Predictive models from interpolation

(overfitting)

Daniel Hsu
Computer Science Department & Data Science Institute
Columbia University

University of Chicago
November 18, 2019
This talk

"A model with zero training error is overfit to the training data and will typically generalize poorly."

– Hastie, Tibshirani, & Friedman, *The Elements of Statistical Learning*

We'll give empirical + theoretical evidence contrary to conventional wisdom, at least in some "modern" settings of machine learning.
Outline

1. Empirical evidence that counter the conventional wisdom
2. Interpolation via local prediction
3. Interpolation via neural nets and linear models
4. Brief remark about adversarial examples [if time permits]
Supervised machine learning

Training data (labeled examples) $(x_1, y_1), ..., (x_n, y_n)$ from $X \times Y$

Test point $x \in X$

Prediction function $\hat{f}: X \rightarrow Y$

Predicted label $\hat{f}(x) \in Y$

Learning algorithm $w \leftarrow w - \eta \nabla \mathcal{R}(w)$

Risk: $\mathcal{R}(f) := \mathbb{E}[\ell(f(X), Y)]$

where $(X, Y) \sim P$

(IID from P)
Standard approach to supervised learning

• Choose (parameterized) function class $\mathcal{F} \subset \mathbb{Y}^\mathbb{X}$
 • E.g., linear functions, polynomials, neural networks with certain architecture

• Use optimization algorithm to (attempt to) minimize empirical risk

$$\hat{\mathcal{R}}(f) := \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i)$$
(a.k.a. training error).

• How "big" or "complex" should this function class be?
 (Degree of polynomial, size of neural network architecture, ...)

5
Overfitting

True risk

Empirical risk

Model capacity
Vapnik's principle: minimize the bound

"The optimal element [...] is then selected to minimize [...] the sum of the empirical risk and the confidence interval."

Deep learning practice: start with overfitting

• Ruslan Salakhutdinov (Foundations of Machine Learning Boot Camp @ Simons Institute for the Theory of Computing, January 2017)
 • (Paraphrased) "First, choose a network architecture large enough such that it is easy to overfit your training data. [...] Then, add regularization."
Empirical observations

Neural nets & kernel machines:
• Large-enough models interpolate noisy training data but are still accurate out-of-sample!

(Zhang, Bengio, Hardt, Recht, & Vinyals, 2017; Belkin, Ma, & Mandal, 2018)
Not all interpolators are equal [Belkin, H., Ma, Mandal, PNAS'19]
Justification in machine learning theory

• **PAC learning** (Valiant, 1984; Blumer, Ehrenfeucht, Haussler, & Warmuth, 1987; ...)
 • realizable, noise-free setting with bounded-capacity hypothesis class

• **Regression models** (Whittaker, 1915; Shannon, 1949; ...)
 • noise-free data with "simple" models (e.g., linear models with $n \geq p$)

Far from what is happening in practice...
Our goals

• Revise the "conventional wisdom" re: interpolation
 Show interpolation methods can be consistent (or almost consistent) for classification & regression
 • Simplicial interpolation
 • Weighted & interpolated nearest neighbor
 • Neural nets / linear models

• Identify properties of successful interpolation methods
 • But also understand their limitations / drawbacks
Interpolation via local prediction
Empirical observations from statistics
(Wyner, Olson, Bleich, & Mease, 2017)

AdaBoost + large decision trees / Random forests:
- Interpret as local interpolation methods
- Flexibility \rightarrow robustness to label noise
Existing theory about local interpolation

Nearest neighbor (Cover & Hart, 1967)
- Predict with label of nearest training example
- Interpolates training data
- Risk $\rightarrow 2 \cdot \text{OPT} \ (\text{sort of})$

Hilbert kernel (Devroye, Györfi, & Krzyżak, 1998)
- Special kind of smoothing kernel regression (like Shepard’s method)
- Interpolates training data
- Consistent*, but no convergence rates

\[
K(x - x') = \frac{1}{||x - x'||^d}
\]
Non-parametric estimation

• Construct estimate $\hat{\eta}_n$ of the regression function
 $$\eta(x) = \mathbb{E}[Y \mid X = x]$$

• For binary classification $Y = \{0,1\}$:
 • $\eta(x) = \Pr(Y = 1 \mid X = x)$
 • Optimal classifier: $f^*(x) = \mathbb{1}_{\eta(x) > \frac{1}{2}}$
 • Plug-in classifier: $\hat{f}_n(x) = \mathbb{1}_{\hat{\eta}_n(x) > \frac{1}{2}}$

• Questions:
 Risk as $n \to \infty$? Rates of convergence?
I. Simplicial interpolation

AKA "Triangulated irregular network" (Franklin, 1973)

- IID training examples \((x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^d \times [0,1]\)
 - Partition \(C := \text{conv}(x_1, \ldots, x_n)\) into simplices with \(x_i\) as vertices via Delaunay.
 - Define \(\hat{\eta}_n(x)\) on each simplex by affine interpolation of vertices' labels.
 - Result is piecewise linear on \(C\). (Punt on what happens outside of \(C\).)

- For classification \((y \in \{0,1\})\), \(\hat{f}_n\) is plug-in classifier based on \(\hat{\eta}_n\).
Asymptotic risk for simplicial interpolation

Theorem (classification): Assume distribution of X is uniform on a convex set, and η is bounded away from $1/2$. Then simplicial interpolation's plug-in classifier \hat{f}_n satisfies
\[
\limsup_{n} \mathbb{E}[\text{zero/one loss}] \leq (1 + e^{-\Omega(d)}) \cdot \text{OPT}
\]

- **C.f. nearest neighbor classifier:** $\limsup_{n} \mathbb{E}[\mathcal{R}(\hat{f})] \approx 2 \cdot \mathcal{R}(f^*)$
- **For regression** (squared error):
\[
\limsup_{n} \mathbb{E}[\text{squared error}] \leq \left(1 + O\left(\frac{1}{d}\right)\right) \cdot \text{OPT}
\]

[Belkin, H., Mitra, NeurIPS'18]
What happens on a single simplex

• Simplex on x_1, \ldots, x_{d+1} with corresponding labels y_1, \ldots, y_{d+1}
• Test point x in simplex, with barycentric coordinates (w_1, \ldots, w_{d+1}).
• Linear interpolation at x (i.e., least squares fit, evaluated at x):

$$\hat{\eta}_n(x) = \sum_{i=1}^{d+1} w_i y_i$$

Key idea: aggregates information from all vertices to make prediction. (C.f. nearest neighbor rule.)
Comparison to nearest neighbor rule

• Suppose $\eta(x) = \Pr(Y = 1 \mid X = x) < 1/2$ for all points in a simplex
 • Optimal prediction of f^* is 0 for all points in simplex.
• Suppose $y_1 = \cdots = y_d = 0$, but $y_{d+1} = 1$ (due to "label noise")

Nearest neighbor rule

Simplicial interpolation

Effect exponentially more pronounced in high dimensions
II. Weighted & interpolated NN scheme

• For given test point \(x \), let \(x_{(1)}, \ldots, x_{(k)} \) be \(k \) nearest neighbors in training data, and let \(y_{(1)}, \ldots, y_{(k)} \) be corresponding labels.

Define

\[
\hat{\eta}_n(x) = \frac{\sum_{i=1}^{k} w(x, x_{(i)}) y_{(i)}}{\sum_{i=1}^{k} w(x, x_{(i)})}
\]

where

\[
w(x, x_{(i)}) = \|x - x_{(i)}\|^{-\delta}, \quad \delta > 0
\]

Interpolation: \(\hat{\eta}_n(x) \to y_i \) as \(x \to x_i \)
Rates of convergence

Theorem: Assume distribution of X is uniform on some compact set satisfying regularity condition, and η is α-Holder smooth.

For appropriate setting of k, weighted & interpolated NN estimate $\hat{\eta}_n$ satisfies

$$\mathbb{E} \left[(\hat{\eta}_n(X) - \eta(X))^2 \right] \leq O\left(n^{-2\alpha/(2\alpha+d)} \right)$$

• Consistency + optimal rates of convergence for interpolating method.
• Follow-up work by Belkin, Rakhlin, Tsybakov '19: also for Nadaraya-Watson with compact & singular kernel.

[Belkin, H., Mitra, NeurIPS'18]
Comparison to Hilbert kernel estimate

Weighted & interpolated NN

\[\hat{\eta}_n(x) = \frac{\sum_{i=1}^{k} w(x, x(i)) y(i)}{\sum_{i=1}^{k} w(x, x(i))} \]

\[w(x, x(i)) = \|x - x(i)\|^{-\delta} \]

Optimal non-parametric rates

Hilbert kernel (Devroye, Györfi, & Krzyżak, 1998)

\[\hat{\eta}_n(x) = \frac{\sum_{i=1}^{n} w(x, x_i) y_i}{\sum_{i=1}^{n} w(x, x_i)} \]

\[w(x, x_i) = \|x - x_i\|^{-\delta} \]

Consistent (\(\delta = d\)), but no rates

Localization seems essential to get non-asymptotic rate
Interpolation via neural nets and linear models
Two layer fully-connected neural networks

[Belkin, H., Ma, Mandal, PNAS'19]

Random first layer; only train second layer

Train first and second layers
Alignment with inductive bias

- Effectiveness of interpolation depends on ability to align with the "right" inductive bias
- E.g., low RKHS norm
- "Occam's razor":
 - Among all functions that fit the data, pick the one with smallest RKHS norm.
Linear regression with weak features

Gaussian design linear model with D features
All features are "relevant" but equally weak

Only use p of the features ($1 \leq p \leq D$)
Least squares ($p \leq n$) or least norm ($p \geq n$) fit

Theorem ($p, n, D \to \infty$): If eigenvalues decay slowly, minimum is beyond point of interpolation ($p > n$).

Concurrent work by Hastie, Montanari, Rosset, Tibshirani '19.
Other recent analyses of linear models: Muthukumar, Vodrahalli, Sahai, '19; Bartlett, Long, Lugosi, Tsigler, '19.

Follow-up work by Mei and Montanari '19 establishes similar results for non-linear random features models
Adversarial examples
Adversarial examples

(Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, '14;
Goodfellow, Shlens, Szegedy, '15)

\[f(x) = "panda" \]

\[+ \epsilon = \]

\[f(\tilde{x}) = "gibbon" \]
Inevitability of adversarial examples

- Adversarial examples are inevitable when interpolating noisy data
 - Assume compact domain Ω for x's.
 - "Adversarial examples" for interpolating classifier \hat{f}_n:
 $$ A_n := \{ x \in \Omega : \hat{f}_n(x) \neq f^*(x) \} $$
 - Proposition: If η is bounded away from 0 and 1 (i.e., labels are not deterministic), then A_n is asymptotically dense in Ω.
 - [For any $\varepsilon > 0$ and $\delta \in (0,1)$, for n sufficiently large, every $x \in \Omega$ is within distance ε of A_n with probability at least $1 - \delta$.]

[Belkin, H., Mitra, NeurIPS'18]
Conclusions/open problems

1. Interpolation is compatible with some good statistical properties.
2. They work by relying (exclusively!) on inductive bias: e.g.,
 1. Smoothness from local averaging in high-dimensions.
 2. Low function space norm.
3. But "adversarial examples" may be inevitable.

Open problems:
• Characterize inductive biases of other common learning algorithms.
• Behavior for deep neural networks?
• Benefits of interpolation?
Acknowledgements

• **Collaborators:**
 Misha Belkin, Siyuan Ma, Soumik Mandal, Partha Mitra, Ji Xu

• National Science Foundation

• Sloan Foundation

• Simons Institute for the Theory of Computing

arXiv references:
1806.05161
1812.11118
1903.07571
1906.01139

Thank you!
Idealized principal component regression

• Normal model

\[y_i = x_i^\top \theta + \varepsilon_i \quad i = 1, \ldots, n \]

where \(x_i \sim N\left(0, \text{diag}(\lambda_1, \ldots, \lambda_D)\right) \) and \(\varepsilon_i \sim N(0, \sigma^2) \) independent and \(\lambda_1 > \lambda_2 > \cdots > \lambda_D > 0 \)

• Estimator: (\(X_p \) is design matrix w/ first \(p \) variables; \(y \) is vector of responses)

\[
\hat{\theta}_p = \begin{cases}
(X_p^\top X_p)^{-1} X_p^\top y & \text{if } p \leq n, \\
X_p^\top (X_p X_p^\top)^{-1} y & \text{if } p > n;
\end{cases}
\]

• "Weak features" model:

\[\mathbb{E}_\theta [\theta] = 0, \quad \mathbb{E}_\theta [\theta \theta^\top] = I \]
When to use $p > n$? [Xu and H., NeurIPS'19]

- Consider setting for idealized PCR estimator
- Asymptotic regime: $\frac{p}{D} \to \alpha \in [0,1]$ and $\frac{n}{D} \to \beta \in (0,1)$ as $p, n, D \to \infty$
- Slow eigenvalue decay: $\lambda_i = i^{-\kappa}$ for some $\kappa > 0$
- Expected prediction error (conditional on random design) converges in probability to $R(\alpha, \kappa, \sigma)$, where
 \[\limsup_{D} \inf_{\alpha \in [0, \beta]} \frac{R(1, \kappa, \sigma)}{R(\alpha, \kappa, \sigma)} < 1 \]
 holds if $\sigma = 0$ or if $\kappa < 1$
"Double descent" risk curve

Risk

Training risk

Test risk

under-parameterized

"classical" regime

over-parameterized

"modern" interpolating regime

interpolation threshold

Capacity of \mathcal{H}

[Belkin, H., Ma, Mandal, PNAS'19]