gaussians example). Here, multiple topics may be responsible for generating the
words in each sentence. This model similar to LDA, except for the fact that here, h
has a product distribution (whereas in LDA, h is a probability vector).

2.2 The Dirichlet Model

Now suppose the hidden state h is a probability distribution itself, with a density
specified by the Dirichlet distribution with parameter vector α = (α1, α2, . . . , αk) ∈
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R
k
>0 (α is a strictly positive real vector); this assumption is written as h ∼ Dir(α). We

think of h ∈ �k−1 as a distribution over topics; here, �k−1 denotes the probability
simplex of distributions over k outcomes. The density of h, the Dirichlet density, is

pα(h) = 1

Z(α)

k∏

i=1

hαi −1
i

where Z(α) :=
∏k

i=1 Γ (αi )

Γ (α0)
and α0 := α1 + α2 + · · · + αk . Intuitively, α0 (the sum of

the “pseudo-counts”) characterizes the concentration of the distribution. As α0 → 0,
the distribution degenerates to one over pure topics (i.e., the limiting density is one in
which, almost surely, exactly one coordinate of h is 1, and the rest are 0).

If the xv are deterministic linear functions of h (i.e., xv = Oh), then the model can
be viewed as the problem of learning a certain class of distributions over a simplex
with vertices o1, o2, . . . , ok . The special case of a uniform distribution over a simplex
(a problem suggested in [21]) is obtained when α = (1, 1, . . . , 1).

Latent Dirichlet Allocation LDA makes the further assumption that each random vec-
tor x1, x2, . . . , x� takes on discrete values out of d outcomes (e.g., xv represents what
the vth word in a document is, so d represents the number of words in a vocabulary).
The i th column oi of O is a probability vector representing the distribution over words
for the i th topic. The sampling process for a document is as follows. First, the topic
mixture h is drawn from the Dirichlet distribution. Then, the vth word in the docu-
ment (for v ∈ [�] := {1, 2, . . . , �}) is generated by: (i) drawing t ∈ [k] according to
the discrete distribution specified by h, then (ii) drawing xv according to the discrete
distribution specified by ot . Note that xv is independent of h given t . For this model
to fit in our setting, we use the “one-hot” encoding for xv (also used by [6] in this
context): xv ∈ {0, 1}d with

[xv] j = 1 ⇔ the vth word in the document is the j th vocabulary word.

Observe that

E[xv|h] =
k∑

i=1

Pr[t = i |h] · E[xv|t = i, h] =
k∑

i=1

hi · oi = Oh

as required in Condition 1. Again, note that the noise model is not additive.

3 Moment Structure in Multi-view Models

In this section, we describe the structure of moments for the multi-view models, focus-
ing primarily on the exchangeable models (the independent latent factors model and
the Dirichlet model). Recall that for these exchangeable models, we assume O(v) = O
for all v ∈ [�] (Condition 3). In all cases, the pth-order (not necessarily raw) moments
are of the form
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k∑

i=1

ci,p oi ⊗ oi ⊗ · · · ⊗ oi︸ ︷︷ ︸
p times

,

where c1,p, c2,p, . . . , ck,p ∈ R are scalars possibly depending on p. This is known as a
symmetric canonical polyadic decomposition [24,25,34] (or a Tucker decomposition
with a diagonal core tensor [44]). We show that if the ci,p are non-zero, then the oi (up
to some scaling and permutation) can be extracted from these moments using simple
algebraic techniques such as that from [23]. We also give a reduction from the general
multi-view setting to the exchangeable setting.

3.1 Moments of Skewed and Kurtotic Independent Factors

Let mi,p := E[(hi − E[hi ])p] denote the pth central moment of hi . The variance,
skewness, and kurtosis of hi are given by σ 2

i := mi,2, γi := mi,3/σ
3
i , and κi :=

mi,4/σ
4
i − 3, respectively.

Define the following moments of the observable random vectors:

μ := E[x1] ∈ R
d ,

Pairs := E[(x1 − μ) ⊗ (x2 − μ)] ∈ R
d×d ,

Triples := E[(x1 − μ) ⊗ (x2 − μ) ⊗ (x3 − μ)] ∈ R
d×d×d .

(1)

Here, we use ⊗ to denote the tensor product. For instance, given vectors u, v,w ∈ R
d ,

the tensor product u ⊗ v ⊗ w ∈ R
d×d×d is the third-order tensor whose (i, j, k)th

entry is uiv jwk .

Lemma 1 (Independent latent factors moments) Assume Conditions 1 and 3 and that
h has a product distribution. Then

μ =
k∑

i=1

mi,1oi , Pairs =
k∑

i=1

mi,2oi ⊗ oi , Triples =
k∑

i=1

mi,3oi ⊗ oi ⊗ oi .

Proof Since E[xv|h] = Oh (by Conditions 1 and 3) we have

μ = OE[h] =
k∑

i=1

mi,1oi .

This also implies

E[(xv − μ)|h] = O(h − E[h]) =
k∑

i=1

(hi − E[hi ])oi .
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Since x1 − μ and x2 − μ are conditionally independent given h (under Condition 1),
we may write Pairs as the expectation of a tensor product:

Pairs = E

[( k∑

i=1

(hi − E[hi ])oi

)

⊗
( k∑

i=1

(hi − E[hi ])oi

)]

.

Expanding out the tensor product and applying linearity leaves only the diagonal terms
with E[(hi − E[hi ])2]. This is because h has a product distribution by assumption,
and thus E[(hi − E[hi ])(h j − E[h j ])] = 0 for i 
= j . With only the diagonal terms in
the product remaining, we have

Pairs =
k∑

i=1

E[(hi − E[hi ])2]oi ⊗ oi =
k∑

i=1

mi,2oi ⊗ oi .

An analogous argument gives the claim for Triples. ��

Lemma 1 shows that μ, Pairs, and Triples possess the structure needed to apply the
tensor decomposition technique of [5] to extract the oi . However, this is only possible if
the scalar factors are non-zero; in Lemma 1, the scalar factors are the central moments
mi,p. If h has a distribution symmetric about its mean, the third central moment is
zero, and hence Triples cannot be used. One recourse comes from the literature on
independent component analysis; if the distribution of h is kurtotic (i.e., κi 
= 0), then
one may use fourth-order moments in the form of the fourth cumulant tensor [14]. In
the next lemma, we show that this can also be applied with multi-view/exchangeable
models.

Define

Quadruples := E
[
(x1 − μ) ⊗ (x2 − μ) ⊗ (x3 − μ) ⊗ (x4 − μ)

] − T (2)

where T ∈ R
d×d×d×d is the fourth-order tensor whose (i, j, m, n)th entry is

Ti, j,m,n = [Pairs]i, j [Pairs]m,n + [Pairs]i,m[Pairs] j,n + [Pairs]i,n[Pairs] j,m .

Lemma 2 (Independent latent factors moments, fourth-order) Under the same setting
as Lemma 1,

Quadruples =
k∑

i=1

(mi,4 − 3m2
i,2)oi ⊗ oi ⊗ oi ⊗ oi .

Proof By the same argument as in Lemma 1, we have that

E
[
(x1 − μ) ⊗ (x2 − μ) ⊗ (x3 − μ) ⊗ (x4 − μ)

] = E[v ⊗ v ⊗ v ⊗ v]
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where

v :=
k∑

i=1

(hi − E[hi ])oi .

Expanding the tensor product and applying linearity of expectation leaves only terms
involving E[(hi −E[hi ])4] and E[(hi −E[hi ])2(h j −E[h j ])2], again due to the product
distribution of h. Thus

E[v ⊗ v ⊗ v ⊗ v]

=
k∑

i=1

mi,4oi ⊗ oi ⊗ oi ⊗ oi

+
∑

i 
= j

mi,2m j,2
(
oi ⊗ oi ⊗ o j ⊗ o j + oi ⊗ o j ⊗ oi ⊗ o j + oi ⊗ o j ⊗ o j ⊗ oi

)

=
k∑

i=1

(mi,4 − 3m2
i,2)oi ⊗ oi ⊗ oi ⊗ oi

+
∑

i, j

mi,2m j,2
(
oi ⊗ oi ⊗ o j ⊗ o j + oi ⊗ o j ⊗ oi ⊗ o j + oi ⊗ o j ⊗ o j ⊗ oi

)

=
k∑

i=1

(mi,4 − m2
i,2)oi ⊗ oi ⊗ oi ⊗ oi + T

where the step uses the identity for Pairs from Lemma 1. Rearranging the terms gives
the desired identity. ��

We note that if h is an isotropic Gaussian random vector, then both mi,3 and mi,4 −
3m2

i,2 are zero for all i ∈ [k], causing both Triples and Quadruples to vanish. As
expected, these higher-order moments cannot help with the identification of O without
further assumptions: this is simply because g := Uh has the same distribution as h
when U is orthogonal, and E[xv|h] = Oh = (OU)g.

3.2 Moments of Dirichlet Factors

The Dirichlet distribution is not a product distribution, and therefore Lemma 1 does not
apply to models where h ∼ Dir(α). However, it is nearly a product distribution. Indeed,
if h ∼ Dir(α), then h has the same distribution x/

∑k
i=1 xi , where xi ∼ Gamma(αi , 1)

(i.e., xi follows a Gamma distribution with shape parameter αi and scale parameter
1), and x1, x2, . . . , xk are independent. Thus, the essential reason why the Dirichlet
distribution is not a product distribution is because it is restricted to the probability
simplex.

Lemma 3 (below) nevertheless shows that if the concentration parameter α0 is
known, the correlations introduced by restricting to the probability simplex can be
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accounted for by slightly tweaking the moments; this tweaking causes the same kind
of structure as in Lemma 1 to manifest.

Define the following moments of the observable random vectors:

μ := E[x1] ∈ R
d ,

Pairsα0 := E[x1 ⊗ x2] − α0

α0 + 1
μ ⊗ μ ∈ R

d×d ,

Triplesα0
:= E[x1 ⊗ x2 ⊗ x3]

− α0

α0 + 2

(
E[x1 ⊗ x2 ⊗ μ] + E[x1 ⊗ μ ⊗ x3] + E[μ ⊗ x2 ⊗ x3]

)

+ 2α2
0

(α0 + 2)(α0 + 1)
μ ⊗ μ ⊗ μ ∈ R

d×d×d . (3)

Lemma 3 (Dirichlet factors moments) Assume Conditions 1 and 3 and that h ∼
Dir(α). Then

μ =
k∑

i=1

αi

α0
oi , Pairsα0 =

k∑

i=1

αi

(α0 + 1)α0
oi ⊗ oi ,

Triplesα0
=

k∑

i=1

2αi

(α0 + 2)(α0 + 1)α0
oi ⊗ oi ⊗ oi .

Proof We directly calculate univariate, bivariate, and trivariate moments of h: for any
distinct i, j, l ∈ [k],

E[hi ] = αi

α0
, E[h2

i ] = (αi + 1)αi

(α0 + 1)α0
, E[h3

i ] = (αi + 2)(αi + 1)αi

(α0 + 2)(α0 + 1)α0
,

E[hi h j ] = αiα j

(α0 + 1)α0
, E[h2

i h j ] = (αi + 1)αiα j

(α0 + 2)(α0 + 1)α0
,

E[hi h j hl ] = αiα jαl

(α0 + 2)(α0 + 1)α0
.

Putting these in vector, matrix, and third-order tensor form,

E[h] = 1

α0

k∑

i=1

αi ei

E[h ⊗ h] = 1

(α0 + 1)α0

( k∑

i=1

αi ei ⊗ ei + α ⊗ α

)

E[h ⊗ h ⊗ h] = 1

(α0 + 2)(α0 + 1)α0

(

2
k∑

i=1

αi
(
ei ⊗ ei ⊗ ei

)
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+
k∑

i=1

αi
(
ei ⊗ ei ⊗ α

) +
k∑

i=1

αi
(
α ⊗ ei ⊗ ei

)

+
k∑

i=1

αi
(
ei ⊗ α ⊗ ei

) + α ⊗ α ⊗ α

)

.

Since E[xv|h] = Oh by Conditions 1 and 3 (as in the proof of Lemma 1), and
because the xv are conditionally independent given h, the claim follows by linearity
and rearranging. ��

3.3 Identifiability from Low-order Moments

We now provide a simple argument that establishes the identifiability of the columns
of the topic matrix O (up to scaling and permutation) from the low-order moments
considered in Lemmas 1, 2, and 3. Here, Condition 2 plays an essential role, as does
the non-Gaussianity of h in the case of the independent latent factors model.

Theorem 2 (Identifiability from low-order moments) Assume Conditions 1, 2, and
3 hold.

1. If h has a product distribution and each hi has positive variance σ 2
i and non-

zero skew γi , then there is a randomized algorithm that, given Pairs and Triples
from (1), returns the set of vectors returns {(siσi oi , siγi ) : i ∈ [k]} for some
{s1, s2, . . . , sk} ⊆ {±1}.

2. If h has a product distribution and each hi has positive variance σ 2
i and non-zero

kurtosis κi , then there is a randomized algorithm that, given Pairs and Quadruples
from (1) and (2), returns {(siσi oi , siκi ) : i ∈ [k]} for some {s1, s2, . . . , sk} ⊆ {±1}.

3. If h ∼ Dir(α) for some α ∈ R
k
>0, then there is a randomized algorithm that,

given Pairsα0 and Triplesα0
from (3), returns {(si

√
ci,2oi , si ci,3/c3/2

i,2 ) : i ∈ [k]}
for some {s1, s2, . . . , sk} ⊆ {±1}, where ci,2 = αi/((α0 + 1)α0) and ci,3 =
2αi/((α0 + 2)(α0 + 1)α0).

Proof The theorem follows from the structural results from Lemma 1, Lemma 2, and
Lemma 3, combined with Lemma 4 (below). ��

Lemma 4 is a variant of a result from [23], which establishes the uniqueness of
(symmetric) canonical polyadic decompositions under a rank condition. Our variant
uses a symmetrized version of procedure from [23], and is proved using the following
observations. First, if the second-order moment matrix (called P in Lemma 4) has
rank k, then it defines an inner product system under which the oi are orthogonal.
Moreover, under this inner product, the oi are orthogonal eigenvectors of a generic
flattening of higher-order moment tensors (T or Q in Lemma 4).

Below, for a vector v = (v1, v2, . . . , vd) ∈ R
d , let T {v} ∈ R

d×d denote the matrix
whose (i, j)th entry is

∑d
l=1 vl [T ]i, j,l .

Lemma 4 Let O := [o1|o2| · · · |ok] ∈ R
d×k, P := ∑k

i=1 ci,2oi ⊗ oi ∈ R
d×d , T :=

∑k
i=1 ci,3oi ⊗ oi ⊗ oi ∈ R

d×d×d , and Q := ∑k
i=1 ci,4oi ⊗ oi ⊗ oi ⊗ oi ∈ R

d×d×d×d .
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Algorithm 1 Identification from exact moments
input positive integer k ∈ N, P ∈ R

d×d and T ∈ R
d×d×d satisfying conditions in Lemma 4.

output {(vi , λi ) : i ∈ [k]}.
1: Let

∑k
i=1 ηi ζ i ⊗ζ i be an eigendecomposition of P , where {ζ i : i ∈ [k]} are orthonormal eigenvectors,

and {ηi : i ∈ [k]} are corresponding positive eigenvalues.
2: Set W := [ζ 1|ζ 2| · · · |ζ k ]diag(1/

√
η1, 1/

√
η2, . . . , 1/

√
ηk ).

3: Draw θ uniformly at random from the unit sphere in R
k .

4: Let
∑k

i=1 δi ξ i ⊗ ξ i be an eigendecomposition of WT {Wθ}W , where {θ i : i ∈ [k]} are orthonormal
eigenvectors, and {δi : i ∈ [k]} are corresponding non-zero eigenvalues.

5: Let vi := (W)†ξ i and λi := (Wξ i )
T {Wξ i }Wξ i for each i ∈ [k].

Assume that O has full column rank and that ci,2 > 0 for all i ∈ [k]. If ci,3 
= 0 for
all i ∈ [k], then there is a randomized algorithm that, given P and T as input, returns
{(si c

1/2
i,2 oi , si ci,3/c3/2

i,2 ) : i ∈ [k]} for some {s1, s2, . . . , sk} ⊆ {±1}. If ci,4 
= 0 for all

i ∈ [k], then the same holds with Q in place of T and ci,4/c2
i,2 in place of ci,3/c3/2

i,2 .

Proof Under the assumptions on O and the ci,2, the matrix P is positive definite. By
rescaling the columns of O (replacing oi by

√
ci,2oi )), we may assume that ci,2 = 1

for all i ∈ [k]. Therefore there exists a matrix W ∈ R
d×k , which can be obtained from

the singular value decomposition of P , such that W PW = (W O)(W O) = Ik .
This in turn implies that M := W O is orthogonal. Then, for any vector θ ∈ R

k ,

WT (Wθ)W = W Odiag(diag(c1,3, c2,3, . . . , ck,3)OWθ)OW

= Mdiag(diag(c1,3, c2,3, . . . , ck,3)Mθ)M.

Since M is orthogonal, the above displayed equation gives an eigendecomposition of
WT {Wθ}W , and the set of eigenvectors corresponding to non-repeated eigenvalues
are uniquely defined up to sign. Each such unit-norm eigenvector ξ i (after appropriate
reordering) is of the form si Mei = si Woi for some si ∈ {±1}. Therefore vi :=
(W†)ξ i = si W(WW)−1Woi = si oi , since range(W) = range(O). Finally,

λi := (Wξ i )
T {Wξ i }Wξ i =

k∑

j=1

c j,3(si o

j W Woi )

3

= si

k∑

j=1

c j,3(e
j OW W Oei )

3 = si ci,3.

Assume that ci,3 
= 0 for all i ∈ [k]. If θ is drawn uniformly at ran-
dom from S

k−1, then so is Mθ . In this case, almost surely, the entries of
diag(diag(c1,3, c2,3, . . . , ck,3)Mθ) are unique. Hence, no eigenvalue of
WT {Wθ}W is repeated, so the set {(vi , λi ) : i ∈ [k]} has the property claimed
by the lemma and is returned by Algorithm 1.

An analogous argument proves the claim assuming ci,4 
= 0 for all i ∈ [k] using
Q in place of T . ��
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The critical aspect in Theorem 2 is that only low-order observable moments are
needed to identify the columns of O. The observability implies that they can be
estimated from data, and used in a plug-in estimator. The low-order nature of the
moments mean that they can be estimated reliably (relative to higher-order moments).

From Theorem 2, we may also conclude that since μ, Pairsα0 , and Triplesα0
involve

only x1, x2, and x3, a random document under the LDA model need only have three
words (conditionally independent given h). This is the same conclusion as in the
mixture of multinomial model for documents studied in [6], even though in that model,
the words in documents were assumed to only be generated from a single topic.

It is worth noting that Pairsα0 and Triplesα0
depend on the value α0 = ∑k

i=1 αi ,
so it must be known in order to form the appropriate moment estimates. In some
applications, one may have prior knowledge of α0, as it characterizes the concentration
of the Dirichlet distribution (and, indeed, having prior knowledge of α0 is indeed
much weaker than knowing the entire parameter vector α). The particular case where
α = (1, 1, . . . , 1) is essentially the problem of learning the vertices of a simplex when
given access to (noisy) samples drawn from the uniform distribution over this simplex;
therefore our result resolves this open problem posed by [21].

In the case of the independent latent factors model, the third- and fourth-order
moments are exploited to take advantage of the non-Gaussianity of h (which is not
possible with only first- and second-order moments, without further assumptions).

3.4 Reducing the General Multi-view Setting to the Exchangeable Setting

To conclude this section, we show how to reduce the general multi-view setting (where
the different O(v) are not necessarily the same) to the case where the O(v) = O for all
v ∈ [�]. Here, we must assume that the number of views is at least three (i.e., � ≥ 3, just
as in the independent latent factors and Dirichlet models, since Triples, Quadruples,
and Triplesα0

all depend on at least x1, x2, and x3). This reduction is based on a proof
technique used in [2].

Define Pairsu,v := E[xu ⊗ xv] for u, v ∈ [�]. Fix any v0 ∈ [�], which we call the
target view. Then, for each v ∈ [�]\{v0}, pick any u = u(v) ∈ [�]\{v, v0} (which is
possible since � ≥ 3) and define

Cv→v0 := Pairsv0,uPairs†
v,u, Cv0→v := Pairsv,uPairs†

v0,u .

Proposition 1 (View symmetrization) Assume Conditions 1 and 2 hold, and also
that E[h ⊗ h] is invertible. Fix a target view v0 ∈ [�], and let Õ := O(v0). Let
Cv0→v0 := Id , and for each view v ∈ [�], let x̃v := Cv→v0 xv where Cv→v0 is
defined above for v 
= v0. For each v ∈ [�],

E[x̃v|h] = Õh, O(v) = Cv0→v Õ.

Proof Assume without loss of generality that v0 := 1, v := 2, and u = u(v) := 3
(in the definition of C2→1). By Condition 1, Pairs1,3 = O(1)

E[h ⊗ h]O(3)
and Pairs2,3 = O(2)

E[h ⊗ h]O(3). By Condition 2 and the assumption that
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E[h ⊗ h] is invertible, both Pairs1,3 and Pairs2,3 have rank k. Moreover, Pairs†
2,3 =

(O(3))†
E[h ⊗ h]−1 O(2)†, so

C2→1 =
(

O(1)
E[h ⊗ h]O(3))(

(O(3))†
E[h ⊗ h]−1 O(2)†

)
= O(1) O(2)†.

Since O(2) has full column rank (by Condition 2),

E[x̃2|h] = C2→1E[x2|h] = O(1) O(2)† O(2)h = O(1)h = Õh.

By the same argument, C1→2 = O(2) O(1)† = O(2) Õ
†
; therefore C1→2 Õ =

O(2) Õ
†

Õ = O(2) since Õ has full column rank. ��

4 Estimation from Moments via Orthogonal Tensor Decomposition

In addition to establishing identifiability, Theorem 2 provides an efficient randomized
algorithm for recovering the columns of O up to permutation and scaling, and it indeed
can be shown to work using only estimates of the required moments using techniques
similar to [6,39]. However, the resulting sample complexity is rather high (i.e., a high-
degree polynomial) on account of the randomization technique used to ensure the
uniqueness of an eigendecomposition. Indeed, the randomization collapses moment
tensors into matrices, but the resulting spacing between eigenvalues is small; hence,
such procedures may not be very robust to errors in the moment estimates. It turns
out this is only an artifact of the algorithmic technique, as a different technique based
on orthogonal tensor decomposition has both a better analysis and better empirical
support. In this section, we recall the tensor decomposition technique from [5] and
show how it can be applied to the estimation problem for the multi-view models
considered in this work.

4.1 Multi-way Arrays, Multi-linear Forms, and Tensor Algebras

Recall that low-order moments from Sect. 3 have the form
∑k

i=1 ci,po⊗p
i , where

v⊗p := v ⊗ v ⊗ · · · ⊗ v denotes the p-fold tensor product of a vector v with itself.
We assume that

P :=
k∑

i=1

ci,2o⊗2
i and T :=

k∑

i=1

ci,po⊗p
i

for some p ≥ 3 are given, with ci,2 > 0 and ci,p > 0 for all i ∈ [k], and
{o1, o2, . . . , ok} ⊂ R

d linearly independent. We note that it is also possible to handle
the case where ci,2 < 0 and ci,p < 0 for some i ∈ [k] (using techniques from [46]),
though we avoid here this case for simplicity. In our examples, we will specialize to
the p = 3 case.
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From the second-order moment matrix P , as discussed in the proof of Lemma 4, we
may extract a so-called whitening matrix W ∈ R

d×k using the singular value decom-
position of P such that W PW = Ik . Put another way, P defines a k-dimensional
inner product subspace of R

d in which B := {√c1,2o1,
√

c2,2o2, . . . ,
√

ck,2ok} are
orthonormal. To see this, we define the inner product by

〈u, v〉 := u P†v

Since the oi are linearly independent and ci,2 > 0,

P† = (O)†diag(c1,2, c2,2, . . . , ck,2)
−1 O†,

where O† O = Ik . This implies that

〈√ci,2oi ,
√

c j,2o j 〉 =
{

0 if i 
= j

1 if i = j

as claimed.
The pth-order tensor T can be viewed in a number of different ways. The first is

as a p-way array of real numbers Ti1,i2,...,i p for i1, i2, . . . , i p ∈ [d]. The second is as
a p-linear form T : R

d × R
d × · · · × R

d → R (generalizing the bilinear form view
of a matrix): for any u = (u1, u2, . . . , ud) ∈ R

d , v = (v1, v2, . . . , vd) ∈ R
d , and

w = (w1, w2, . . . , wd) ∈ R
d ,

T (u, v,w) =
∑

i, j,l

Ti, j,luiv jwl ,

which connects the p-way array with the p-linear form. We will generally denote,
for U = [u1|u2| · · · |ud ] ∈ R

m1×d , V = [v1|v2| · · · |vd ] ∈ R
m2×d , and W =

[w1|w2| · · · |wd ] ∈ R
m3×d , the tensor T (U, V , W) ∈ R

m1×m2×m3 given by

T (U, V , W) =
∑

i, j,l

Ti, j,l ui ⊗ v j ⊗ wl .

(Note that the notation “T {v}” from Lemma 4 can be written as T (Id , Id , v).)
The third view of T is as a member of (Rd)⊗p, the pth-order tensor product of

R
d . In this view, we may pick a basis for this vector space, and represent T in that

basis. A natural choice is derived from the standard coordinate basis for R
d , giving

{ei ⊗ e j ⊗ el : i, j, l ∈ [d]}. In this basis, we identify the p-way array as a tensor
algebra element:

T =
∑

i, j,l

Ti, j,l ei ⊗ e j ⊗ el .

Alternatively, if B′ := {√c1,2o1,
√

c2,2o2, . . .
√

cd,2od} is a completion of B from
above, we may derive a different basis {u ⊗ v ⊗ w : u, v,w ∈ B′} for (Rd)⊗p, under
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which T has the following diagonal representation:

T =
k∑

i=1

ci,3

c3/2
i,2

(
√

ci,2oi ) ⊗ (
√

ci,2oi ) ⊗ (
√

ci,2oi ).

Note that T as a p-linear form can be expressed in terms of the standard inner product
uv = ∑d

i=1 uivi giving

T (u, v,w) =
∑

i, j,l

Ti, j,l(e
i u)(e

j v)(e
l w).

The proposed orthogonal tensor decomposition algorithm from [5] exploits the p-
linear form based on the inner product 〈·, ·〉, as it exploits the orthogonality of the√

ci,2oi :

T (P†u, P†v, P†w) =
∑

i, j,l

Ti, j,l〈ei , u〉〈e j , v〉〈el ,w〉

=
k∑

i=1

ci,3

c3/2
i,2

〈√ci,2oi , u〉〈√ci,2oi , v〉〈√ci,2oi ,w〉

Indeed, it is shown that the map

v �→ T (Id , P†v, P†v)
√

〈T (Id , P†v, P†v), T (Id , P†v, P†v)〉
(4)

has non-zero stable fixed points only at
√

ci,2oi for i ∈ [k]. Moreover, repeated
application of the above map starting from a random v ∈ range(P) ∩ {u ∈ R

d :
‖u‖2 = 1} converges at a quadratic rate to one of the

√
ci,2oi (Lemma 5.1 from [5]).

Finally, it is easy to check that T (P†√ci,2oi , P†√ci,2oi , P†√ci,2oi ) = ci,3/c3/2
i,2 .

4.2 Efficient Estimation Algorithm

In an actual implementation, we must estimate the moment matrices and tensors P and
T from data. Let S := {(x( j)

1 , x( j)
2 , . . . , x( j)

� ) : j ∈ [n]} be an i.i.d. sample comprised
of n independent copies of (x1, x2, . . . , x�). We may form estimates, P̂ and T̂ , of P
and T , respectively, using empirical averages with respect to S. For instance, in LDA,
we may we let

μ̂ := 1

n

n∑

j=1

x( j)
1 ,

P̂airsα0 := 1

n

n∑

j=1

x( j)
1 ⊗ x( j)

2 − α0

α0 + 1
μ̂ ⊗ μ̂,
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T̂riplesα0
:= 1

n

n∑

j=1

(

x( j)
1 ⊗ x( j)

2 ⊗ x( j)
3

− α0

α0 + 2

(
x( j)

1 ⊗ x( j)
2 ⊗ μ̂ + x( j)

1 ⊗ μ̂ ⊗ x( j)
3 + μ̂ ⊗ x( j)

2 ⊗ x( j)
3

))

+ 2α2
0

(α0 + 2)(α0 + 1)
μ̂ ⊗ μ̂ ⊗ μ̂,

and set P̂ := P̂airsα0 and T̂ := T̂riplesα0
. Note that we may also ensure that P̂ and T̂

are symmetric (so [T ]i, j,l = [T ]i,l, j = [T ] j,i,l etc.). This gives consistent estimates
of P and T .

Using P̂ and T̂ , we propose a plug-in approach to estimation for O, given as
Algorithm 2 (Lines 5–13 make up the robust tensor power method of [5]). This is
essentially a robust version of the iteration given by (4) which finds an approximate
orthogonal tensor decomposition of T given the nearby estimate T̂ . The algorithm
from [5] is applied to the tensor T̂ (Ŵ , Ŵ , Ŵ), and the outputs v̂i and λ̂i should be
interpreted as estimates of the

√
c j,2o j and c j,3/c3/2

j,2 for some j ∈ [k].

4.3 Analysis of Algorithm 2

In this section, we give a simple error analysis for Algorithm 2. Let σ1 ≥ σ2 ≥
· · · σk > 0 be the non-zero singular values of P . Also, let λi := ci,3/c3/2

i,2 , ordered so
that λ1 ≥ λ2 ≥ · · · ≥ λk > 0. We define the operator norm of a symmetric third-order
tensor E ∈ R

m×m×m by

‖E‖2 := max‖v‖2=1
|E(v, v, v)|.

Define εP := ‖ P̂ − P‖2/σk and εT := ‖T̂ − T‖2. The error bound is given in terms
of εP and εT .

Theorem 3 (Error analysis of Algorithm 2) There exist universal constants
C, C ′, c, c′ > 0 such that the following holds. Pick any δ ∈ (0, 1). If

εP ≤ c · λk/λ1

k
, εT ≤ c′ · λkσ

3/2
k

k
,

N ≥ C

(

log(k) + log

(

log
(λ1σ

3/2
k

εT
+ 1

εP

)))

,

L ≥ poly(k) log(1/δ)

(for some fixed polynomial poly(k) specified in Theorem 5.1 of [5]), then with proba-
bility at least 1−δ, Algorithm 2 returns {(v̂i , λi ) : i ∈ [k]} satisfying, after appropriate
reordering,
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Algorithm 2 Plug-in estimator based on orthogonal tensor decomposition

input positive integer k ∈ N, symmetric matrix P̂ ∈ R
d×d , symmetric tensor T̂ ∈ R

d×d×d , number of
iterations L and N .

output {(v̂i , λ̂i ) : i ∈ [k]}.
1: Compute eigendecomposition of P̂ , let η1 ≥ η2 ≥ · · · ≥ ηk be the top k eigenvalues, and let

ζ 1, ζ 2, . . . , ζ k ∈ R
d be the corresponding orthonormal eigenvectors.

(Halt and signal failure if ηk ≤ 0.)
2: Set Ŵ := [ζ 1|ζ 2| · · · |ζ k ]diag(1/

√
η1, 1/

√
η2, . . . , 1/

√
ηk ).

(Ŵ Ŵ is the pseudoinverse of a rank-k approximation to P̂ .)
3: Initialize T̃ := T̂ .
4: for i = 1 to k do
5: for τ = 1 to L do
6: Draw θ

(τ )
0 uniformly at random from the unit sphere in R

k .
7: for t = 1 to N do
8: Compute power iteration update:

u := T̃ (Ŵ , Ŵθ
(τ)
t−1, Ŵθ

(τ)
t−1), θ

(τ )
t := u

‖u‖2
. (�)

9: end for
10: end for
11: Let

τ∗ := arg max
τ∈[L] T̃ (Ŵθ

(τ )
N , Ŵθ

(τ )
N , Ŵθ

(τ )
N )

and execute N more power iteration updates (�) starting from θ
(τ∗)
N to obtain θ̂ i .

12: Let

v̂i := (Ŵ
)†θ̂ i , λ̂i := T̃ (Ŵ θ̂ i , Ŵ θ̂ i , Ŵ θ̂ i ).

13: Deflate T̃ : set T̃ := T̃ − λ̂i v̂i ⊗ v̂i ⊗ v̂i .
14: end for

‖v̂i − oi‖2 ≤ C ′ ·
(

1

λi
· 1

σ 2
k

· εT +
(λ1

λi
· 1√

σk
+ 1

)
· εP

)

,

|λ̂i − λi | ≤ C ′ ·
(

1

σ
3/2
k

· εT + λ1εP

)

for all i ∈ [k].

Proof We assume without loss of generality that ci,2 = 1 for all i ∈ [k], so P = O O,
and λi = ci,3 for all i ∈ [k]. By Lemma 8 from [28], if Π̂ is the orthogonal projection
to span{ζ 1, ζ 2, . . . , ζ k} (w.r.t. the standard inner product), and Π is the orthogonal
projection to range(O) (again w.r.t. the standard inner product), then

‖(Id − Π̂)Π‖2 ≤ 1.5εP . (5)

Note that (Ŵ

)† = [ζ 1|ζ 2| · · · |ζ k]diag(

√
η1,

√
η2, . . . ,

√
ηk) and therefore Π̂ =

(Ŵ

)†Ŵ


.
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Let W := Ŵ(Ŵ


PŴ)†1/2. By Lemma 9 and Lemma 11 from [28],

‖Ŵ‖2 ≤ 1√
(1 − εP )σk

, (6)

‖(Ŵ − W) O‖2 ≤ √
1 + 1.5εP 1.5εP , (7)

‖T̂ (Ŵ , Ŵ , Ŵ) − T (W , W , W)‖2 ≤ 2

σ
3/2
k

· εT + 6λ1 · εP=:ε. (8)

Note that

T (W , W , W) =
k∑

i=1

λi (Woi ) ⊗ (Woi ) ⊗ (Woi )

where {Woi : i ∈ [k]} are orthonormal. Using (8), Theorem 5.1 from [5]
implies the following: if ε ≤ C1λk/k, N ≥ C2(log(k) + log log(λ1/ε)), and
L ≥ poly(k) log(1/δ), then with probability at least 1 − δ, the robust tensor power
method returns θ̂ i and λ̂i satisfying (after appropriate reordering)

‖θ̂ i − Woi‖2 ≤ 8ε

λi
, |λ̂i − λi | ≤ 5ε. (9)

Therefore,

‖v̂i − oi‖2 =
∥
∥
∥
(
(Ŵ


)†θ̂ i − (Ŵ


)†Woi

)

+ (
(Ŵ


)†Woi − (Ŵ


)†Ŵ


oi

) + (
(Ŵ


)†Ŵ


oi − oi

)∥∥
∥

2

≤ ∥
∥(Ŵ


)†θ̂ i − (Ŵ


)†Woi

∥
∥

2

+ ∥
∥(Ŵ


)†Woi − (Ŵ


)†Ŵ


oi

∥
∥

2 + ∥
∥(Ŵ


)†Ŵ


oi − oi

∥
∥

2

≤ ‖(Ŵ

)†‖2

(

‖θ̂ i − Woi‖2 + ‖(Ŵ − W) O‖2

)

+ ‖(Π̂ − Id)Πoi‖2

≤ 1√
(1 − εP )σk

(
8ε

λi
+ √

1 + 1.5εP 1.5εP

)

+ 1.5εP

using (5), (6), (9), and (7). ��

We remark that Theorem 3 immediately implies estimation consistency under
appropriate assumptions on the σi and λi , and it is straightforward to obtain finite
sample guarantees using concentration arguments to bound ‖ P̂ − P‖2 and ‖T̂ − T‖2.
We leave this as an exercise for the reader.
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