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Spoilers

Springer Series in Statistics

"A model with zero training error is —
overfit to the training data and will Rt el =n
typically generalize poorly."

— Hastie, Tibshira ni, & Friedma n, Data Mining, Inference, and Prediction
The Elements of Statistical Learning

We'll give empirical and theoretical evidence
against this conventional wisdom, at least in
some "modern" settings of machine learning.
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Empirical evidence that counter the conventional wisdom
Interpolation via local prediction
Interpolation via neural nets and linear models
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Brief remark about adversarial examples



Supervised learning
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Standard approach to supervised learning

* Choose (parameterized) function class F c Y+
* E.g., linear functions, polynomials, neural networks with certain architecture

e Use optimization algorithm to (attempt to) minimize empirical risk

. 1%
R(f) = ﬁz 2(f (%), ;)

(a.k.a. training error).

* But how "big" or "complex” should this function class be?
(Degree of polynomial, size of neural network architecture, ...)



Overfitting

A\
True risk

Empirical risk
r o

Model capacity



Deep learning practice

* Ruslan Salakhutdinov (Foundations of Machine Learning Boot Camp
@ Simons Institute, January 2017)

e (Paraphrased) "First, choose a network architecture large enough such that it
is easy to overfit your training data. [...] Then, add regularization."

' START HERE???

Model capacity



(Zhang, Bengio, Hardt, Recht, & Vinyals, 2017;

Empirical observations selin Mo, & viandal, 2015)
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More empirical observations e, 1, ma, manda, uasiol

But: Not every interpolating model is equally good!
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Interpolation in machine learning

e Supervised learning: use training examples to find function that
predicts accurately on new example

* Interpolation: find function that perfectly fits training examples

* PAC Iearning (Valiant, 1984; Blumer, Ehrenfeucht, Haussler, & Warmuth, 1987; ...)
* realizable, noise-free setting with bounded-capacity hypothesis class

* Regression models (whittaker, 1915; Shannon, 1949; ...)
* noise-free data with "simple" models (e.g., linear models with n = p)

Far from what we are observing in practice...
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Our goals

* Counter the "conventional wisdom" re: interpolation
Show interpolation methods can be consistent (or almost consistent)
for classification & regression
e Simplicial interpolation
* Weighted & interpolated nearest neighbor
* Neural nets / linear models

* |dentify useful properties of good interpolation methods



Interpolation via local prediction



Even more empirical observations

(Wyner, Olson, Bleich, & Mease, 2017)

AdaBoost + large decision trees / Random forests:
* Interpret as local interpolation methods
* Flexibility -> robustness to label noise
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Existing theory about local interpolation

Nearest neighbor (cover & Hart, 1967)  Hilbert kernel (pevroye, Gyérfi, & krzyzak, 1998)

* Predict with label of nearest * Special kind of smoothing kernel
training example regression (like Shepard's method)

* Interpolates training data * Interpolates training data

e Risk = 2-OPT (sort of) * Consistent®, but no convergence rates

1
=) = e

FIG. 2. The Hilbert kernel regression estimate with a = 1. 14



Preliminaries

* Construct estimate 17j,, of the regression function
n(x) =E[y" | x" =x]
* For binary classification Y = {0,1}:
*n(x) =Pr(y’ =11x" = x)

 Optimal classifier: f*(x) = ]In(x)%
* Plug-in classifier: f,,(x) = I_ 1 based on estimate 17,
nn(x)>5

* Questions:
What is the risk as n = oo? At what rate does it converge?



. Simplicial interpolation

AKA "Triangulated irregular network" (Franklin, 1973)

* 1ID training examples (x4, ¥1), ..., (x,, ¥,) € R4x[0,1]
* Partition C = conv(xy, ..., X;,;) into simplices with x; as vertices via Delaunay.
* Define 17,,(x) on each simplex by affine interpolation of vertices' labels.
* Result is piecewise linear on C.

* For classification (y € {0,1}), f,, is plug-in classifier based on 7,,.

/ \




Asymptotic risk for simplicial interpolation

[Belkin, H., Mitra, NeurlPS'18]

Theorem (classification): Assume distribution of x’ is uniform on some
convex set, and 1 is bounded away from 1/2. Then simplicial

interpolation’s plug-in classifier f,, satisfies
limsup E[zero/one loss] < (14 e~ @) . OPT

n

* C.f. nearest neighbor classifier: limsup IE[R(f)] ~ 2 -R(f")
n
* For regression (squared error):

1
limsup E|[squared error| < (1 + 0 (E)) - OPT

n




What happens on a single simplex

* Simplex on x4, ..., X441 With corresponding labels y4, ..., V441
* Test point x in simplex, with barycentric coordinates (w4, ..., W44+1).
* Linear interpolation at x (i.e., least squares fit, evaluated at x):

X1 d+1
An(x) = z WiYi
i=1
X3 Key idea: aggregates information

from all vertices to make prediction.
X2 (C.f. nearest neighbor rule.)
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Comparison to nearest neighbor rule

* Supposen(x) =Pr(y = 1| x) < 1/2 for all points in a simplex

* Optimal prediction of /" is O for all points in simplex.

* Supposey; ==y =0,buty;,1 =1 (dueto "label noise")
o » ff [
A Effect is exponentia
Y fn(x) =1 here U P y

more pronounced in
high dimensions!

| / |
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Nearest neighbor rule Simplicial interpolation
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Il. Weighted & interpolated NN scheme

* For given test point x, let X(1)r =1 X (k) be k nearest neighbors in
training data, and let y(4), ..., Y k) be corresponding labels.

Define

X(1)
n (X) —

X where

-0
wrxp) = [lx—xpl -, §>0

PNl 1 w(x, X)) Vi)

_w(x, x(l))

X(2)

X (k)

Interpolation: 17,(x) = y; as x — x;



Convergence rates for WiNN

[Belkin, H., Mitra, NeurlPS'18]

Theorem: Assume distribution of x’ is uniform on some compact set
satisfying regularity condition, and n is a-Holder smooth.

For appropriate setting of k, weighted & interpolated NN estimate 7},

satisfies ,
E [ (i () = n(X)) ] < 0(n™2¢/Catd))

* Consistency + optimal rates of convergence for interpolating method.

* Follow-up work by Belkin, Rakhlin, Tsybakov '19: also for Nadaraya-
Watson with compact & singular kernel.
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Comparison to Hilbert kernel estimate

Weighted & interpolated NN Hilbert kernel (pevroye, Gysrfi, & Krzyzak, 1998)
A (x) = Z?:;{_W(x» X)) V@) A (x) = ?=nl w(x, X;) Vi
i=a WX, xp)) =1 W(x, x;)
w(x, X)) = llx — x| 7° w(x, x;) = |lx — x;]|7°
Optimal non-parametric rates Consistent (0 = d), but no rates

Localization is essential to get non-asymptotic rate.
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Interpolation via neural nets and
linear models



Two layer fully-connected neural networks

[Belkin, H., Ma, Mandal, PNAS'19]

MNIST, Zero-one loss
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Approximating a kernel machine?

[Belkin, H., Ma, Mandal, PNAS'19]
TIMIT, Zero-one loss
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Linear regression with weak features

[Belkin, H., and Xu, '19+; Xu and H., NeurlPS'19]

risk

Gaussian design linear model with D features o _
All features are "relevant” but equally weak o
Only use p of the features (1 < p < D) 27
Least squares (p < n) or least norm (p = n) fit N

Theorem: If eigenvalues decay slowly,

I I I I I I
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Fraction of total features chosen

minimum is beyond point of interpolation (p > n).

Concurrent work by Hastie, Montanari, Rosset, Tibshirani '19.
Other recent analyses of linear models: Muthukumar, Vodrahalli, Sahai, '19; Bartlett, Long, Lugosi, Tsigler, '19.

Follow-up work by Mei and Montanari '19 establishes
similar results for non-linear random features models



Adversarial examples



Ad Ve rsa r| a I exa m p | es (Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, '14;

Goodfellow, Shlens, Szegedy, '15)
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Inevitability of adversarial examples

[Belkin, H., Mitra, NeurlPS'18]

* Are adversarial examples inevitable when
interpolating noisy data?
* Assume compact domain () for x's.

* "Adversarial examples” for interpolating classifier fn: .
Ap={x€Q: fr(x) # f*(x)}
* Proposition: If as n is always bounded away from 0 ]
and 1 (i.e., labels are not deterministic), then 4, is “+—————————————
asymptotically dense in (). FIG. 2 The Hiber e egressioncimae with o=
* [Foranye > 0and § € (0,1), for n sufficiently large,

every x € () is within distance € of 4,, with probability
atleast1 — 6. ]




Conclusions/open problems

1. Interpolation is compatible with good statistical properties.

2. They work by relying (exclusively!) on inductive bias: e.g.,
1. Smoothness from local averaging in high-dimensions.
2. Low function space norm.

3. But "adversarial examples" may be inevitable.

Open problems:

* Characterize inductive biases of other common learning algorithms.
e Behavior for deep neural networks?

* Benefits of interpolation?
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"Double descent" risk curve

[Belkin, H., Ma, Mandal, PNAS'19]
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