Predictive models from interpolation

(overfitting)

Daniel Hsu

Computer Science Department & Data Science Institute
Columbia University

University of Chicago November 18, 2019

This talk

"A model with zero training error is overfit to the training data and will typically generalize poorly."

Hastie, Tibshirani, & Friedman,
 The Elements of Statistical Learning

We'll give empirical + theoretical evidence contrary to conventional wisdom, at least in some "modern" settings of machine learning.

Springer Series in Statistic

Trevor Hastie Robert Tibshirani Jerome Friedman

The Elements of Statistical Learning

Data Mining, Inference, and Prediction

Second Edition

Outline

- 1. Empirical evidence that counter the conventional wisdom
- 2. Interpolation via local prediction
- 3. Interpolation via neural nets and linear models
- 4. Brief remark about adversarial examples [if time permits]

Supervised machine learning

hidden layer 1 hidden layer 2

Standard approach to supervised learning

- Choose (parameterized) function class $\mathcal{F} \subset \mathcal{Y}^{\mathcal{X}}$
 - E.g., linear functions, polynomials, neural networks with certain architecture
- Use optimization algorithm to (attempt to) minimize empirical risk

$$\widehat{\mathcal{R}}(f) \coloneqq \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i)$$

(a.k.a. training error).

How "big" or "complex" should this function class be?
 (Degree of polynomial, size of neural network architecture, ...)

Overfitting

Vapnik's principle: minimize the bound

"The optimal element [...] is then selected to minimize [...] the sum of the empirical risk and the confidence interval."

-V. Vapnik, *Principles of Risk*Minimization for Learning Theory

Deep learning practice: start with overfitting

- Ruslan Salakhutdinov (Foundations of Machine Learning Boot Camp
 @ Simons Institute for the Theory of Computing, January 2017)
 - (Paraphrased) "First, choose a network architecture large enough such that it is easy to overfit your training data. [...] Then, add regularization."

Empirical observations

(Zhang, Bengio, Hardt, Recht, & Vinyals, 2017; Belkin, Ma, & Mandal, 2018)

Neural nets & kernel machines:

 Large-enough models interpolate noisy training data but are still accurate out-of-sample!

Not all interpolators are equal [Belkin, H., Ma, Mandal, PNAS'19]

Test Zero-one loss (%) Train 20-Test Train Squared loss 10 100 300 Number of parameters/weights ($\times 10^3$)

Random first layer

Trained first layer

Justification in machine learning theory

- PAC learning (Valiant, 1984; Blumer, Ehrenfeucht, Haussler, & Warmuth, 1987; ...)
 - realizable, noise-free setting with bounded-capacity hypothesis class
- Regression models (Whittaker, 1915; Shannon, 1949; ...)
 - noise-free data with "simple" models (e.g., linear models with $n \ge p$)

Far from what is happening in practice...

Our goals

- Revise the "conventional wisdom" re: interpolation
 Show interpolation methods can be consistent (or almost consistent)
 for classification & regression
 - Simplicial interpolation
 - Weighted & interpolated nearest neighbor
 - Neural nets / linear models
- Identify properties of successful interpolation methods
 - But also understand their limitations / drawbacks

Interpolation via local prediction

Empirical observations from statistics

(Wyner, Olson, Bleich, & Mease, 2017)

AdaBoost + large decision trees / Random forests:

- Interpret as local interpolation methods
- Flexibility -> robustness to label noise

Existing theory about local interpolation

Nearest neighbor (Cover & Hart, 1967)

- Predict with label of nearest training example
- Interpolates training data
- Risk \rightarrow 2 · OPT (sort of)

Hilbert kernel (Devroye, Györfi, & Krzyżak, 1998)

- Special kind of smoothing kernel regression (like Shepard's method)
- Interpolates training data
- Consistent*, but no convergence rates

Non-parametric estimation

• Construct estimate $\hat{\eta}_n$ of the **regression function** $\eta(x) = \mathbb{E}[Y \mid X = x]$

- For binary classification $\mathcal{Y} = \{0,1\}$:
 - $\eta(x) = \Pr(Y = 1 \mid X = x)$
 - Optimal classifier: $f^*(x) = \mathbb{I}_{\eta(x) > \frac{1}{2}}$
 - Plug-in classifier: $\hat{f}_n(x) = \mathbb{I}_{\widehat{\eta}_n(x) > \frac{1}{2}}$
- Questions:

Risk as $n \to \infty$? Rates of convergence?

I. Simplicial interpolation

AKA "Triangulated irregular network" (Franklin, 1973)

- IID training examples $(x_1, y_1), ..., (x_n, y_n) \in \mathbb{R}^d \times [0,1]$
 - Partition $C := \text{conv}(x_1, ..., x_n)$ into simplices with x_i as vertices via Delaunay.
 - Define $\hat{\eta}_n(x)$ on each simplex by affine interpolation of vertices' labels.
 - Result is piecewise linear on C. (Punt on what happens outside of C.)
- For classification $(y \in \{0,1\})$, \hat{f}_n is plug-in classifier based on $\hat{\eta}_n$.

Asymptotic risk for simplicial interpolation

[Belkin, H., Mitra, NeurlPS'18]

Theorem (classification): Assume distribution of X is uniform on a convex set, and η is bounded away from 1/2. Then simplicial interpolation's plug-in classifier \hat{f}_n satisfies $\limsup_n \mathbb{E}[\text{zero/one loss}] \leq \left(1 + e^{-\Omega(d)}\right) \cdot \text{OPT}$

- C.f. nearest neighbor classifier: $\limsup_{n} \mathbb{E} \big[\mathcal{R}(\hat{f}) \big] \approx 2 \cdot \mathcal{R}(f^*)$
- For regression (squared error):

$$\limsup_{n} \mathbb{E}[\text{squared error}] \leq \left(1 + O\left(\frac{1}{d}\right)\right) \cdot \text{OPT}$$

What happens on a single simplex

- Simplex on x_1, \dots, x_{d+1} with corresponding labels y_1, \dots, y_{d+1}
- Test point x in simplex, with barycentric coordinates $(w_1, ..., w_{d+1})$.
- Linear interpolation at x (i.e., least squares fit, evaluated at x):

Comparison to nearest neighbor rule

- Suppose $\eta(x) = \Pr(Y = 1 \mid X = x) < 1/2$ for all points in a simplex
 - Optimal prediction of f^* is 0 for all points in simplex.
- Suppose $y_1 = \cdots = y_d = 0$, but $y_{d+1} = 1$ (due to "label noise")

Nearest neighbor rule

Simplicial interpolation

II. Weighted & interpolated NN scheme

• For given test point x, let $x_{(1)}, \dots, x_{(k)}$ be k nearest neighbors in training data, and let $y_{(1)}, \dots, y_{(k)}$ be corresponding labels.

Define

$$\hat{\eta}_n(x) = \frac{\sum_{i=1}^k w(x, x_{(i)}) y_{(i)}}{\sum_{i=1}^k w(x, x_{(i)})}$$

where

$$w(x, x_{(i)}) = ||x - x_{(i)}||^{-\delta}, \qquad \delta > 0$$

Interpolation: $\hat{\eta}_n(x) \rightarrow y_i$ as $x \rightarrow x_i$

Rates of convergence

[Belkin, H., Mitra, NeurlPS'18]

Theorem: Assume distribution of X is uniform on some compact set satisfying regularity condition, and η is α -Holder smooth.

For appropriate setting of k, weighted & interpolated NN estimate $\hat{\eta}_n$ satisfies

$$\mathbb{E}\left[\left(\hat{\eta}_n(X) - \eta(X)\right)^2\right] \le O\left(n^{-2\alpha/(2\alpha + d)}\right)$$

- Consistency + optimal rates of convergence for interpolating method.
- Follow-up work by Belkin, Rakhlin, Tsybakov '19: also for Nadaraya-Watson with compact & singular kernel.

Comparison to Hilbert kernel estimate

Weighted & interpolated NN

$$\hat{\eta}_n(x) = \frac{\sum_{i=1}^k w(x, x_{(i)}) y_{(i)}}{\sum_{i=1}^k w(x, x_{(i)})}$$

$$w(x, x_{(i)}) = \|x - x_{(i)}\|^{-\delta}$$

Optimal non-parametric rates

Hilbert kernel (Devroye, Györfi, & Krzyżak, 1998)

$$\hat{\eta}_n(x) = \frac{\sum_{i=1}^n w(x, x_i) y_i}{\sum_{i=1}^n w(x, x_i)}$$

$$w(x, x_i) = ||x - x_i||^{-\delta}$$

Consistent ($\delta = d$), but no rates

Localization seems essential to get non-asymptotic rate

Interpolation via neural nets and linear models

Two layer fully-connected neural networks

[Belkin, H., Ma, Mandal, PNAS'19]

Random first layer; only train second layer

Train first and second layers

Alignment with inductive bias

- Effectiveness of interpolation depends on ability to align with the "right" inductive bias
- E.g., low RKHS norm
- "Occam's razor":
 - Among all functions that fit the data, pick the one with smallest RKHS norm.

Linear regression with weak features

Gaussian design linear model with D features All features are "relevant" but equally weak

Only use p of the features $(1 \le p \le D)$ Least squares $(p \le n)$ or least norm $(p \ge n)$ fit

Theorem $(p, n, D \rightarrow \infty)$: If eigenvalues decay slowly, $_{\circ}$ minimum is beyond point of interpolation (p > n).

[Belkin, <u>H.</u>, and Xu, '19+; Xu and <u>H.</u>, NeurlPS'19] 10 ∞ 4 $^{\circ}$ 0.0 0.2 0.4 0.6 8.0 1.0 Fraction (p/D) of total features chosen

Concurrent work by Hastie, Montanari, Rosset, Tibshirani '19.

Other recent analyses of linear models: Muthukumar, Vodrahalli, Sahai, '19; Bartlett, Long, Lugosi, Tsigler, '19.

Follow-up work by Mei and Montanari '19 establishes similar results for non-linear random features models

Adversarial examples

Adversarial examples (Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, '14; Goodfellow, Shlens, Szegedy, '15)

Inevitability of adversarial examples

- Adversarial examples are inevitable when interpolating noisy data
 - Assume compact domain Ω for x's.
 - "Adversarial examples" for interpolating classifier \hat{f}_n : $A_n \coloneqq \{ x \in \Omega : \hat{f}_n(x) \neq f^*(x) \}$
 - **Proposition**: If η is bounded away from 0 and 1 (i.e., labels are not deterministic), then A_n is asymptotically dense in Ω .
 - [For any $\epsilon > 0$ and $\delta \in (0,1)$, for n sufficiently large, every $x \in \Omega$ is within distance ϵ of A_n with probability at least 1δ .]

[Belkin, H., Mitra, NeurlPS'18]

FIG. 2. The Hilbert kernel regression estimate with a = 1.

Conclusions/open problems

- 1. Interpolation is compatible with some good statistical properties.
- 2. They work by relying (exclusively!) on **inductive bias**: e.g.,
 - 1. Smoothness from local averaging in high-dimensions.
 - 2. Low function space norm.
- 3. But "adversarial examples" may be inevitable.

Open problems:

- Characterize inductive biases of other common learning algorithms.
- Behavior for deep neural networks?
- Benefits of interpolation?

Acknowledgements

Collaborators:

Misha Belkin, Siyuan Ma, Soumik Mandal, Partha Mitra, Ji Xu

- National Science Foundation
- Sloan Foundation
- Simons Institute for the Theory of Computing

arXiv references:

1806.05161 1812.11118 1903.07571 1906.01139

Thank you!