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Abstract

This work studies applications and generalizations of a simple estimation technique that
provides exponential concentration under heavy-tailed distributions, assuming only bounded
low-order moments. We show that the technique can be used for approximate minimization
of smooth and strongly convex losses, and specifically for least squares linear regression.
For instance, our d-dimensional estimator requires just Õ(d log(1/δ)) random samples to
obtain a constant factor approximation to the optimal least squares loss with probability
1− δ, without requiring the covariates or noise to be bounded or subgaussian. We provide
further applications to sparse linear regression and low-rank covariance matrix estimation
with similar allowances on the noise and covariate distributions. The core technique is a
generalization of the median-of-means estimator to arbitrary metric spaces.

Keywords: Heavy-tailed distributions, unbounded losses, linear regression, least squares

1. Introduction

The minimax principle in statistical estimation prescribes procedures (i.e., estimators) that
minimize the worst-case risk over a large class of distributions generating the data. For
a given loss function, the risk is the expectation of the loss of the estimator, where the
expectation is taken over the data examined by the estimator. For example, for a large
class of loss functions including squared loss, the empirical mean estimator minimizes the
worst-case risk over the class of Gaussian distributions with known variance (Wolfowitz,
1950). In fact, Gaussian distributions with the specified variance are essentially the worst-
case family of distributions for squared loss, at least up to constants (see, e.g., Catoni, 2012,
Proposition 6.1).

In this work, we are interested in estimators whose deviations from expected behavior
are controlled with very high probability over the random draw of the data examined by
the estimator. Deviations of the behavior of the estimator from its expected behavior
are worrisome especially when data come from unbounded and/or heavy-tail distributions,
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where only very low order moments may be finite. For example, the Pareto distributions
with shape parameter α > 0 are unbounded and have finite moments only up to orders
< α; these distributions are commonly associated with the modeling of extreme events that
manifest in data. Bounds on the expected behavior of an estimator are insufficient in these
cases, since the high-probability guarantees that may be derived from such bounds (say,
using Markov’s inequality) are rather weak. For example, if the risk (i.e., expected loss)
of an estimator is bounded by ε, then all that we may derive from Markov’s inequality
is that the loss is no more than ε/δ with probability at least 1 − δ. For small values of
δ ∈ (0, 1), the guarantee is not very reassuring, but it may be all one can hope for in
these extreme scenarios—see Remark 7 in Section 3.1 for an example where this is tight.
Much of the work in statistical learning theory is also primarily concerned with such high
probability guarantees, but the bulk of the work makes either boundedness or subgaussian
tail assumptions that severely limit the applicability of the results even in settings as simple
as linear regression (see, e.g., Srebro et al., 2010; Shamir, 2014).

Recently, it has been shown that it is possible to improve on methods which are optimal
for expected behavior but suboptimal when high-probability deviations are concerned (Au-
dibert and Catoni, 2011; Catoni, 2012; Brownlees et al., 2014). These improvements, which
are important when dealing with heavy-tailed distributions, suggest that new techniques
(e.g., beyond empirical risk minimization) may be able to remove the reliance on bound-
edness or control of high-order moments. Bubeck et al. (2013) show how a more robust
mean estimator can be used for solving the stochastic multi-armed bandit problem under
heavy-tailed distributions.

This work applies and generalizes a technique for controlling large deviations from the
expected behavior with high probability, assuming only bounded low-order moments such
as variances. We show that the technique is applicable to minimization of smooth and
strongly convex losses, and derive specific loss bounds for least squares linear regression,
which match existing rates, but without requiring the noise or covariates to be bounded
or subgaussian. This contrasts with several recent works (Srebro et al., 2010; Hsu et al.,
2014; Shamir, 2014) concerned with (possibly regularized) empirical risk minimizers that
require such assumptions. It is notable that in finite dimensions, our result implies that
a constant factor approximation to the optimal loss can be achieved with a sample size
that is independent of the size of the optimal loss. This improves over the recent work
of Mahdavi and Jin (2013), which has a logarithmic dependence on the optimal loss, as well
as a suboptimal dependence on specific problem parameters (namely condition numbers).
We also provide a new generalization of the basic technique for general metric spaces, which
we apply to least squares linear regression with heavy tail covariate and noise distributions,
yielding an improvement over the computationally expensive procedure of Audibert and
Catoni (2011).

The basic technique, found in the textbook of Nemirovsky and Yudin (1983, p. 243), is
very simple, and can be viewed as a generalization of the median-of-means estimator used
by Alon et al. (1999) and many others. The idea is to repeat an estimate several times,
by splitting the sample into several groups, and then selecting a single estimator out of
the resulting list of candidates. If an estimator from one group is good with noticeably
better-than-fair chance, then the selected estimator will be good with probability exponen-
tially close to one. This is remininscant of techniques from robust statistics (Huber, 1981),
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although our aim is expressly different in that our aim is good performance on the same
probability distribution generating the data, rather than an uncontaminated or otherwise
better behaved distribution. Our new technique can be cast as a simple selection problem
in general metric spaces that generalizes the scalar median.

We demonstrate the versatility of our technique by giving further examples in sparse
linear regression (Tibshirani, 1996) under heavy-tailed noise and low-rank covariance co-
variance matrix approximation (Koltchinskii et al., 2011) under heavy-tailed covariate dis-
tributions. We also show that for prediction problems where there may not be a reasonable
metric on the predictors, one can achieve similar high-probability guarantees by using me-
dian aggregation in the output space.

The initial version of this article (Hsu and Sabato, 2013, 2014) appeared concurrently
with the simultaneous and independent work of Minsker (2013), which develops a different
generalization of the median-of-means estimator for Banach and Hilbert spaces. We pro-
vide a new analysis and comparison of this technique to ours in Section 7. We have also
since become aware of the earlier work by Lerasle and Oliveira (2011), which applies the
median-of-means technique to empirical risks in various settings much like the way we do
in Algorithm 3, although our metric formulation is more general. Finally, the recent work
of Brownlees et al. (2014) vastly generalizes the techniques of Catoni (2012) to apply to
much more general settings, although they retain some of the same deficiencies (such as the
need to know the noise variance for the optimal bound for least squares regression), and
hence their results are not directly comparable to ours.

2. Overview of Main Results

This section gives an overview of the main results.

2.1 Preliminaries

Let [n] := {1, 2, . . . , n} for any natural number n ∈ N. Let 1{P} take value 1 if the
predicate P is true, and 0 otherwise. Assume an example space Z, and a distribution D
over the space. Further assume a space of predictors or estimators X. We consider learning
or estimation algorithms that accept as input an i.i.d. sample of size n drawn from D and
a confidence parameter δ ∈ (0, 1), and return an estimator (or predictor) ŵ ∈ X. For a
(pseudo) metric ρ on X, let Bρ(w0, r) := {w ∈ X : ρ(w0,w) ≤ r} denote the ball of radius
r around w0.

We assume a loss function ` : Z×X→ R+ that assigns a non-negative number to a pair
of an example from Z and a predictor from X, and consider the task of finding a predictor
that has a small loss in expectation over the distribution of data points, based on an input
sample of n examples drawn independently from D. The expected loss of a predictor w on
the distribution is denoted L(w) = EZ∼D(`(Z,w)). Let L? := infw L(w). Our goal is to
find ŵ such that L(ŵ) is close to L?.

In this work, we are interested in performance guarantees that hold with high probability
over the random draw of the input sample and any internal randomization used by the
estimation algorithm. Thus, for a given allowed probability of failure δ ∈ (0, 1), we study
excess loss L(ŵ) − L? achieved by the predictor ŵ ≡ ŵ(δ) returned by the algorithm on
a 1 − δ probability subset of the sample space. Ideally, the excess loss only depends sub-
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logarithmically on 1/δ, which is the dependence achieved when the distribution of the excess
loss has exponentially decreasing tails. Note that we assume that the value of δ is provided
as input to the estimation algorithm, and only demand the probabilistic guarantee for this
given value of δ. Therefore, strictly speaking, the excess loss need not exhibit exponential
concentration. Nevertheless, in this article, we shall say that an estimation algorithm
achieves exponential concentration whenever it guarantees, on input δ, an excess loss that
grows only as log(1/δ).

2.2 Robust Distance Approximation

Consider an estimation problem, where the goal is to estimate an unknown parameter of
the distribution, using a random i.i.d. sample from that distribution. We show throughout
this work that for many estimation problems, if the sample is split into non-overlapping
subsamples, and estimators are obtained independently from each subsample, then with high
probability, this generates a set of estimators such that some fraction of them are close, under
a meaningful metric, to the true, unknown value of the estimated parameter. Importantly,
this can be guaranteed in many cases even under under heavy-tailed distributions.

Having obtained a set of estimators, a fraction of which are close to the estimated
parameter, the goal is now to find a single good estimator based on this set. This goal is
captured by the following general problem, which we term Robust Distance Approximation.
A Robust Distance Approximation procedure is given a set of points in a metric space
and returns a single point from the space. This single point should satisfy the following
condition: If there is an element in the metric space that a certain fraction of the points
in the set are close to, then the output point should also be close to the same element.
Formally, let (X, ρ) be a metric space. Let W ⊆ X be a (multi)set of size k and let w? be
a distinguished element in X. For α ∈ (0, 1

2) and w ∈ X, denote by ∆W (w,α) the minimal
number r such that |{v ∈ W | ρ(w, v) ≤ r}| > k(1

2 + α). We often omit the subscript W
and write simply ∆ when W is known.

We define the following problem:

Definition 1 (Robust Distance Approximation) Fix α ∈ (0, 1
2). Given W and (X, ρ)

as input, return y ∈ X such that ρ(y, w?) ≤ Cα ·∆W (w?, α), for some constant Cα ≥ 0. Cα
is the approximation factor of the procedure.

In some cases, learning with heavy-tailed distributions requires using a metric that de-
pends on the distribution. Then, the Robust Distance Estimation procedure has access only
to noisy measurements of distances in the metric space, and is required to succeed with high
probability. In Section 3 we formalize these notions, and provide simple implementations of
Robust Distance Approximation for general metric spaces, with and without direct access
to the metric. For the case of direct access to the metric our formulation is similar to that
of Nemirovsky and Yudin (1983).

2.3 Convex Loss Minimization

The general approach to estimation described above has many applications. We give here
the general form of our main results for applications, and defer the technical definitions and
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results to the relevant sections. Detailed discussion of related work for each application is
also provided in the appropriate sections.

First, we consider smooth and convex losses. We assume that the parameter space X is
a Banach space with a norm ‖ · ‖ and a dual norm ‖ · ‖∗. We prove the following result:1

Theorem 2 There exists an algorithm that accepts as input an i.i.d. sample of size n drawn
from D and a confidence parameter δ ∈ (0, 1), and returns ŵ ∈ X, such that if the following
conditions hold:

• the dual norm ‖ · ‖∗ is γ-smooth;

• there exists α > 0 and sample size nα such that, with probability at least 1/2, the
empirical loss w 7→ L̂(w) is α-strongly convex with respect to ‖ · ‖ whenever the sample
is of size at least nα;

• n ≥ C log(1/δ) · nα for some universal constant C > 0;

• w 7→ `(z,w) is β-smooth with respect to ‖ · ‖ for all z ∈ Z;

• w 7→ L(w) is β̄-smooth with respect to ‖ · ‖;

then with probability at least 1− δ, for another universal constant C ′ > 0,

L(ŵ) ≤
(

1 +
C ′ββ̄γdlog(1/δ)e

nα2

)
L?.

This gives a constant approximation of the optimal loss with a number of samples that does
not depend on the value of the optimal loss. The full results for smooth convex losses are
provided in Section 4. Theorem 2 is stated in full as Corollary 16, and we further provide
a result with more relaxed smoothness requirements. As apparent in the result, the only
requirements on the distribution are those that are implied by the strong convexity and
smoothness parameters. This allows support for fairly general heavy-tailed distributions,
as we show below.

2.4 Least Squares Linear Regression

A concrete application of our analysis of smooth convex losses is linear regression. In linear
regression, X is a Hilbert space with an inner product 〈·, ·〉X, and it is both the data space
and the parameter space. The loss ` ≡ `sq is the squared loss

`sq((x, y),w) :=
1

2
(x>w − y)2.

Lsq and Lsq
? are defined similarly to L and L?.

Unlike standard high-probability bounds for regression, we give bounds that make no
assumption on the range or the tails of the distribution of the response variables, other
than a trivial requirement that the optimal squared loss be finite. The assumptions on the
distribution of the covariates are also minimal.

1. Formal definitions of terms used in the conditions are given in Section 4.
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Let Σ be the second-moment operator a 7→ E(X〈X,a〉X), where X is a random data
point from the marginal distribution of D on X. For a finite-dimensional X, Σ is simply the
(uncentered) covariance matrix E[XX>]. First, consider the finite-dimensional case, where
X = Rd, and assume Σ is not singular. Let ‖ · ‖2 denote the Euclidean norm in Rd. Under
only bounded 4 + ε moments of the marginal on X (a condition that we specify in full detail
in Section 5), we show the following guarantee.

Theorem 3 Assume the marginal of X has bounded 4 + ε moments. There is a constant
C > 0 and an algorithm that accepts as input a sample of size n and a confidence parameter
δ ∈ (0, 1), and returns ŵ ∈ X, such that if n ≥ Cd log(1/δ), with probability at least 1− δ,

Lsq(ŵ) ≤ Lsq
? +O

(
E(‖Σ−1/2X(X>w? − Y )‖22) log(1/δ)

n

)
.

This theorem is stated in full as Theorem 19 in Section 5. Under standard finite fourth-
moment conditions, this result translates to the bound

Lsq(ŵ) ≤
(

1 +O

(
d log(1/δ)

n

))
Lsq
? ,

with probability ≥ 1− δ. These results improve over recent results by Audibert and Catoni
(2011), Catoni (2012), and Mahdavi and Jin (2013). We provide a full comparison to related
work in Section 5.

Theorem 3 can be specialized for specific cases of interest. For instance, suppose
X is bounded and well-conditioned in the sense that there exists R < ∞ such that
Pr[X>Σ−1X ≤ R2] = 1, but Y may still be heavy-tailed. Under this assumption we
have the following result.

Theorem 4 Assume Σ is not singular. There exists an algorithm that accepts as input a
sample of size n and a confidence parameter δ ∈ (0, 1), and returns ŵ ∈ X, such that with
probability at least 1− δ, for n ≥ O(R2 log(R) log(e/δ)),

Lsq(ŵ) ≤
(

1 +O

(
R2 log(1/δ)

n

))
Lsq
? .

This theorem is stated in full as Theorem 20 in Section 5. Note that

E(X>Σ−1X) = E tr(X>Σ−1X) = tr(Id) = d,

so R = Ω(
√
d). R2 is closely related to a condition number for the distribution of X.

For instance, if P[‖X‖ = 1] = 1, then R2 ≤ dλmax(Σ)
λmin(Σ) . This result is minimax optimal

up to logarithmic factors (see, e.g., Nussbaum, 1999). We also remark that the bounded-
ness assumption can be replaced by a subgaussian assumption on X, in which case the
sample size requirement becomes O(d log(1/δ)). We give analogous guarantees for the case
of regularized least squares in a possibly finite-dimensional Hilbert space in Theorem 21,
Section 5.
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2.5 Other Applications, Comparisons, and Extensions

The general method studied here allows handling heavy tails in other applications as well.
We give two examples in Section 6. First, we consider parameter estimation using L1-
regularized linear least squares regression (Lasso) under random subgaussian design. We
show that using the above approach, parameter estimation bounds can be guaranteed for
general bounded variance noise, including heavy-tailed noise. This contrasts with standard
results that assume sub-Gaussian noise. Second, we show that low-rank covariance matrix
approximation can be obtained for heavy-tailed distributions, under a bounded 4 + ε mo-
ment assumption. These two applications have been analyzed also in the independent and
simultaneous work of Minsker (2013).

All the results above are provided using a specific solution to the Robust Distance
Approximation problem, which is easy to implement for any metric space. For the case of
a fully known metric, in a Banach or a Hilbert space, Minsker (2013) proposed a different
solution, which is based on the geometric median. In Section 7, we provide a detailed
comparison of the approximation factor achieved by each approach, as well as some general
lower bounds. Several interesting open questions remain regarding this general problem.

Lastly, in Section 8, we give a short proof to the intuitive fact that in some prediction
problem, one can replace Robust Distance Approximation with taking the median of the
predictions of the input estimators. This gives a possible improper-learning algorithm for
relevant learning settings.

All of the techniques we have developed in this work are simple enough to implement
and empirically evaluate, and indeed in some simulated experiments, we have verified the
improvements over standard methods such as the empirical mean when the data follow
heavy-tailed distributions. However, at present, the relatively large constant factors in our
bounds are real enough to restrict the empirical improvements only to settings where very
high confidence (i.e., small values of δ) is required. By contrast, with an appropriately
determined noise variance, the techniques of Catoni (2012) and Brownlees et al. (2014) may
yield improvements more readily. Nevertheless, since our techniques are more general in
some respects, it is worth investigating whether they can be made more practical (e.g., with
greater sample reuse or overlapping groups), and we plan to do this in future work.

3. The Core Techniques

In this section we present the core technique used for achieving exponential concentration.
We first demonstrate the underlying principle via the median-of-means estimator, and then
explain the generalization to arbitrary metric spaces. Finally, we show a new generalization
that supports noisy feature measurements.

3.1 Warm-up: Median-of-Means Estimator

We first motivate the estimation procedure by considering the special case of estimating
a scalar population mean using a median-of-means estimator, given in Algorithm 1. This
estimator, heavily used in the streaming algorithm literature (Alon et al., 1999) (though a
similar technique also appears in Nemirovsky and Yudin (1983) as noted in Levin (2005)),
partitions a sample into k equal-size groups, and returns the median of the sample means
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Algorithm 1 Median-of-means estimator

input Sample S ⊂ R of size n, number of groups k ∈ N such that k ≤ n/4.
output Population mean estimate µ̂ ∈ R.

1: Randomly partition S into k subsets S1, S2, . . . , Sk, each of size at least bn/kc.
2: For each i ∈ [k], let µi ∈ R be the sample mean of Si.
3: Return µ̂ := median{µ1, µ2, . . . , µk}.

of each group. Note that the possible non-uniqueness of the median does not affect the
result; the arguments below apply to any one of them. The input parameter k should be
thought of as a constant determined by the desired confidence level (i.e., k = Θ(log(1/δ))
for confidence δ ∈ (0, 1)). It is well known that the median-of-means achieves estimation
with exponential concentration. The following proposition gives a simple statement and
proof. The constant 6 in the statement (see Eq. (1) below) is lower the constant in the
analysis of Lerasle and Oliveira (2011, Proposition 1), which is 2

√
6e ≈ 8.08, but we require

a larger value of n. By requiring an even larger n, the constant in the statement below can
approach 3

√
3.

Proposition 5 Let x be a random variable with mean µ and variance σ2 <∞, and let S be
a set of n independent copies of x. Assume k ≤ n/2. With probability at least 1−e−k/4.5, the
estimate µ̂ returned by Algorithm 1 on input (S, k) satisfies |µ̂− µ| ≤ σ

√
8k/n. Therefore,

if k = 4.5dlog(1/δ)e and n ≥ 18dlog(1/δ)e, then with probability at least 1− δ,

|µ̂− µ| ≤ 6σ

√
dlog(1/δ)e

n
. (1)

Proof First, assume k divides n. Pick any i ∈ [k], and observe that Si is an i.i.d. sample
of size n/k. Therefore, by Chebyshev’s inequality, Pr[|µi−µ| ≤

√
6σ2k/n] ≥ 5/6. For each

i ∈ [k], let bi := 1{|µi − µ| ≤
√

6σ2k/n}. Note that the bi are independent indicator random

variables, each with E(bi) ≥ 5/6. By Hoeffding’s inequality, Pr[
∑k

i=1 bi > k/2] ≥ 1−e−k/4.5.

In the event that
∑k

i=1 bi > k/2, at least half of the µi are within
√

6σ2k/n of µ, which
means that the same holds for the median of the µi. If k does not divide n then the analysis
can be carried out by substituting n with bn/kck ≥ n− k ≥ 3

4n, which scales the guarantee

by a factor of
√

4/3.

Using the terminology of Robust Distance Approximation with the metric ρ(x, y) = |x−
y|, the proof shows that with high probability over the choice of W , ∆W (µ, 0) ≤

√
12σ2k/n.

The result then immediately follows because on the space (R, ρ), the median is a Robust
Distance Approximation procedure with C0 = 1.

Remark 6 (Catoni’s M-estimator) Catoni (2012) proposes a mean estimator µ̂ that
satisfies |µ̂−µ| = O(σ

√
log(1/δ)/n) with probability at least 1− δ. Remarkably, the leading

constant in the bound is asymptotically optimal: it approaches
√

2 as n → ∞. However,
the estimator takes both δ and σ as inputs. Catoni also presents an estimator that takes
only σ as an input; this estimator guarantees a O(σ log(1/δ)/

√
n) bound for all values of

δ > exp(1− n/2) simultaneously.
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Remark 7 (Empirical mean) Catoni (2012) shows that the empirical mean cannot pro-
vide a qualitatively similar guarantee. Specifically, for any σ > 0 and δ ∈ (0, 1/(2e)), there
is a distribution with mean zero and variance σ2 such that the empirical average µ̂emp of n
i.i.d. draws satisfies

Pr

[
|µ̂emp| ≥

σ√
2nδ

(
1− 2eδ

n

)n−1
2

]
≥ 2δ. (2)

Therefore the deviation of the empirical mean necessarily scales with 1/
√
δ rather than√

log(1/δ) (with probability Ω(δ)).

3.2 Generalization to Arbitrary Metric Spaces

We now consider a simple generalization of the median-of-means estimator for arbitrary
metric spaces, first mentioned in Nemirovsky and Yudin (1983). Let X be the parameter
(solution) space, w? ∈ X be a distinguished point in X (the target solution), and ρ a metric
on X (in fact, a pseudometric suffices).

The first abstraction captures the generation of candidate solutions obtained from inde-
pendent subsamples. We assume there is an oracle APPROXρ,ε which satisfies the following
assumptions.

Assumption 1 A query to APPROXρ,ε returns a random w ∈ X such that

Pr
[
ρ(w?,w) ≤ ε

]
≥ 2/3.

Note that the 2/3 could be replaced by another constant larger than half; we have not
optimized the constants. The second assumption regards statistical independence. For an
integer k, let w1, . . . ,wk be responses to k separate queries to APPROXρ,ε.

Assumption 2 w1, . . . ,wk are statistically independent.

The proposed procedure, given in Algorithm 2, generates k candidate solutions by query-
ing APPROXρ,ε k times, and then selecting a single candidate using a generalization of the
median. Specifically, for each i ∈ [k], the smallest ball centered at wi that contains more
than half of {w1,w2, . . . ,wk} is determined; the wi with the smallest such ball is returned.
If there are multiple such wi with the smallest radius ball, any one of them may be se-
lected. This selection method is a Robust Distance Approximation procedure. The proof is
given below and illustrated in Figure 1. Nemirovsky and Yudin (1983) proposed a similar
technique, however their formulation relies on knowledge of ε.

Proposition 8 Let ri := min{r ≥ 0 : |Bρ(wi, r) ∩W | > k/2}. Selecting wi? such that
i? = argmini ri is a Robust Distance Approximation procedure with C0 = 3.

Proof Assume that ∆(w?, 0) ≤ ε. Then |Bρ(w?, ε)∩W | > k/2. For any v ∈ Bρ(w?, ε)∩W ,
by the triangle inequality, |Bρ(v, 2ε) ∩ W | > k/2. This implies that ri? ≤ 2ε, and so
|Bρ(wi? , 2ε) ∩W | > k/2. By the pigeonhole principle, Bρ(w?, ε) ∩Bρ(wi? , 2ε) 6= ∅. There-
fore, by the triangle inequality again, ρ(w?,wi?) ≤ 3ε.

9



Hsu and Sabato

w?

ε

ŵ

ri?

Figure 1: The argument in the proof of Proposition 8, illustrated on the Euclidean plane. If
more than half of the wi (depicted by full circles) are within ε of w? (the empty
circle), then the selected wi? is within ε+ ri? ≤ 3ε of w?.

Algorithm 2 Robust approximation

input Number of candidates k, query access to APPROXρ,ε.
output Approximate solution ŵ ∈ X.

1: Query APPROXρ,ε k times. Let w1, . . . ,wk be the responses to the queries; set W :=
{w1,w2, . . . ,wk}.

2: For each i ∈ [k], let ri := min{r ≥ 0 : |Bρ(wi, r) ∩W | > k/2}; set i? := arg mini∈[k] ri.
3: Return ŵ := wi? .

Again, the number of candidates k determines the resulting confidence level. The follow-
ing theorem provides a guarantee for Algorithm 2. We note that the resulting constants here
might not be optimal in specific applications, since they depend on the arbitrary constant
in Assumption 1.

Proposition 9 Suppose that Assumption 1 and Assumption 2 hold. Then, with probability
at least 1− e−k/18, Algorithm 2 returns ŵ ∈ X satisfying ρ(w?, ŵ) ≤ 3ε.

Proof For each i ∈ [k], let bi := 1{ρ(w?,wi) ≤ ε}. Note that the bi are independent
indicator random variables, each with E(bi) ≥ 2/3. By Hoeffding’s inequality, Pr[

∑k
i=1 bi >

k/2] ≥ 1− e−k/18. In the event that
∑k

i=1 bi > k/2, more than half of the wi are contained
in the ball of radius ε around w?, that is ∆W (w?, 0) ≤ ε. The result follows from Proposi-
tion 8.

3.3 Random Distance Measurements

In some problems, the most appropriate metric on X in which to measure accuracy is
not directly computable. For instance, the metric may depend on population quantities
which can only be estimated; moreover, the estimates may only be relatively accurate with
some constant probability. For instance, this is the case when the metric depends on the
population covariance matrix, a situation we consider in Section 5.2.3.

To capture such cases, we assume access to a metric estimation oracle as follows. Let
w1, . . . ,wk be responses to k queries to APPROXρ,ε. The metric estimation oracle, denoted
DISTj

ρ, provides (possibly via a random process) a function fj : X→ R+. fj(v) will be used
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as an estimate of ρ(v,wj). This estimate is required to be weakly accurate, as captured by
the following definition of the random variables Zj . Let f1, . . . , fk be responses to queries
to DIST1

ρ, . . . ,DISTk
ρ, respectively. For j ∈ [k], define

Zj := 1{∀v ∈ X, (1/2)ρ(v,wj) ≤ fj(v) ≤ 2ρ(v,wj)}.

Zj = 1 indicates that fj provides a sufficiently accurate estimate of the distances from wj .
Note that fj need not correspond to a metric. We assume the following.

Assumption 3 For any j ∈ [k], Pr[Zj = 1] ≥ 8/9.

We further require the following independence assumption.

Assumption 4 The random variables Z1, . . . , Zk are statistically independent.

Note that there is no assumption on the statistical relationship between Z1, . . . , Zk and
w1, . . . ,wk.

Algorithm 3 is a variant of Algorithm 2 that simply replaces computation of ρ-distances
with computations using the functions returned by querying the DISTj

ρ’s. The resulting
selection procedure is, with high probability, a Robust Distance Approximation.

Lemma 10 Consider a run of Algorithm 3, with output ŵ. Let Z1, . . . , Zk as defined
above, and suppose that Assumption 3 and Assumption 4 hold. Then, with probability at
least 1− e−k/648,

ρ(ŵ,w?) ≤ 9 ·∆W (w?,
5

36
),

where W = {w1, . . . ,wk}.

Proof By Assumptions 3 and 4, and by Hoeffding’s inequality,

Pr

 k∑
j=1

Zj >
31

36
k

 ≥ 1− e−k/648 (3)

Assume this event holds, and denote ε = ∆W (w?,
5
36). We have |B(w?, ε) ∩W | ≥ 23

36k.
Let i ∈ [k] such that wi ∈ Bρ(w?, ε). Then, for any j ∈ [k] such that wj ∈ Bρ(w?, ε),

by the triangle inequality ρ(wi,wj) ≤ 2ε. There are at least 23
36k such indices j, therefore

for more than k/2 of the indices j, we have

ρ(wi,wj) ≤ 2ε and Zj = 1.

For j such that this holds, by the definition of Zj , fj(wi) ≤ 4ε. It follows that ri :=
median{fj(wi) | j ∈ [k]} ≤ 4ε.

Now, let i ∈ [k] such that wi /∈ B(w?, 9ε). Then, for any j ∈ [k] such that wj ∈
Bρ(w?, ε), by the triangle inequality ρ(wi,wj) ≥ ρ(w?,wi) − ρ(w?,wj) > 8ε. As above,
for more than k/2 of the indices j,

ρ(wi,wj) > 8ε and Zj = 1.

For j such that this holds, by the definition of Zj , fj(wi) > 4ε. It follows that ri :=
median{fj(wi) | j ∈ [k]} > 4ε.

By Eq. (3), We conclude that with probability at least 1− exp(−k/648),

11
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Algorithm 3 Robust approximation with random distances

input Number of candidates k, query access to APPROXρ,ε, query access to DISTρ.
output Approximate solution ŵ ∈ X.

1: Query APPROXρ,ε k times. Let w1, . . . ,wk be the responses to the queries; set W :=
{w1,w2, . . . ,wk}.

2: For i ∈ [k], let fi be the response of DISTj
ρ, and set ri := median{fj(wi) : j ∈ [k]}; set

i? := arg mini∈[k] ri.
3: Return ŵ := wi? .

1. ri ≤ 4ε for all wi ∈W ∩Bρ(w?, ε), and

2. ri > 4ε for all wi ∈W \Bρ(w?, 9ε).

In this event the wi ∈W with the smallest ri satisfies wi ∈ Bρ(w?, 9ε).

The properties of the approximation procedure and of APPROXρ,ε are combined to give
a guarantee for Algorithm 3.

Theorem 11 Suppose that Assumptions 1,2,3,4 all hold. With probability at least 1− 2e−k/648,
Algorithm 3 returns ŵ ∈ X satisfying ρ(w?, ŵ) ≤ 9ε.

Proof For each i ∈ [k], let bi := 1{ρ(w?,wi) ≤ ε}. By Assumptions 1 and 2, the bi are
independent indicator random variables, each with E(bi) ≥ 2/3. By Hoeffding’s inequality,
Pr[
∑k

i=1 bi >
23
36k] ≥ 1− e−k/648. The result follows from Lemma 10 and a union bound.

In the following sections we show several applications of these general techniques.

4. Minimizing Strongly Convex Losses

In this section we apply the core techniques to the problem of approximately minimizing
strongly convex losses, which includes least squares linear regression as a special case.

4.1 Preliminaries

Suppose (X, ‖ · ‖) is a Banach space, with the metric ρ induced by the norm ‖ · ‖. We
sometimes denote the metric by ‖ · ‖ as well. Denote by ‖ · ‖∗ the dual norm, so ‖y‖∗ =
sup{〈y,x〉 : x ∈ X, ‖x‖ ≤ 1} for y ∈ X∗.

The derivative of a differentiable function f : X → R at x ∈ X in direction u ∈ X is
denoted by 〈∇f(x),u〉. We say f is α-strongly convex with respect to ‖ · ‖ if

f(x) ≥ f(x′) + 〈∇f(x′),x− x′〉+
α

2
‖x− x′‖2

for all x,x′ ∈ X; it is β-smooth with respect to ‖ · ‖ if for all x,x′ ∈ X

f(x) ≤ f(x′) + 〈∇f(x′),x− x′〉+
β

2
‖x− x′‖2.

12
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We say ‖ · ‖ is γ-smooth if x 7→ 1
2‖x‖

2 is γ-smooth with respect to ‖ · ‖. We define nα to
be the smallest sample size such that the following holds: With probability ≥ 5/6 over the
choice of an i.i.d. sample T of size |T | ≥ nα from D, for all w ∈ X,

LT (w) ≥ LT (w?) + 〈∇LT (w?),w −w?〉+
α

2
‖w −w?‖2. (4)

In other words, the sample T induces a loss LT which is α-strongly convex around w?.
2 We

assume that nα <∞ for some α > 0.
We use the following facts in our analysis.

Proposition 12 (Srebro et al., 2010) If a non-negative function f : X→ R+ is β-smooth
with respect to ‖ · ‖, then ‖∇f(x)‖2∗ ≤ 4βf(x) for all x ∈ X.

Proposition 13 (Juditsky and Nemirovski, 2008) Let X1,X2, . . . ,Xn be independent
copies of a zero-mean random vector X, and let ‖ · ‖ be γ-smooth. Then E‖n−1

∑n
i=1Xi‖2 ≤

(γ/n)E‖X‖2.

Recall that Z is a data space, and D is a distribution over Z. Let Z be a Z-valued
random variable with distribution D. Let ` : Z × X→ R+ be a non-negative loss function,
and for w ∈ X, let L(w) := E(`(Z,w)) be the expected loss. Also define the empirical loss
with respect to a sample T from Z, LT (w) := |T |−1

∑
z∈T `(z,w). To simplify the discussion

throughout, we assume ` is differentiable, which is anyway our primary case of interest. We
assume that L has a unique minimizer w? := arg minw∈X L(w).3 Let L? := minw L(w).
Set w? such that L? = L(w?).

4.2 Subsampled Empirical Loss Minimization

To use Algorithm 2, we implement APPROX‖·‖,ε based on loss minimization over subsam-
ples, as follows: Given a sample S ⊆ Z, randomly partition S into k groups S1, S2, . . . , Sk,
each of size at least b|S|/kc, and let the response to the i-th query to APPROX‖·‖,ε be the
loss minimizer on Si, i.e., wi = arg minw∈X LSi(w). We call this implementation subsam-
pled empirical loss minimization. Clearly, if S is an i.i.d. sample from D, then w1, . . . ,wk

are statistically independent, and so Assumption 2 holds. Thus, to apply Proposition 9, it
is left to show that Assumption 1 holds as well.4

The following lemma proves that Assumption 1 holds under these assumptions with

ε :=

√
32γkE‖∇`(Z,w?)‖2∗

nα2
. (5)

Lemma 14 Let ε be as defined in Eq. (5). Assume k ≤ n/4, and that S is an i.i.d. sample
from D of size n such that bn/kc ≥ nα. Then subsampled empirical loss minimization using
the sample S is a correct implementation of APPROX‖·‖,ε for up to k queries.

2. Technically, we only need the sample size to guarantee Eq. (4) for all w ∈ B‖·‖(w?, r) for some r > 0.
3. This holds, for instance, if L is strongly convex.
4. An approach akin to the bootstrap technique (Efron, 1979) could also seem natural here: In this approach,
S1, . . . , Sk would be generated by randomly sub-sampling from S, with possible overlap between the sub-
samples. However, this approach does not satisfy Assumption 2, since loss minimizers of overlapping
samples are not statistically independent.

13
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Proof Let T = bn/kc. Since n ≥ 4k, we have bn/kck ≥ n−k ≥ 3
4n, therefore 1/T ≤ 4k

3n . It
is clear that w1,w2, . . . ,wk are independent by the assumption. Fix some i ∈ [k]. Observe
that ∇L(w?) = E(∇`(Z,w?)) = 0, and therefore by Proposition 13:

E‖∇LSi(w?)‖2∗ ≤ (γ/T )E‖∇`(Z,w?)‖2∗ ≤
4γk

3n
E‖∇`(Z,w?)‖2∗.

By Markov’s inequality,

Pr

[
‖∇LSi(w?)‖2∗ ≤

8γk

n
E(‖∇`(Z,w?)‖2∗)

]
≥ 5

6
.

Moreover, the assumption that bn/kc ≥ nα implies that with probability at least
5/6, Eq. (4) holds for T = Si. By a union bound, both of these events hold simulta-
neously with probability at least 2/3. In the intersection of these events, letting wi :=
arg minw∈X LSi(w),

(α/2)‖wi −w?‖2 ≤ −〈∇LSi(w?),wi −w?〉+ LSi(wi)− LSi(w?)

≤ ‖∇LSi(w?)‖∗‖wi −w?‖,

where the last inequality follows from the definition of the dual norm, and the optimality
of wi on LSi . Rearranging and combining with the above probability inequality implies

Pr
[
‖wi −w?‖ ≤ ε

]
≥ 2

3

as required.

Combining Lemma 14 and Proposition 9 gives the following theorem.

Theorem 15 Let nα be as defined in Section 4.1, and assume that ‖ · ‖∗ is γ-smooth. Also,
assume k := 18dlog(1/δ)e, n ≥ 72dlog(1/δ)e, and that S is an i.i.d. sample from D of size
n such that bn/kc ≥ nα. Finally, assume Algorithm 3 uses the subsampled empirical loss
minimization to implement APPROX‖·‖,ε, where ε is as in Eq. (5). Then with probability
at least 1− δ, the parameter ŵ returned by Algorithm 2 satisfies

‖ŵ −w?‖ ≤ 72

√
γdlog(1/δ)eE‖∇`(Z,w?)‖2∗

nα2
.

We give an easy corollary of Theorem 15 for the case where ` is smooth. This is the full
version of Theorem 2.

Corollary 16 Assume the same conditions as Theorem 15, and also that:

• w 7→ `(z,w) is β-smooth with respect to ‖ · ‖ for all z ∈ Z;

• w 7→ L(w) is β̄-smooth with respect to ‖ · ‖.

Then with probability at least 1− δ,

L(ŵ) ≤
(

1 +
10368ββ̄γdlog(1/δ)e

nα2

)
L(w?).
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Proof This follows from Theorem 15 by first concluding that E[‖∇`(Z,w?)‖2∗] ≤ 4βL(w?),
using the β-strong smoothness assumption on ` and Proposition 12, and then noting that

L(ŵ) − L(w?) ≤ β̄
2 ‖ŵ − w?‖2, due to the strong smoothness of L and the optimality of

L(w?).

Corollary 16 implies that for smooth losses, Algorithm 2 provides a constant factor ap-
proximation to the optimal loss with a sample size max{nα, γββ̄/α2} · O(log(1/δ)) (with
probability at least 1− δ). In subsequent sections, we exemplify cases where the two argu-
ments of the max are roughly of the same order, and thus imply a sample size requirement
of O(γβ̄β/α2 log(1/δ)). Note that there is no dependence on the optimal loss L(w?) in the
sample size, and the algorithm has no parameters besides k = O(log(1/δ)).

We can also obtain a variant of Theorem 15 based on Algorithm 3 and Theorem 11,
in which we assume that there exists some sample size nk,DIST‖·‖ that allows DIST‖·‖ to
be correctly implemented using an i.i.d. sample of size at least nk,DIST‖·‖ . Under such an
assumption, essentially the same guarantee as in Theorem 15 can be afforded to Algorithm 3
using the subsampled empirical loss minimization to implement APPROX‖·‖,ε (for ε as in
Eq. (5)) and the assumed implementation of DIST‖·‖. Note that since Theorem 11 does not
require APPROX‖·‖,ε and DIST‖·‖ to be statistically independent, both can be implemented
using the same sample.

Theorem 17 Let nα be as defined in Section 4.1, nk,DIST‖·‖ be as defined above, and assume
that ‖ · ‖∗ is γ-smooth. Also, assume k := 648dlog(2/δ)e, S is an i.i.d. sample from D of
size n such that n ≥ max{4k, nk,DIST‖·‖}, and bn/kc ≥ nα. Further, assume Algorithm 3
implements APPROX‖·‖,ε using S with subsampled empirical loss minimization, where ε is
as in Eq. (5), and implements DIST‖·‖ using S as well. Then with probability at least 1− δ,
the parameter ŵ returned by Algorithm 3 satisfies

‖ŵ −w?‖ ≤ 1296

√
γdlog(2/δ)eE‖∇`(Z,w?)‖2∗

nα2
.

Remark 18 (Mean estimation and empirical risk minimization) The problem of es-
timating a scalar population mean is a special case of the loss minimization problem, where
Z = X = R, and the loss function of interest is the square loss `(z, w) = (z − w)2. The
minimum population loss in this setting is the variance σ2 of Z, i.e., L(w?) = σ2. Moreover,
in this setting, we have α = β = β̄ = 2, so the estimate ŵ returned by Algorithm 2 satisfies,
with probability at least 1− δ,

L(ŵ) =

(
1 +O

( log(1/δ)

n

))
L(w?).

In Remark 7 a result from Catoni (2012) is quoted which implies that if n = o(1/δ),
then the empirical mean ŵemp := arg minw∈R LS(w) = |S|−1

∑
z∈S z ( i.e., empirical risk

(loss) minimization for this problem) incurs loss

L(ŵemp) = σ2 + (ŵemp − w?)2 = (1 + ω(1))L(w?)

with probability at least 2δ. Therefore empirical risk minimization cannot provide a quali-
tatively similar guarantee as Corollary 16. It is easy to check that minimizing a regularized
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objective also does not work, since any non-trivial regularized objective necessarily provides
an estimator with a positive error for some distribution with zero variance.

In the next section we use the analysis for general smooth and convex losses to derive
new algorithms and bounds for linear regression.

5. Least Squares Linear Regression

In linear regression, the parameter space X is a Hilbert space with inner product 〈·, ·〉X, and
Z := X × R, where in the finite-dimensional case, X = Rd for some finite integer d. The
loss here is the squared loss, denoted by ` = `sq, and defined as

`sq((x, y),w) :=
1

2
(x>w − y)2.

The regularized squared loss, for λ ≥ 0, is denoted

`λ((x, y),w) :=
1

2
(〈x,w〉X − y)2 +

1

2
λ〈w,w〉X.

Note that `0 = `sq. We analogously define Lsq, Lsq
T , Lsq

? , Lλ, etc. as the squared-loss
equivalents of L,LT , L?. Finally, denote by Id the identity operator on X.

The proposed algorithm for regression (Algorithm 4) is as follows. Set k = C log(1/δ),
where C is a universal constant. First, draw k independent random samples i.i.d. from D,
and perform linear regression with λ-regularization on each sample separately to obtain k
linear regressors. Then, use the same k samples to generate k estimates of the covariance
matrix of the marginal of D on the data space. Finally, use the estimated covariances to
select a single regressor from among the k at hand. The slightly simpler variants of steps 4
and 5 can be used in some cases, as detailed below.

In Section 5.1, the full results for regression, mentioned in Section 2, are listed in full
detail, and compared to previous work. The proofs are provided in Section 5.2.

5.1 Results

Let X ∈ X be a random vector drawn according to the marginal of D on X, and let Σ :
X→ X be the second-moment operator a 7→ E(X〈X,a〉X). For a finite-dimensional X, Σ is
simply the (uncentered) covariance matrix E[XX>]. For a sample T := {X1,X2, . . . ,Xm}
of m independent copies ofX, denote by ΣT : X→ X the empirical second-moment operator
a 7→ m−1

∑m
i=1Xi〈Xi,a〉X.

Consider first the finite-dimensional case, where X = Rd, and assume Σ is not singular.
Let ‖ · ‖2 denote the Euclidean norm in Rd. In this case we obtain a guarantee for ordinary
least squares with λ = 0. The guarantee holds whenever the empirical estimate of Σ is
close to the true Σ in expectation, a mild condition that requires only bounded low-order
moments. For concreteness, we assume the following condition.5

5. As shown by Srivastava and Vershynin (2013), Condition 1 holds for various heavy-tailed distributions
(e.g., when X has a product distribution with bounded 4+ ε moments for some ε > 0). Condition 1 may
be easily substituted with other moment conditions, yielding similar results, at least up to logarithmic
factors.
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Algorithm 4 Regression for heavy-tails

input λ ≥ 0, sample size n, confidence δ ∈ (0, 1).
output Approximate predictor ŵ ∈ X.

1: Set k := dC ln(1/δ)e.
2: Draw k random i.i.d. samples S1, . . . , Sk from D, each of size bn/kc.
3: For each i ∈ [k], let wi ∈ argminw∈X L

λ
Si

(w).

4: For each i ∈ [k], ΣSi ← 1
|Si|
∑

(x,·)∈Si xx
>.

[Variant: S ← ∪i∈[k]Si; ΣS ← 1
|S|
∑

(x,·)∈S xx
>].

5: For each i ∈ [k], let ri be the median of the values in

{〈wi −wj , (ΣSj + λ Id)(wi −wj)〉 | j ∈ [k] \ {i}}.

[Variant: Use ΣS instead of ΣSj ].
6: Set i? := arg mini∈[k] ri.
7: Return ŵ := wi? .

Condition 1 (Srivastava and Vershynin 2013) There exists c, η > 0 such that

Pr
[
‖ΠΣ−1/2X‖22 > t

]
≤ ct−1−η, for t > c · rank(Π)

for every orthogonal projection Π in Rd.

Under this condition, we show the following guarantee for least squares regression.

Theorem 19 Assume Σ is not singular. If X satisfies Condition 1 with some fixed pa-
rameters c > 0 and η > 0, then if Algorithm 4 is run with n ≥ O(d log(1/δ)) and δ ∈ (0, 1),
with probability at least 1− δ,

Lsq(ŵ) ≤ Lsq
? +O

(
E‖Σ−1/2X(X>w? − Y )‖22 log(1/δ)

n

)
.

Our loss bound is given in terms of the following population quantity

E‖Σ−1/2X(X>w? − Y )‖22 (6)

which we assume is finite. This assumption only requires bounded low-order moments of
X and Y and is essentially the same as the conditions from Audibert and Catoni (2011)
(see the discussion following their Theorem 3.1). Define the following finite fourth-moment
conditions:

κ1 :=

√
E‖Σ−1/2X‖42
E‖Σ−1/2X‖22

=

√
E‖Σ−1/2X‖42

d
<∞ and

κ2 :=

√
E(X>w? − Y )4

E(X>w? − Y )2
=

√
E(X>w? − Y )4

Lsq
?

<∞.
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Under these conditions, E‖Σ−1/2X(X>w? − Y )‖22 ≤ κ1κ2dL
sq
? (via Cauchy-Schwartz); if

κ1 and κ2 are constant, then we obtain the bound

Lsq(ŵ) ≤
(

1 +O

(
d log(1/δ)

n

))
Lsq
?

with probability ≥ 1 − δ. In comparison, the recent work of Audibert and Catoni (2011)
proposes an estimator for linear regression based on optimization of a robust loss function
which achieves essentially the same guarantee as Theorem 19 (with only mild differences
in the moment conditions, see the discussion following their Theorem 3.1). However, that
estimator depends on prior knowledge about the response distribution, and removing this
dependency using Lepski’s adaptation method (Lepski, 1991) may result in a suboptimal
convergence rate. It is also unclear whether that estimator can be computed efficiently.

Other analyses for linear least squares regression and ridge regression by Srebro et al.
(2010) and Hsu et al. (2014) consider specifically the empirical minimizer of the squared
loss, and give sharp rates of convergence to Lsq

? . However, both of these require either
boundedness of the loss or boundedness of the approximation error. In Srebro et al.
(2010), the specialization of the main result to square loss includes additive terms of order
O(
√
L(w?)b log(1/δ)/n+ b log(1/δ)/n), where b > 0 is assumed to bound the square loss of

any predictions almost surely. In Hsu et al. (2014), the convergence rate includes an addi-
tive term involving almost-sure bounds on the approximation error/non-subgaussian noise
(The remaining terms are comparable to Eq. (9) for λ = 0, and Eq. (7) for λ > 0, up to
logarithmic factors). The additional terms preclude multiplicative approximations to L(w?)
in cases where the loss or approximation error is unbounded. In recent work, Mendelson
(2014) proposes a more subtle ‘small-ball’ criterion for analyzing the performance of the
risk minimizer. However, as evident from the lower bound in Remark 18, the empirical risk
minimizer cannot obtain the same type of guarantees as our estimator.

The next result is for the case where there exists R < ∞ such that Pr[X>Σ−1X ≤
R2] = 1 (and, here, we do not assume Condition 1). In contrast, Y may still be heavy-
tailed. Then, the following result can be derived using Algorithm 4. Moreover, the simpler
variant of Algorithm 4 suffices here.

Theorem 20 Assume Σ is not singular. Let ŵ be the output of the variant of Algorithm 4
with λ = 0. With probability at least 1− δ, for n ≥ O(R2 log(R) log(1/δ)),

Lsq(ŵ) ≤
(

1 +O

(
R2 log(2/δ)

n

))
Lsq
? .

Note that E(X>Σ−1X) = E tr(X>Σ−1X) = tr(Id) = d, therefore R = Ω(
√
d). If indeed

R = Θ(
√
d), then a total sample size of O(d log(d) log(1/δ)) suffices to guarantee a constant

factor approximation to the optimal loss. This is minimax optimal up to logarithmic fac-
tors (Nussbaum, 1999). We also remark that the boundedness assumption can be replaced
by a subgaussian assumption on X, in which case the sample size requirement becomes
O(d log(1/δ)).

In recent work of Mahdavi and Jin (2013), an algorithm based on stochastic gradient
descent obtains multiplicative approximations to L?, for general smooth and strongly convex
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losses `, with a sample complexity scaling with log(1/L̃). Here, L̃ is an upper bound on
L?, which must be known by the algorithm. The specialization of Mahdavi and Jin’s main
result to square loss implies a sample complexity of Õ(dR8 log(1/(δLsq

? )) if Lsq
? is known.

In comparison, Theorem 20 shows that Õ(R2 log(1/δ)) suffice when using our estimator. It
would be interesting to understand whether the bound for the stochastic gradient method
of Mahdavi and Jin (2013) can be improved, and whether knowledge of L? is actually
necessary in the stochastic oracle model. We note that the main result of Mahdavi and Jin
(2013) can be more generally applicable than Theorem 15, because Mahdavi and Jin (2013)
only assumes that the population loss L(w) is strongly convex, whereas Theorem 15 requires
the empirical loss LT (w) to be strongly convex for large enough samples T . While our
technique is especially simple for the squared loss, it may be more challenging to implement
well for other losses, because the local norm around w? may be difficult to approximate
with an observable norm. We thus leave the extension to more general losses as future work.

Finally, we also consider the case where X is a general, infinite-dimensional Hilbert
space, λ > 0, the norm of X is bounded, and Y again may be heavy-tailed.

Theorem 21 Let V > 0 such that Pr[〈X,X〉X ≤ V 2] = 1. Let ŵ be the output of
the variant of Algorithm 4 with λ > 0. With probability at least 1 − δ, as soon as n ≥
O((V 2/λ) log(V/

√
λ) log(2/δ)),

Lλ(ŵ) ≤
(

1 +O

(
(1 + V 2/λ) log(2/δ)

n

))
Lλ? .

If the optimal unregularized squared loss Lsq
? is achieved by w̄ ∈ X with 〈w̄, w̄〉X ≤ B2,

the choice λ = Θ(
√
Lsq
? V 2 log(2/δ)/(B2n)) yields that if n ≥ Õ(B2V 2 log(2/δ)/Lsq

? ) then

Lsq(ŵ) ≤ Lsq
? +O

(√
Lsq
? B2V 2 log(1/δ)

n
+

(Lsq
? +B2V 2) log(1/δ)

n

)
. (7)

By this analysis, a constant factor approximation for Lsq
? is achieved with a sample of

size Õ(B2V 2 log(1/δ)/Lsq
? ). As in the finite-dimensional setting, this rate is known to be

optimal up to logarithmic factors (Nussbaum, 1999). It is interesting to observe that in the
non-parametric case, our analysis, like previous analyses, does require knowledge of L? if λ
is to be set correctly, as in Mahdavi and Jin (2013).

5.2 Analysis

We now show how the analysis of Section 4 can be applied to analyze Algorithm 4. For a
sample T ⊆ Z, if LT is twice-differentiable (which is the case for squared loss), by Taylor’s
theorem, for any w ∈ X, there exist t ∈ [0, 1] and w̃ = tw? + (1− t)w such that

LT (w) = LT (w?) + 〈∇LT (w?),w −w?〉X +
1

2
〈w −w?,∇2LT (w̃)(w −w?)〉X,

Therefore, to establish a bound on nα, it suffices to control

Pr

[
inf

δ∈X\{0},w̃∈Rd
〈δ,∇2LT (w̃)δ〉X

‖δ‖2
≥ α

]
(8)

for an i.i.d. sample T from D. The following lemma allows doing just that.
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Lemma 22 (Specialization of Lemma 1 from Oliveira 2010) Fix any λ ≥ 0, and
assume 〈X, (Σ+λ Id)−1X〉X ≤ r2

λ almost surely. For any δ ∈ (0, 1), if m ≥ 80r2
λ ln(4m2/δ),

then with probability at least 1− δ, for all a ∈ X,

1

2
〈a, (Σ + λ Id)a〉X ≤ 〈a, (ΣT + λ Id)a〉X ≤ 2〈a, (Σ + λ Id)a〉X.

We use the boundedness assumption for sake of simplicity; it is possible to remove the
boundedness assumption, and the logarithmic dependence on the cardinality of T , under
different conditions on X (e.g., assuming Σ−1/2X has subgaussian projections, see Litvak
et al. 2005). We now prove Theorem 20, Theorem 21 and Theorem 19.

5.2.1 Ordinary Least Squares in Finite Dimensions

Consider first ordinary least squares in the finite-dimensional case. In this case X = Rd, the
inner product 〈a, b〉X = a>b is the usual coordinate dot product, and the second-moment
operator is Σ = E(XX>). We assume that Σ is non-singular, so L has a unique minimizer.
Here Algorithm 4 can be used with λ = 0. It is easy to see that Algorithm 4 with the variant
steps is a specialization of Algorithm 2 with subsampled empirical loss minimization when
` = `sq, with the norm defined by ‖a‖ =

√
a>ΣSa. We now prove the guarantee for finite

dimensional regression.

Proof [of Theorem 20] The proof is derived from Corollary 16 as follows. First, suppose for
simplicity that Σs = Σ, so that ‖a‖ =

√
a>Σa. It is easy to check that ‖ · ‖∗ is 1-smooth,

` is R2-smooth with respect to ‖ · ‖, and Lsq is 1-smooth with respect to ‖ · ‖. Moreover,
consider a random sample T . By definition

δ>∇2LT (w̃)δ

‖δ‖2
=
δ>ΣTδ

δ>Σδ
.

By Lemma 22 with λ = 0, Pr[inf{δ>ΣTδ/(δ>Σδ) : δ ∈ Rd \ {0}} ≥ 1/2] ≥ 5/6, provided
that |T | ≥ 80R2 log(24|S|2). Therefore n0.5 = O(R2 logR). We can thus apply Corollary 16
with α = 0.5, β = R2, β̄ = 1, γ = 1, and n0.5 = O(R2 logR), so with probability at least
1− δ, the parameter ŵ returned by Algorithm 4 satisfies

L(ŵ) ≤
(

1 +O

(
R2 log(1/δ)

n

))
L(w?), (9)

as soon as n ≥ O(R2 log(R) log(1/δ)).

Now, by Lemma 22, if n ≥ O(R2 log(R/δ)), with probability at least 1 − δ, the norm
induced by ΣS satisfies (1/2)a>Σa ≤ a>ΣSa ≤ 2a>Σa for all a ∈ Rd. Therefore, by a
union bound, the norm used by the algorithm is equivalent to the norm induced by the true
Σ up to constant factors, and thus leads to the same guarantee as given above (where the
constant factors are absorbed into the big-O notation).

The rate achieved in Eq. (9) is well-known to be optimal up to logarithmic factors (Nuss-
baum, 1999). A standard argument for this, which we reference in the sequel, is as follows.
Consider a distribution over Rd × R where X ∈ Rd is distributed uniformly over some
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orthonormal basis vectors e1, e2, . . . , ed, and Y := X>w? + Z for Z ∼ N (0, σ2) indepen-
dent of X. Here, w? is an arbitrary vector in Rd, R =

√
d, and the optimal square loss

is L(w?) = σ2. Among n independent copies of (X, Y ), let ni be the number of copies
with X = ei, so

∑d
i=1 ni = n. Estimating w? is equivalent to d Gaussian mean estimation

problems, with a minimax loss of

inf
ŵ

sup
w?

E
(
L(ŵ)

)
− L(w?) = inf

ŵ
sup
w?

E
(

1

d
‖ŵ −w?‖22

)
=

1

d

d∑
i=1

σ2

ni
≥ dσ2

n
=

dL(w?)

n
. (10)

Note that this also implies a lower bound for any estimator with exponential concentration.
That is, for any estimator ŵ, if there is some A > 0 such that for any δ ∈ (0, 1), P[L(ŵ) >
L(w?) +A log(1/δ)] < δ, then A ≥ E(L(ŵ)− L(w?)) ≥ dL(w?)/n.

5.2.2 Ridge Regression

In a general, possibly infinite-dimensional, Hilbert space X, Algorithm 4 can be used with
λ > 0. In this case, Algorithm 4 with the variant steps is again a specialization of Algo-
rithm 2 with subsampled empirical loss minimization when ` = `λ, with the norm defined
by ‖a‖ =

√
a>(ΣS + λ Id)a.

Proof [of Theorem 21] As in the finite-dimensional case, assume first that ΣS = Σ, and
consider the norm ‖ · ‖ defined by ‖a‖ :=

√
〈a, (Σ + λ Id)a〉X. It is easy to check that

‖ · ‖∗ is 1-smooth. Moreover, since we assume that Pr[〈X,X〉X ≤ V 2] = 1, we have
〈x, (Σ + λI)−1x〉X ≤ 〈x,x〉X/λ for all x ∈ X, so Pr[〈X, (Σ + λI)−1X〉X ≤ V 2/λ] = 1.
Therefore `λ is (1 + V 2/λ)-smooth with respect to ‖ · ‖. In addition, Lλ is 1-smooth with
respect to ‖ · ‖. Using Lemma 22 with rλ = V/λ, we have, similarly to the proof of
Theorem 20, n0.5 = O((V 2/λ) log(V/

√
λ)). Setting α = 0.5, β = 1 + V 2/λ, β̄ = 1, γ = 1,

and n0.5 as above, we conclude that with probability 1− δ,

Lλ(ŵ) ≤
(

1 +O

(
(1 + V 2/λ) log(1/δ)

n

))
Lλ(w?),

as soon as n ≥ O((V 2/λ) log(V/
√
λ) log(1/δ)). Again as in the proof of Theorem 20,

by Lemma 22 Algorithm 4 may use the observable norm a 7→ 〈a, (ΣS + λI)a〉1/2X in-

stead of the unobservable norm a 7→ 〈a, (Σ + λI)a〉1/2X by applying a union bound, if

n ≥ O((V 2/λ) log(2V/(δ
√
λ))), losing only constant factors, .

We are generally interested in comparing to the minimum square loss Lsq
? := infw∈X L

sq(w),
rather than the minimum regularized square loss infw∈X L

λ(w). Assuming the minimizer
is achieved by some w̄ ∈ X with 〈w̄, w̄〉X ≤ B2, the choice λ = Θ(

√
Lsq
? V 2 log(2/δ)/(B2n))

yields

Lsq(ŵ) + λ〈ŵ, ŵ〉X ≤ Lsq
? +O

(√
Lsq
? B2V 2 log(2/δ)

n
+

(Lsq
? +B2V 2) log(2/δ)

n

)
as soon as n ≥ Õ(B2V 2 log(2/δ)/Lsq

? ).
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By this analysis, a constant factor approximation for Lsq
? is achieved with a sample of

size Õ(B2V 2 log(1/δ)/Lsq
? ). As in the finite-dimensional setting, this rate is known to be

optimal up to logarithmic factors (Nussbaum, 1999). Indeed, a similar construction to that
from Section 5.2.1 implies

inf
ŵ

sup
w?

E
(
L(ŵ)− L(w?)) ≥ Ω

(
1

d
·
L?B

2V 2
∑d

i=1 n
−1
i

B2V 2 + L?
∑d

i=1 n
−1
i

)
≥ Ω

(
1

d
· L?B

2V 2d2/n

B2V 2 + L?d2/n

)
(11)

(here, X ∈ {V ei : i ∈ [d]} has Euclidean length V almost surely, and B is a bound on the
Euclidean length of w?). For d =

√
B2V 2n/σ2, the bound becomes

inf
ŵ

sup
w?

E
(
L(ŵ)− L(w?)) ≥ Ω

(√
L?B2V 2

n

)
.

As before, this minimax bound also implies a lower bound on any estimator with exponential
concentration.

5.2.3 Heavy-tail Covariates

When the covariates are not bounded or subgaussian, the empirical second-moment matrix
may deviate significantly from its population counterpart with non-negligible probability.
In this case it is not possible to approximate the norm ‖a‖ =

√
a>(Σ + λ Id)a in Step 2 of

Algorithm 2 using a single small sample (as discussed in Section 5.2.1 and Section 5.2.2).
However, we may use Algorithm 3 instead of Algorithm 2, which only requires the stochastic
distance measurements to be relatively accurate with some constant probability. The full
version of Algorithm 4 is exactly such an implementation.

We now prove Theorem 19. Define cη := 512(48c)2+2/η(6 + 6/η)1+4/η (which is Cmain

from Srivastava and Vershynin, 2013). The following lemma shows that O(d) samples suffice
so that the expected spectral norm distance between the empirical second-moment matrix
and Σ is bounded.

Lemma 23 (Implication of Corollary 1.2 from Srivastava and Vershynin, 2013)
Let X satisfy Condition 1, and let X1,X2, . . . ,Xn be independent copies of X. Let
Σ̂ := 1

n

∑n
i=1XiX

>
i . For any ε ∈ (0, 1), if n ≥ cηε−2−2/ηd, then

E‖Σ−1/2Σ̂Σ−1/2 − Id ‖2 ≤ ε.

Lemma 23 implies that n0.5 = O(c′ηd) where c′η = cη · 2O(1+1/η). Therefore, for k =
O(log(1/δ)), subsampled empirical loss minimization requires n ≥ k ·n0.5 = O(c′ηd log(1/δ))
samples to correctly implement APPROX‖·‖,ε, for ε as in Eq. (5).

Step 5 in Algorithm 4 implements DISTj
‖·‖ as returning fj such that fj(v) := ‖Σ1/2

Sj
(v−

wj)‖2. First, we show that Assumption 3 holds. By Lemma 23, an i.i.d. sample T of size
O(c′ηd) suffices so that with probability at least 8/9, for every v ∈ Rd,

(1/2)‖Σ1/2(v −wj)‖2 ≤ ‖Σ1/2
T (v −wj)‖2 ≤ 2‖Σ1/2(v −wj)‖2.
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In particular, this holds for T = Sj , as long as |Sj | ≥ O(c′ηd). Thus, for k = O(log(1/δ)),
Assumption 3 holds if n ≥ O(c′ηd log(1/δ)). Assumption 4 (independence) also holds, since
fj depends only on Sj , and S1, . . . , Sk are statistically independent.

Putting everything together, we have (as in Section 5.2.1) α = 0.5 and γ = 1. We obtain
the final bound from Theorem 17 as follows: if n ≥ O(c′ηd log(1/δ)), then with probability
at least 1− δ,

L(ŵ)− L(w?) = ‖Σ1/2(ŵ −w?)‖22 ≤ O

(
E‖Σ−1/2X(X>w? − Y )‖22 log(1/δ)

n

)
. (12)

6. Other Applications

In this section we show how the core techniques we discuss can be used for other applications,
namely Lasso and low-rank matrix approximation.

6.1 Sparse Parameter Estimation with Lasso

In this section we consider L1-regularized linear least squared regression (Lasso) (Tibshirani,
1996) with a random subgaussian design, and show that Algorithm 2 achieves the same fast
convergence rates for sparse parameter estimation as Lasso, even when the noise is heavy-
tailed.

Let Z = Rd × R and w? ∈ Rd. Let D be a distribution over Z, such that for (X, Y ) ∼
D, we have Y = X>w? + ε where ε is an independent random variable with E[ε] = 0
and E[ε2] ≤ σ2. We assume that w? is sparse: Denote the support of a vector w by
supp(w) := {j ∈ [d] : wj 6= 0}. Then s := | supp(w?)| is assumed to be small compared to
d. The design matrix for a sample S = {(x1, y1), . . . , (xn, yn)} is an l × d matrix with the
rows x>i .

For λ > 0, consider the Lasso loss `((x, y),w) = 1
2(x>w− y)2 + λ‖w‖1. Let ‖ · ‖ be the

Euclidean norm in Rd. A random vector X in Rd is subgaussian (with moment 1) if for
every vector u ∈ Rd, E[exp(X>u)] ≤ exp(‖u‖22/2).

The following theorem shows that when Algorithm 2 is used with subsampled empirical
loss minimization over the Lasso loss, and D generates a subgaussian random design, then
w can be estimated for any type of noise ε, including heavy-tailed noise.

In order to obtain guarantees for Lasso the design matrix must satisfy some regularity
conditions. We use the Restricted Eigenvalue condition (RE) proposed in Bickel et al.
(2009), which we presently define. For w ∈ Rd and J ⊆ [d], let [w]J be the |J |-dimensional
vector which is equal to w on the coordinates in J . Denote by w[s] the s-dimensional vector
with coordinates equal to the s largest coordinates (in absolute value) of w. Let w[s]C be
the (d − s)-dimensional vector which includes the coordinates not in w[s]. Define the set

Es = {u ∈ Rd \ {0} | ‖u[s]C‖1 ≤ 3‖u[s]‖1}. For an l × d matrix Ψ (for some integer l), let

γ(Ψ, s) = minu∈Es
‖Ψu‖2
‖u[s]‖2

. The RE condition for Ψ with sparsity s requires that γ(Ψ, s) > 0.

We further denote η(Ψ, s) = maxu∈Rd\{0}:| supp(u)|≤s
‖Ψu‖2
‖u‖2 .

Theorem 24 Let C, c > 0 be universal constants. Let Σ ∈ Rd×d be a positive semi defi-
nite matrix. Denote η := η(Σ

1
2 , s) and γ := γ(Σ

1
2 , s). Assume the random design setting
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defined above, with X = Σ
1
2Z, where Z is a subgaussian random vector. Suppose Algo-

rithm 2 uses subsampled empirical loss minimization with the empirical Lasso loss, with

λ = 2
√
σ2η2 log(2d) log(1/δ)/n. If n ≥ cs η

2

γ2
log(d) log(1/δ), then with probability 1−δ, The

vector ŵ returned by Algorithm 2 satisfies

‖ŵ −w?‖2 ≤
Cση

γ2

√
s log(2d) log(1/δ)

n
.

For the proof of Theorem 24, we use the following theorem, adapted from Bickel et al.
(2009) and Zhang (2009). The proof is provided in Appendix A for completeness.

Theorem 25 (Bickel et al. (2009); Zhang (2009)) Let Ψ = [Ψ1|Ψ2| . . . |Ψd] ∈ Rn×d
and ε ∈ Rn. Let y = Ψw? + ε and ŵ ∈ argminw

1
2‖Ψw − y‖22 + λ‖w‖1. Assume that

| supp(w?)| = s and that γ(Ψ, s) > 0. If ‖Ψ>ε‖∞ ≤ λ/2, then

‖ŵ −w?‖2 ≤
12λ
√
s

γ2(Ψ, s)
.

Proof [of Theorem 24] Fix i ∈ [k], and let ni = n/k. Let Ψ ∈ Rni×d be the design matrix
for Si and let wi be the vector returned by the algorithm in round i, wi ∈ argmin 1

2n‖Ψw−
y‖22 +λ‖w‖1. It is shown in Zhou (2009) that if ni ≥ C η2

γ2
s log(d) for a universal constant C,

then with probability 5/6, minu∈Es
‖Ψu‖2
‖Σ

1
2u‖2

≥ √ni/2. Call this event E . By the definition

of γ, we have that under E ,

γ(Ψ, s) = min
u∈Es

‖Ψu‖2
‖u[s]‖2

= min
u∈Es

‖Ψu‖2
‖Σ

1
2u‖2

‖Σ
1
2u‖2

‖u[s]‖2
≥
√
nγ/2.

If E holds and ‖Ψ>ε‖∞ ≤ nλ/2, then we can apply Theorem 25 (with nλ instead of λ).
We now show that this inequality holds with a constant probability. Fix the noise vector
ε = y −Ψw?. For l ∈ [d], since the coordinates of ε are independent and each row of Ψ is

an independent copy of the vector X = Σ
1
2Z, we have

E[exp([Ψ>ε]l) | ε] =
∏
j∈[n]

E[exp(Ψj,lεj) | ε] =
∏
j∈[n]

E[exp(Z(εjΣ
1
2el)) | ε].

Since ‖εjΣ
1
2el‖2 ≤ εjη, we conclude that

E[exp([Ψ>ε]l) | ε] ≤
∏
j∈[n]

exp(ε2
j/2) = exp(η2‖ε‖22/2).

Therefore, for ξ > 0

ξE[‖Ψ>ε‖∞ | ε] = E[max
l

(ξ|[Ψ>ε]l|) | ε] = E[log max
l

exp(ξ|[Ψ>ε]l|) | ε]

≤ E[log

(∑
l

exp(ξ[Ψ>ε]l) + exp(−ξ[Ψ>ε]i)

)
| ε]

≤ log

(∑
l

E[exp(ξ[Ψ>ε]l) | ε] + E[exp(−ξ[Ψ>ε]l) | ε]

)
≤ log(2d) + ξ2η2‖ε‖22/2.
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Since E[ε2
j ] ≤ σ2 for all j, we have E[‖ε‖2] ≤ niσ2/2. Therefore

E[‖Ψ>ε‖∞] ≤ log(2d)

ξ
+ ξniη

2σ2/2.

Minimizing over ξ > 0 we get E[‖Ψ>ε‖∞] ≤ 2
√
σ2η2 log(2d)ni/2. therefore by Markov’s

inequality, with probability at least 5/6, 1
ni
‖Ψ>ε‖∞ ≤ 2

√
σ2η2 log(2d)/ni = λ. With

probability at least 2/3 this holds together with E .

In this case, by Theorem 25,

‖wi −w?‖2 ≤
12λ
√
s

γ2(Ψ, s)
≤ 24

γ2

√
sσ2η2 log(2d)

ni
.

Therefore APPROX‖·‖,ε satisfies Assumption 1 with ε as in the right hand side above. The
statement of the theorem now follows by applying Proposition 9 with k = O(log(1/δ), and
noting that ni = O(n/ log(1/δ)).

It is worth mentioning that we can apply our technique to the fixed design setting,
where design matrix X ∈ Rn×d is fixed and not assumed to come from any distribution. If
X satisfies the RE condition, as well as a certain low-leverage condition—specifically, that
the statistical leverage scores (Chatterjee and Hadi, 1986) of any n×O(s) submatrix of X
be roughly O(1/(ks log d))—then Algorithm 2 can be used with the subsampled empirical
loss minimization implementation of APPROX‖·‖,ε to obtain similar guarantees as in the
random subgaussian design setting.

We note that while standard analyses of sparse estimation with mean-zero noise assume
light-tailed noise (Zhang, 2009; Bickel et al., 2009), there are several works that analyze
sparse estimation with heavy-tailed noise under various assumptions. For example, several
works assume that the median of the noise is zero (e.g., Wang 2013; Belloni and Cher-
nozhukov 2011; Zou and Yuan 2008; Wu and Liu 2009; Wang et al. 2007; Fan et al. 2012).
van de Geer and Müller (2012) analyze a class of optimization functions that includes the
Lasso and show polynomial convergence under fourth-moment bounds on the noise. Chat-
terjee and Lahiri (2013) study a two-phase sparse estimator for mean-zero noise termed the
Adaptive Lasso, proposed in Zou (2006), and show asymptotic convergence results under
mild moment assumptions on the noise.

6.2 Low-rank Matrix Approximation

The proposed technique can be easily applied also to low-rank covariance matrix approx-
imation for heavy tailed distributions. Let D be a distribution over Z = Rd and suppose
our goal is to estimate Σ = E[XX>] to high accuracy, assuming that Σ is (approximately)
low rank. Here X is the space of Rd×d matrices, and ‖ · ‖ is the spectral norm. Denote
the Frobenius norm by ‖ · ‖F and the trace norm by ‖ · ‖tr. For S = {X1, . . . ,Xn} ⊆ Rd,
define the empirical covariance matrix ΣS = 1

n

∑
i∈[n]XiX

>
i . We have the following result

for low-rank estimation:
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Lemma 26 (Koltchinskii et al. 2011) Let Σ̂ ∈ Rd×d. Assume λ ≥ ‖Σ̂ −Σ‖, and let

Σλ ∈ argmin
A∈Rd×d

1

2
‖Σ̂ −A‖2F + λ‖A‖tr, (13)

If λ ≥ ‖Σ̂ −Σ‖, then

1

2
‖Σ̂λ −Σ‖2F ≤ inf

A∈Rd×d

{
1

2
‖A−Σ‖2F +

1

2
(
√

2 + 1)2λ2 rank(A)

}
.

Now, assume condition 1 holds for X ∼ D, and suppose for simplicity that ‖Σ‖ ≤ 1.
In this case, by Lemma 23, A random sample S of size n′ = c′ηε

−2−2/ηd, where c′η =

cη(3/2)2+2/η suffices to get an empirical covariance matrix ΣS such that ‖ΣS−Σ‖ ≤ ε with
probability at least 2/3.

Given a sample of size n from D, We can thus implement APPROX‖·‖,ε that simply
returns the empirical covariance matrix of a sub-sample of size n′ = n/k, so that Assump-
tion 1 holds for an appropriate ε. By Proposition 9, Algorithm 2 returns Σ̂ such that
with probability at least 1 − exp(−k/18), ‖Σ̂ − A‖ ≤ 3ε. The resulting Σ̂ can be used to
minimize Eq. (13) with λ = 3ε := O

(
(c′ηd log(1/δ)/n)1/2(1+1/η)

)
. The output matrix Σλ

satisfies, with probability at least 1− δ,

1

2
‖Σλ −Σ‖2F ≤ inf

A∈Rd×d

{
1

2
‖A−Σ‖2F +O

(
(c′ηd log(1/δ)/n)1/(1+1/η)

)
· rank(A)

}
.

7. A Comparison of Robust Distance Approximation Methods

The approach described in Section 3 for selecting a single wi out of the set w1, . . . ,wk,
gives one Robust Distance Approximation procedure (see Def. 1), in which the wi with
the lowest median distance from all others is selected. In this section we consider other
Robust Distance Approximation procedures and their properties. We distinguish between
procedures that return y ∈W , which we term set-based, and procedures that might return
any y ∈ X, which we term space-based.

Recall that we consider a metric space (X, ρ), with W ⊆ X a (multi)set of size k and w?
a distinguished element. Let W+ := W ∪{w?}. In this formalization, the procedure used in
Algorithm 2 is to simply select y ∈ argminw∈W ∆W (w, 0), a set-based procedure. A natural
variation of this is the space-based procedure: select y ∈ argminw∈X ∆W (w, 0).6 A different
approach, proposed by Minsker (2013), is to select y ∈ argminw∈X

∑
w̄∈W ρ(w, w̄), that is to

minimize the geometric median over the space. Minsker analyzes this approach for Banach
and Hilbert spaces. We show that minimizing the geometric median also achieves similar
guarantees in general metric spaces.

In the following, we provide detailed guarantees for the approximation factor Cα of
the two types of procedures, for general metric spaces as well as for Banach and Hilbert
spaces, and for set-based and sample-based procedures. We further provide lower bounds
for specific procedures, as well as lower bounds that hold for any procedure. In Section 7.4

6. The space-based median distance approach might not always be computationally feasible; see discussion
in Section 7.4.
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we summarize the results and compare the guarantees of the two procedures and the lower
bounds. For a more useful comparison, we take into account the fact that the value of α
usually affects not only the approximation factor, but also the upper bound obtained for
∆W (w?, α).

7.1 Minimizing the Median Distance

Minimizing the median distance over the set of input points was shown in Proposition 8 to
achieve an approximation factor of 3. In this section we show that this upper bound on the
approximation factor is tight for this procedure, even in a Hilbert space. Here and below,
we say that an approximation factor upper bound is tight if for any constant smaller than
this upper bound, there are a suitable space and a set of points in that space, such that the
procedure achieves for this input a larger approximation factor than said constant.

The approximation factor can be improved to 2 for a sample-based procedure. This
factor is tight as well, even assuming a Hilbert space. The following theorem summarizes
these facts.

Theorem 27 Let k ≥ 2, and suppose that ∆W (w?, γ) ≤ ε for some γ > 0. Let y ∈
argminw∈W ∆W (w, 0). Further, suppose that W+ ⊆ X, and let ȳ ∈ argminw∈X ∆W (w, 0).
Then

• For any metric space, ρ(w?, y) ≤ 3ε;

• For any metric space, ρ(w?, ȳ) ≤ 2ε;

• There exists a set on the real line such that ρ(w?, y) = 3ε, where ρ is the distance
induced by the inner product;

• There exists a set on the real line such that ρ(w?, ȳ) = 2ε, where ρ is the distance
induced by the inner product.

Proof First, we prove the two upper bounds. Since ∆W (w?, γ) ≤ ε, we have |B(w?, ε) ∩
W | > k/2. Let w ∈ |B(w?, ε) ∩W |. Then by the triangle inequality, B(w, 2ε) ⊇ B(w?, ε).
Therefore ∆W (w, 0) ≤ 2ε. It follows that ∆W (y, 0) ≤ 2ε, hence |B(y, 2ε) ∩W | ≥ k/2. By
the pigeon hole principle, |B(w?, ε) ∩B(y, 2ε)| > 0, therefore ρ(w?, y) ≤ 3ε.

As for ȳ, since this is a minimizer over the entire space X which includes w?, we have
∆W (y, γ) ≤ ∆W (w?, γ) ≤ ε. Therefore, similarly to the argument for y, we have ρ(w?, y) ≤
2ε.

To see that these bounds are tight, we construct simple examples on the real line. For
y, suppose w? = ε, and consider W with k points as follows: k/2−1 points at 0, 2 points at
2ε, and k/2−1 points at 4ε. The points at 4ε are clearly in argminw∈W ∆W (w, 0), therefore
ρ(w?, y) = 3ε.

For ȳ, suppose w? = ε, and consider W with k points as follows: 2 points at 0, k/2− 1
points at 2ε, and k/2−1 points at 3ε. The points at 3ε are clearly in argminw∈W+

∆W (w, 0),
therefore ρ(w?, ȳ) = 2ε.
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The non-uniqueness of the median distance minimizer is exploited in the lower bounds in
Theorem 27. This suggests that some kind of aggregation of the median distance minimizers
may provide a smaller bound at least in certain scenarios.

7.2 The Geometric Median

For w ∈ X, denote the sum of distances from points in the input set by sumd(w) :=∑
v∈W ρ(w, v). Minsker (2013) suggests to minimize the sum of distances over the entire

space, that is, to select the geometric median. Minsker shows that when this procedure

is applied in a Hilbert space, Cα ≤
1
2

+α√
2α

, and for a Banach space Cα ≤ 1 + 1
2α . Here we

show that in fact Cα ≤ 1 + 1
2α for general metric spaces. The proof holds, in particular,

for Banach spaces, and thus this provide a more direct argument that does not require the
special properties of Banach spaces. We further show that for general metric spaces, this
upper bound on the approximation factor is tight.

Minimizing over the entire space is a computationally intensive procedure, involving
convex approximation. Moreover, if the only access to the metric is via estimated distances
based on samples, as in Algorithm 3, then there are additional statistical challenges. It is
thus of interest to also consider the simpler set-based procedure, and we provide approx-
imation guarantees for this procedure as well. We show that an approximation factor of
2 + 1

2α can be guaranteed for set-based procedures in general metric spaces, and this is also
tight, even for Banach spaces.

The following theorem provides a bound that holds in several of these settings.

Theorem 28 Let k ≥ 2. Let y ∈ argminw∈W sumd(w), and let ȳ ∈ argminw∈W+
sumd(w).

Then

1. For any metric space (X, ρ) and W,W+,

ρ(w?, y) ≤
(

2 +
1

2α

)
∆W (w?, α).

2. For any constant C < (2 + 1
2α), there exists a problem in a Banach space such that

ρ(w?, y) > C ·∆W (w?, α). Thus the upper bound above is tight.

3. For any metric space (X, ρ) and W,W+,

ρ(w?, ȳ) ≤
(

1 +
1

2α

)
∆W (w?, α).

4. For any constant C < (1 + 1
2α), there exists a problem in a metric space such that

ρ(w?, ȳ) > C · ∆W (w?, α). Thus the upper bound above is tight for general metric
spaces.

Proof Let w ∈ argminw∈B(w?,ε)∩W ρ(w, y). Let Z ⊂ B(w?, ε)∩W such that |Z| = k(1
2 +α)

(we assume for simplicity that k(1
2 + α) is an integer; the proof can be easily modified to
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accommodate the general case). For v ∈ Z, ρ(w, v) ≤ ρ(w,w?) + ρ(w?, v). For v ∈ W \ Z,
ρ(w, v) ≤ ρ(w, y) + ρ(y, v). Therefore

sumd(w) ≤
∑
v∈Z

(ρ(w,w?) + ρ(w?, v)) +
∑

v∈W\Z

(ρ(w, y) + ρ(y, v)).

By the definition of w as a minimizer, for v ∈ Z, ρ(y, v) ≥ ρ(y, w). Thus

sumd(y) ≥
∑
v∈Z

ρ(y, w) +
∑

v∈W\Z

ρ(y, v).

Since sumd(y) ≤ sumd(w), we get∑
v∈Z

ρ(y, w) +
∑

v∈W\Z

ρ(y, v) ≤
∑
v∈Z

(ρ(w,w?) + ρ(w?, v)) +
∑

v∈W\Z

(ρ(w, y) + ρ(y, v)).

Hence, since ρ(v, w?) ≤ ε for v ∈ Z,

(|Z| − |W \ Z|)ρ(w, y) ≤ 2|Z|ε.

Since |Z| = k(1
2 + α) it follows that ρ(w, y) ≤ (1 + 1

2α)ε. In addition,

ρ(w?, y) ≤ ρ(w,w?) + ρ(w, y) ≤ ε+ ρ(w, y),

therefore

ρ(w?, y) ≤
(

2 +
1

2α

)
ε.

This shows that for any metric space, the set-based geometric median gives an approxima-
tion factor of 2 + 1

2α , proving item 1.

For the space-based geometric median, consider w̄ ∈ argminw∈B(w?,ε)∩W ρ(w, ȳ). We
have sumd(ȳ) ≤ sumd(w?). In addition,

sumd(w?) ≤
∑
v∈Z

ρ(w?, v) +
∑

v∈W\Z

(ρ(w?, w̄) + ρ(w̄, ȳ) + ρ(ȳ, v)).

Therefore,∑
v∈Z

ρ(ȳ, w̄) +
∑

v∈W\Z

ρ(ȳ, v) ≤
∑
v∈Z

ρ(w?, v) +
∑

v∈W\Z

(ρ(w?, w) + ρ(w, ȳ) + ρ(ȳ, v)).

Since ρ(w?, v) ≤ ε for v ∈ Z, and ρ(w?, w̄) ≤ ε, it follows

(|Z| − |W \ Z|)ρ(w̄, ȳ) ≤ kε.

Therefore ρ(w̄, ȳ) ≤ 1
2αε, hence

ρ(w?, ȳ) ≤ ρ(w?, w̄) + ρ(w̄, ȳ) ≤
(

1 +
1

2α

)
ε.
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This gives an approximation factor of 1 + 1
2α for space-based geometric median, proving

item 3.

To see that both of these bounds are tight, let n = k(1
2 + α), and let X = W+ =

{v1, . . . , vn, y1, . . . , yk−n, w?}. Define ρ(·, ·) as follows (for all pairs i 6= j, l 6= t):

ρ(w?, vi) = ε

ρ(w?, yl) = β

ρ(vi, vj) = 2ε

ρ(vi, yt) = β − ε
ρ(yt, yl) = 0.

One can verify that for any β ≤ (2 + 1
2α −

1
kα)ε, sumd(yl) ≤ sumd(vi) for all l, i. Therefore,

the approximation factor for set-based geometric median in a general metric space is lower-
bounded by 2+ 1

2α for general k. This holds also for Banach spaces as well, Since any metric
space can be embedded into a Banach space (Kuratowski, 1935). This proves item 2.

For space-based geometric median, note that if β ≤ (1 + 1
2α)ε, then sumd(w?) ≥

sumd(yl). Therefore the space-based upper bound is tight for a general metric space. This
proves item 4.

Since α ∈ (0, 1
2), the guarantee for the geometric median in these settings is always

worse than the guarantee for minimizing the median distance. Factoring in the dependence
on α, the difference is even more pronounced. The full comparison is given in Section 7.4
below.

7.3 Optimal Approximation Factor

In this section we give lower bounds that hold for any robust distance approximation pro-
cedure. A lower bound of C > 0 for a category of metric spaces and a type of procedure
indicates that if a procedure of this type guarantees a distance approximation Cα for all
metric spaces of the given category, then necessarily Cα ≥ C. As shown below, in many
cases the lower bounds provided here match the upper bounds obtained by either the median
distance or the geometric median.

The following theorem gives a lower bound of 3 for the achievable approximation factor
of set-based procedures in Banach spaces (and so, also in general metric spaces). This factor
is achieved by the median distance minimizer, as shown in Theorem 27.

Theorem 29 Consider set-based robust distance approximation procedures. For any α ∈
(0, 1

2), and for any such procedure, there exists a problem in a Banach space for which the
approximation factor of the procedure is at least 3.

Proof Fix α, and let n = d 1
1
2
−αe. Define the metric space X = {a1, . . . , an, b1, . . . , bn} with

the metric ρ(·, ·) defined as follows: For all i 6= j, ρ(ai, aj) = 2, ρ(ai, bj) = 1, ρ(bi, bj) = 2.
For all i, ρ(ai, bi) = 3. See Figure 2 for illustration.

Consider the multi-set W with k/n elements at every bi. It is easy to check that for
every ai, ∆W (ai, α) ≤ ∆W (ai, 1/2 − 1/n) = 1. On the other hand, since the problem is
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a1
a2

a3

b2 b1

b3

Figure 2: The metric defined in Theorem 29 for n = 3. The distances are shortest paths on
the underlying undirected graph, where all edges are the same length.

symmetric for permutations of the indices 1, . . . , n, no procedure can distinguish the cases
w? = ai for different i ∈ [n]. For any choice y = bi ∈ W , if w? = ai then ρ(w?, y) = 3.
Therefore the approximation factor of any procedure is at least 3. Since any metric space
can be embedded into a Banach space (Kuratowski, 1935) this result holds also for Banach
spaces.

Next, we give a lower bound of 2 for space-based procedures over general metric spaces.
Theorem 27 shows that this factor is also achieved by minimizing the median distance.

Theorem 30 Consider robust space-based distance approximation procedures. For any α ∈
(0, 1

2), and for any such procedure, there exists a problem for which the approximation factor
of the procedure is at least 2.

Proof Fix α, and let n = d 1
1
2
−αe. Define the metric space X = {a1, . . . , an, b1, . . . , bn} with

the metric ρ(·, ·) defined as follows: For all i 6= j, ρ(ai, aj) = 2, ρ(ai, bj) = 1, ρ(bi, bj) = 1.
For all i, ρ(ai, bi) = 2. See Figure 3 for illustration.

a1
a2

a3

b2 b1

b3

Figure 3: The metric defined in Theorem 29 for n = 3. The distances are shortest paths on
the underlying undirected graph. The full lines are edges of length 1, the double
lines from ai to bi are edges of length 2.

Consider the multi-set W with k/n points at every bi. It is easy to check that for every
ai, ∆W (ai, α) ≤ ∆W (ai, 1/2−1/n) = 1. On the other hand, since the problem is symmetric
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for permutations of the indices 1, . . . , n, no procedure can distinguish the cases w? = ai for
different i ∈ [n]. Moreover, any point y in the space has ρ(ai, y) = 2 for at least one i ∈ [n].
Therefore the approximation factor of any procedure is at least 2.

For lower bounds on Hilbert spaces and Banach spaces, we require the following lemma,
which gives the radius of the ball inscribing the regular simplex in a p-normed space.

Lemma 31 Consider Rn with the p-norm for p > 1. Let e1, . . . , en be the standard basis
vectors, and let rn,p be the minimal number for which there exists an x ∈ Rn such that
B(x, r) ⊇ {e1, . . . , en}. Then rn,p = ((1+(n−1)−1/(p−1))−p+(n−1)(1+(n−1)1/(p−1))−p)1/p.
This radius is obtained with the center x such that for all i, xi = (1 + (n− 1)1/(p−1))−1.

Proof It is easy to see that due to symmetry, x = (a, a, . . . , a) for some real number a.
Thus rn,p = infa∈R ‖e1 − (a, . . . , a)‖p. We have ‖e1 − (a, . . . , a)‖pp = |1 − a|p + (n − 1)|a|p.
Minimizing over a gives a = (1 + (n− 1)1/(p−1))−1, and

rpn,p = |1− a|p + (n− 1)|a|p = (1 + (n− 1)−1/(p−1))−p + (n− 1)(1 + (n− 1)1/(p−1))−p.

We now prove a lower bound for robust distance approximation in Hilbert spaces. Unlike
the previous lower bounds, this lower bound depends on the value of α.

Theorem 32 Consider robust distance approximation procedures for (X, ρ) a Hilbert space.
For any α ∈ (0, 1

2), the following holds:

• For any set-based procedure, there exists a problem such that the procedure achieves
an approximation factor at least √√√√1 +

2⌈
1

1
2
−α

⌉
− 2

.

• For any space-based procedure, there exists a problem such that the procedure achieves
an approximation factor at least√√√√1 +

1⌈
1

1
2
−α

⌉2
− 2

⌈
1

1
2
−α

⌉ .
The space-based bound given in Theorem 32 is tight for α→ 1/2. This can be seen by

noting that the limit of the space-based lower bound for α → 1/2 is (1
2 + α)/

√
2α, which

is exactly the guarantee provided in Minsker (2013) for the space-based geometric median
procedure. For smaller α, there is a gap between the guarantee of Minsker for the geometric
median and our lower bound.

Proof Fix α, and let n = d 1
1
2
−αe. Consider the Euclidean space Rn with ρ(x, y) = ‖x− y‖.

Let e1, . . . , en be the standard basis vectors. These are the vertices of a regular simplex
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with side length ‖ei − ej‖ =
√

2. Let b1, . . . , bn such that bi is the center of the hyperface

of the simplex opposing ei. Then ‖bi − ej‖ = rn−1,2 for all j 6= i, where rn,2 =
√

n−1
n is as

defined in Lemma 31. (see Figure 4).

Consider W with k/n points at each of b1, . . . , bn. Then ∆W (ei, α) ≤ ∆W (ei, 1 − 1
n) =

‖ei−bj‖ = rn−1,2 for any j 6= i. Any set-based procedure must select bi for some i. if w? = ei,

the resulting approximation factor is ‖ei−bi‖/rn−1,2 =
√

n−2
n−1‖ei−bi‖. For ‖bi−ei‖, consider

for instance b1 and e1. We have b1 = (0, 1
n−1 , . . . ,

1
n−1), therefore ‖b1 − e1‖ =

√
n
n−1 . The

approximation factor of the procedure is thus at least
√

n
n−2 .

For a set-based procedure, whatever y it returns, there exists at least one i such that

‖y−ai‖ ≥ rn,2. Therefore the approximation factor is at least rn,2/rn−1,2 =
√

n−1
n /
√

n−2
n−1 =√

1 + 1
n2−2n

.

a1 a2

a3

a4

b2

Figure 4: The regular simplex in R3, n = 4. ai is a vertex, bi is the center of the face
opposite ai.

For space-based procedures, we have seen that while there exists a lower bound of 2 for
general metric spaces, in a Hilbert space better approximation factors can be achieved. Is
it possible that in Banach spaces the same approximation factor can also be achieved? The
following theorem shows that the answer is no.

Theorem 33 Let α = 1/6. There exists a Banach space for which an approximation factor
of (1

2 + α)/
√

2α cannot be achieved.

Proof Consider the space Rn with the distance defined by a p-norm. Let n = 1/(1
2−α) = 3.

Construct W as in the proof of Theorem 32, with k/n points in each of b1, . . . , bn, where bi
is the center (in the p-norm) of the hyperface opposing the basis vector ei. As in the proof
of Theorem 32, the approximation factor for any space-based procedure for this problem is

at least rn,p/rn−1,p. For p = 3/2, we have rn,p/rn−1,p = 2
51/3

> 2√
3

=
1
2

+α√
2α

.
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General Metric Banach Hilbert

Set-based

Optimal = 3 = 3

≥
√√√√1 +

2⌈
1

1
2
−α

⌉
− 2

α→1/2−−−−→ 1/
√

2α

Median distance = 3 = 3 = 3
Geometric median = 2 + 1/(2α) = 2 + 1/(2α) Open

Space-based

Optimal = 2
Strictly larger
than for Hilbert
spaces

≥
√√√√1 +

1⌈
1

1
2
−α

⌉2
− 2

⌈
1

1
2
−α

⌉
α→1/2−−−−→

1
2 + α
√

2α

Median distance = 2 = 2 = 2

Geometric median = 1 + 1/(2α) ≤ 1 + 1/(2α) (?) ≤ (1
2 + α)/

√
2α (?)

Table 1: Approximation factors for α ∈ (0, 1/2), based on type of procedure and type of
space. Results marked with (?) are due to Minsker (2013). Equality indicates
matching upper and lower bounds.

General Metric Banach Hilbert

Set-based
Optimal = 6 = 6 ≥ 3.46
Median distance = 6 = 6 = 6
Geometric median = 14.92 = 14.92 Open

Space-based
Optimal = 4 Open ≥ 2.31
Median distance = 4 = 4 = 4
Geometric median = 11.65 ≤ 11.65 ≤ 3.33

Table 2: Optimal normalized approximation factors based on the values of Cα given in
Table 1. The value in each case is infα∈(0, 1

2
)

Cα
( 1
2
−α)

for the corresponding Cα. All

non-integers are rounded to 2 decimal places.

34



Loss minimization and parameter estimation with heavy tails

7.4 Comparison of Selection Procedures

The results provided above are summarized in Table 1. When comparing different proce-
dures for different values of α, it is useful to compare not only the respective approximation
factors but also the upper bound that can be obtained for ∆W (w?, α). Typically, as in the
proof of Proposition 9, this upper bound will stem from first bounding E[ρ(w?, w)] ≤ ε,
where the expectation is taken over random i.i.d. draws of w, and then applying Markov’s
inequality to obtain P[ρ(w?, w) ≤ ε

1
2
−α ] ≥ 1

2 + α. In the final step Hoeffding’s inequality

guarantees that if k is large enough, |B(w?, ε/(
1
2 − α)) ∩W | approaches k(1

2 + α). There-
fore, for a large k and a procedure for α with an approximation factor Cα, the guarantee
approaches ρ(y, w?) ≤ Cα

( 1
2
−α)
· ε. For a procedure with an approximation factor Cα, we call

Cα
( 1
2
−α)

the normalized approximation factor of the procedure. This is the approximation

factor with respect to E[ρ(w?, α)]. When the procedure supports a range of α, the opti-
mal normalized factor can be found by minimizing Cα

( 1
2
−α)

over α ∈ (0, 1
2). If Cα = C is a

constant, the optimal normalized approximation factor is 2C, achieved when α = 0. The
optimal normalized approximation factors, based on the known approximation factors as a
function of α, are given in Table 2.

We observe that for set-based procedures, the median distance is superior to the ge-
ometric median for general metric spaces as well as for general Banach spaces. It is an
open question whether better results can be achieved for Hilbert spaces using set-based
procedures.

For space-based procedures, the median distance is again superior, except in the case
of a Hilbert space, where the geometric median is superior. The case of a Hilbert space is
arguably the most useful in common applications such as linear regression. Nevertheless,
gaps still remain and it would be interesting to develop optimal methods.

Implementing the geometric median procedure in a space-based formulation is compu-
tationally efficient for Hilbert spaces when accurate distances are available Minsker (2013).
However, it is unknown whether and how the procedure can be implemented when only
unreliable distance estimations are available, as in Section 3.3. A useful implementation
should be both computationally feasible and statistically efficient, while degrading the ap-
proximation factors as little as possible.

8. Predicting Without a Metric on Predictors

The core technique presented above allows selecting a good candidate out of a set that
includes mostly good candidates, in the presence of a metric between candidates. If the
final goal is prediction of a scalar label, good prediction can still be achieved without access
to a metric between candidates, using the following simple procedure: For every input data
point, calculate the prediction of every candidate, and output the median of the predictions.
This is a straight-forward generalization of voting techniques for classification such as when
using bagging (Breiman, 1996).7 The following lemma shows that this approach leads to
guarantees similar to those achieved by Proposition 9.

7. Note, however, that the usual implementation of bagging for regression involves averaging over the
outputs of the classifiers, and not taking the median.
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Lemma 34 Let D, ` : Z×X→ R+ and L : X→ R+ be defined as in Section 4. Assume that
Z = X ×Y, and there are functions f : X ×X→ R (the prediction function) and g : R×R
(the link function) such that `((x, y),w) = g(f(x,w), y). Assume that g is convex its first
argument. Suppose that we have k predictors w1, . . . , wk such that for at least (1

2 + γ)k of
them, L(w) ≤ ¯̀. For x ∈ X , y ∈ Y, let ŷ(x) be the median of f(x,w1), . . . , f(x,wk), and
let ˆ̀(x, y) = g(ŷ(x), y). Let L̂ := E[ˆ̀(ŷ(x))]. Then

L̂ ≤
(

1

2γ
+ 1

)
¯̀.

Proof Let I = {i : L(wi) ≤ ¯̀}. Assume without loss of generality that for i ∈ [k − 1],
f(x,wi) ≤ f(x,wi+1). Let t ∈ [k] such that ŷ(x) = f(x,wt). By the convexity of g, at
least one of g(f(x,wt), y) ≤ g(f(x,wt−1, y)) and g(f(x,wt), y) ≤ g(f(x,wt+1, y)) holds.
assume without loss of generality that the first inequality holds. It follows that for all i ∈ [t],
g(f(x,wi), y) ≥ g(f(x,wt, y)). Therefore,

ˆ̀(x, y) = g(f(x,wt), y)) ≤ 1

|I ∩ [t]|
∑
i∈I∩[t]

g(f(x,wi), y)

≤ 1

|I ∩ [t]|
∑
i∈I

g(f(x,wi), y) =
1

|I ∩ [t]|
∑
i∈I

`((x, y),wi).

Taking expectation over (x, y),

L̂ ≤ 1

|I ∩ [t]|
∑
i∈I

L(wi) ≤
|I|

|I ∩ [t]|
¯̀≤

1
2 + γ

γ
¯̀,

where the last inequality follows from the assumption that |I| ≥ (1
2 + γ)k.

A downside of this approach is that each prediction requires many applications of a pre-
dictor. If there is also access to unlimited unlabeled data, a possible approach to circumvent
this issue is to generate predictions for a large set of random unlabeled data points based
on the aggregate predictor, and then use the resulting labeled pairs as a training set to find
a single predictor with a loss that approaches the loss of the aggregate predictor. A similar
approach for derandomizing randomized classifiers was suggested by Kääriäinen (2005).

9. Conclusion

In this paper we show several applications of a generalized median-of-means approach to
estimation. In particular, for linear regression we establish convergence rates for heavy-
tailed distributions that match the min-max rates up to logarithmic factors. We further
show conditions that allow parameter estimation using the Lasso under heavy-tailed noise,
and cases under which low-rank covariance matrix approximation is possible for heavy-tailed
distributions.

The core technique is based on performing independent estimates on separate random
samples, and then combining these estimates. Other works have considered approaches
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which resemble this general scheme but provide other types of guarantees. For instance,
in Zhang et al. (2013), faster parallel kernel ridge regression is achieved by performing
loss minimizations on independent samples and then averaging the resulting estimators. In
Rakhlin et al. (2013), faster rates of convergence for regression for some classes of estimators
are achieved, using linear combinations of risk minimizers over subsets of the class of esti-
mators. These works, together with ours, demonstrate that empirical risk minimization can
be used as a black box to generate new algorithms with improved statistical performance.
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Appendix A. Proof of Theorem 25

From the definition of ŵ as a minimizer we have

‖Ψ(w? − ŵ)‖22 + 2λ‖ŵ‖1 ≤ 2λ‖w?‖1 + 2ε>Ψ(ŵ −w?). (14)

By Hölder’s inequality the assumptions of the theorem, 2ε>Ψ(ŵ − w?) ≤ 2‖ε>Ψ‖∞‖ŵ −
w?‖1 ≤ λ‖ŵ −w?‖1. Combining this with Eq. (14) gives

‖Ψ(w? − ŵ)‖22 ≤ 2λ‖w?‖1 − 2λ‖ŵ‖1 + λ‖ŵ −w?‖1.

Adding λ‖(ŵ −w)‖1 to both sides we get

‖Ψ(w? − ŵ)‖22 + λ‖ŵ −w?‖1 ≤ 2λ
(
‖ŵ −w?‖1 + ‖w?‖1 − ‖ŵ‖1

)
= 2λ

d∑
j=1

(
|ŵ[j]−w?[j]|+ |w?[j]| − |ŵ[j]|

)
= 2λ

∑
j∈supp(w)

(
|ŵ[j]−w?[j]|+ |w?[j]| − |ŵ[j]|

)
≤ 4λ

∑
j∈supp(w)

|ŵ[j]−w?[j]|

= 4λ‖[ŵ −w?]supp(w)‖1.

It follows that
‖[ŵ −w?]supp(w?)C‖1 ≤ 3‖[ŵ −w?]supp(w?)‖,

therefore ŵ −w? ∈ Es. Denote δ = ŵ −w. The above derivation also implies

‖Ψδ‖22 ≤ 3λ‖[δ]supp(w?)‖1 ≤ 3λ‖δ[s]‖1 ≤ 3λ
√
s‖δ[s]‖2.

Denote for brevity γ = γ(Ψ, s). From the definition of γ,

‖δ[s]‖22 ≤
1

γ2
‖Ψδ‖22 ≤

3λ
√
s‖δ[s]‖2
γ2

,
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Therefore ‖δ[s]‖2 ≤
3λ
√
s

γ2
. Now,

‖δ‖2 = ‖δ[s]C‖2 + ‖δ[s]‖2 ≤
√
‖δ[s]C‖1‖δ[s]C‖∞ + ‖δ[s]‖2.

From δ ∈ Es we get ‖δ[s]C‖1 ≤ 3‖δ[s]‖1. In addition, since δ[s] spans the largest coor-
dinates of δ in absolute value, ‖δ[s]C‖∞ ≤ ‖δ[s]‖1/s. Combining these with the inequality
above we get

‖δ‖2 ≤ 3‖δ[s]‖1/
√
s+ ‖δ[s]‖2 ≤ 4‖δ[s]‖2 ≤

12λ
√
s

γ2
.
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