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GREEDY APPROACHES TO SYMMETRIC ORTHOGONAL
TENSOR DECOMPOSITION∗
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Abstract. Finding the symmetric and orthogonal decomposition of a tensor is a recurring
problem in signal processing, machine learning, and statistics. In this paper, we review, establish,
and compare the perturbation bounds for two natural types of incremental rank-one approximation
approaches. Numerical experiments and open questions are also presented and discussed.
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1. Introduction. A p-way n-dimensional tensor T , namely, T ∈
⊗p Rn :=

Rn×n×···×n, is called symmetrically orthogonally decomposable [20, 30] (also known
as odeco in [26]) if it can be expressed as a linear combination over the real field
of symmetric pth powers of n vectors that generate an orthonormal basis of Rn.
Mathematically, T is symmetrically orthogonally decomposable if there exist λ =
[λ1, λ2, . . . , λn] ∈ Rn and an orthogonal matrix V = [v1,v2, . . . ,vn] ∈ Rn×n such that

T = λ1v
⊗p
1 + λ2v

⊗p
2 + · · ·+ λnv

⊗p
n ,(1.1)

where v⊗p, the symmetric pth power of the vector v, denotes a p-way n-dimensional
tensor with (v⊗p)i1i2···in = vi1vi2 · · · vin . The decomposition {(λi,vi)}i∈[n] is called
the symmetric orthogonal decomposition (SOD) of T with individual λi and vi, re-
spectively, called an eigenvalue and an eigenvector of T .1 The gist of our paper is to
find the SOD of T (potentially with perturbations), a recurring problem arising in
different contexts including higher-order statistical estimation [19], independent com-
ponent analysis [3, 4], and parameter estimation for latent variable models [1], just
to name a few.

From the expression (1.1), it is quite tempting to find (λi,vi) one by one in a
greedy manner using proper deflation procedures. Specifically, one first approximates
T by the best rank-one tensor,

(λ?,v?) ∈ arg min
λ∈R,‖v‖=1

∥∥T − λ · v⊗p∥∥
F
.(1.2)

After that, to find the next pair, one modifies the optimization problem (1.2) to ex-
clude the found eigenpair (λ?,v?). We next review two natural deflation procedures—
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residual deflation [35] and constrained deflation [15]—which incorporate the informa-
tion of (λ?,v?) into an optimization framework by altering, respectively, the objective
and the feasible set of problem (1.2).

Residual deflation. In residual deflation, the rank-one approximation is subtracted
from the original tensor, i.e., T ← T − λ? · (v?)⊗p, and then finds the best rank-one
approximation to the deflated tensor by solving (1.2) again. The complete scheme,
referred to as successive rank-one approximation with residual deflation (SROAwRD),
is described in Algorithm 1.

Algorithm 1. SROAwRD.

input a symmetric p-way tensor T̂ ∈
⊗p Rn.

1: initialize T̂ 0 ← T̂
2: for k = 1 to n do
3: (λ̂k, v̂k) ∈ arg minλ∈R,‖v‖=1

∥∥∥T̂ k−1 − λv⊗p
∥∥∥
F

.

4: T̂ k ← T̂ k−1 − λ̂kv̂⊗pk .
5: end for
6: return {(λ̂k, v̂k)}nk=1.

Constrained deflation. In constrained deflation, one restricts v to be nearly or-
thogonal to ±v? by solving problem (1.2) with the additional linear constraints −θ ≤
〈v?,v〉 ≤ θ, where θ > 0 is a prescribed parameter. The complete scheme, referred
to as successive rank-one approximation with constrained deflation (SROAwCD), is
described in Algorithm 2. At the kth iteration, rather than deflating the original ten-
sor T̂ by subtracting from it the sum of the (k − 1) rank-one tensors λ̂1v̂

⊗p
1 , λ̂2v̂

⊗p
2 ,

. . ., λ̂k−1v̂
⊗p
k−1 as the SROAwRD method does, the SROAwCD method imposes the

near-orthogonality constraints | 〈v, v̂i〉 | ≤ θ for i = 1, 2, . . . , k − 1.

Algorithm 2. SROAwCD.

input a symmetric p-way tensor T̂ ∈
⊗p Rn, parameter θ > 0.

1: initialize v̂0 ← 0
2: for k = 1 to n do
3: Solve the following optimization problem:

(λ̂k, v̂k) ∈ arg min
λ∈R,v∈Rn

∥∥∥T̂ − λv⊗p∥∥∥
F

(1.3)

s.t. ‖v‖ = 1
− θ ≤ 〈v, v̂i〉 ≤ θ, i = 0, 1, 2, . . . , k − 1

4: end for
5: return {(λ̂k, v̂k)}nk=1.

It is not hard to prove that given the SOD tensor T =
∑
i∈[n] λiv

⊗p
i as the

input, both SROAwRD and SROAwCD methods are capable of finding the eigenpairs
{(λi,vi)}i∈[n] exactly. In this paper, we focus on the more challenging case of tensors
that are only close to being symmetrically orthogonally decomposable.

Problem 1. Suppose the SOD tensor T =
∑
i∈[n] λiv

⊗p
i and that the perturbed

SOD tensor T̂ is provided as input to the SROAwRD and SROAwCD methods.
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Characterize the discrepancy between {(λi,vi)}i∈[n] and the components {(λ̂i, v̂i)}i∈[n]
found by these methods.

In this paper, we provide positive answers to Problem 1. The characterization
for SROAwRD was done in our previous paper [20]; we review the results in sec-
tion 3. The characterization for SROAwCD is the main contribution of the present
paper. These results can be regarded as higher-order generalizations of the Davis–
Kahan perturbation result [6] for matrix eigen-eigenvalue decomposition and is not
only of mathematical interest but also crucial to applications in signal processing,
machine learning, and statistics [19, 3, 4, 1], where the common interest is to find
the underlying eigenpairs {(λi,vi)} but the tensor collected is subject to inevitable
perturbations arising from sampling errors, noisy measurements, model specification,
numerical errors, and so on.

Organization. The rest of the paper is organized as follows. In section 2, we
introduce notation relevant to this paper. In section 3, we review theoretically what
is known about the SROAwRD method. In section 4, we provide a perturbation
analysis for the SROAwCD method.

2. Notation. In this section, we introduce some tensor notation needed in our
paper, largely borrowed from [18].

Symmetric tensor. A real p-way n-dimensional tensor A ∈
⊗p Rn := Rn×n×···×n,

A =
(
Ai1,i2,...,ip

)
, Ai1,i2,...,ip ∈ R, 1 ≤ i1, i2, . . . , ip ≤ n,

is called symmetric if its entries are invariant under any permutation of their indices,
i.e., for any i1, i2, . . . , ip ∈ [n] := {1, 2, . . . n},

Ai1,i2,...,ip = Aiπ(1),iπ(2),...,iπ(p)

for every permutation mapping π of [p].
Multilinear map. In addition to being considered as a multiway array, a tensor

A ∈
⊗p Rn can also be interpreted as a multilinear map in the following sense: for

any matrices Vi ∈ Rn×mi for i ∈ [p], we define A(V1,V2, . . . ,Vp) as a tensor in
Rm1×m2×···×mp whose (i1, i2, . . . , ip)th entry is

(A(V1,V2, . . . ,Vp))i1,i2,...,ip :=
∑

j1,j2,...,jp∈[n]

Aj1,j2,...,jp(V1)j1i1(V2)j2i2 · · · (Vp)jpip .

The following two special cases are quite frequently used in the paper:
• Vi = x ∈ Rn for all i ∈ [p]: Ax⊗p := A(x,x, . . . ,x), which defines a homogeneous

polynomial of degree p.
• Vi = x ∈ Rn for all i ∈ [p− 1], and Vp = I ∈ Rn×n:

Ax⊗p−1 := A(x, . . . ,x, I) ∈ Rn.

For a symmetric tensor A ∈
⊗p Rn, the differentiation result ∇x (Ax⊗p) = p ·(

Ax⊗p−1
)

can be established.
Inner product. For any tensors A, B ∈

⊗p Rn, the inner product between them
is naturally defined as



GREEDY APPROACHES TO TENSOR DECOMPOSITION 1213

〈A,B〉 :=
∑

i1,i2,...,ip∈[n]

Ai1,i2,...,ipBi1,i2,...,ip .

Tensor norms. Two tensor norms will be used in the paper. For a tensor A ∈⊗p Rn, its Frobenius norm is ‖A‖F :=
√
〈A,A〉, and its operator norm ‖A‖ is

defined as max‖xi‖=1 A(x1,x2, . . . ,xp). It is also well-known that for symmetric
tensors A, ‖A‖ can be equivalently defined as max‖x‖=1 |Ax⊗p| (see, e.g., [2, 36]).

3. Review on SROAwRD. Algorithm 1 is intensively studied in the tensor
community, though most papers [7, 35, 14, 31, 16, 9, 2, 36, 10, 13, 22, 34, 1, 12, 5]
focus on the numerical aspects of how to solve the best tensor rank-one approximation
(1.2). Regarding theoretical guarantees for the symmetric and orthogonal decomposi-
tion, Zhang and Golub [35] first prove that SROAwRD outputs the exact symmetric
and orthogonal decomposition if the input tensor is symmetric and orthogonally de-
composable:

Proposition 3.1 (see [35, Theorem 3.2]). Let T ∈
⊗p Rn be a symmetric ten-

sor with orthogonal decomposition T =
∑
i∈[n] λiv

⊗p
i , where λi 6=0 and {v1,v2, . . . ,vn}

forms an orthonormal basis of Rn. Let {(λ̂i, v̂i)}i∈[n] be the output of Algorithm 1
with input T . Then T =

∑
i∈[n] λ̂iv̂

⊗p
i , and moreover there exists a permutation π

of [n] such that for each j ∈ [n],

min
{
|λπ(j) − λ̂j |, |λπ(j) + λ̂j |

}
= 0,

min
{∥∥vπ(j) − v̂j

∥∥ , ∥∥vπ(j) + v̂j
∥∥} = 0.

The perturbation analysis was recently addressed in [20].

Theorem 3.2 (see [20, Theorem 3.1]). There exists a positive constant c such
that the following holds. Let T̂ := T +E ∈

⊗p Rn, where the ground truth tensor T is
symmetric with orthogonal decomposition T =

∑
i∈[n] λiv

⊗p
i , {v1,v2, . . . ,vn} forms

an orthonormal basis of Rn, λi 6= 0, and the perturbation tensor E is symmetric with
operator norm ε := ‖E‖. Assume ε ≤ c · λmin/n

1/(p−1), where λmin := mini∈[n] |λi|.
Let {(λ̂i, v̂i)}i∈[n] be the output of Algorithm 1 with input T̂ . Then there exists a
permutation π over [n] such that for each j ∈ [n],

min
{
|λπ(j) − λ̂j |, |λπ(j) + λ̂j |

}
≤ 2ε,

min
{∥∥vπ(j) − v̂j

∥∥ , ∥∥vπ(j) + v̂j
∥∥} ≤ 20ε/

∣∣λπ(j)
∣∣.

Theorem 3.2 generalizes Proposition 3.1 and provides perturbation bounds for the
SROAwRD method. Specifically, when the operator norm of the perturbation tensor
vanishes, i.e., ε = 0, Theorem 3.2 is reduced to Proposition 3.1; when ε is small enough
(i.e., ε = O(1/n1/(p−1))), the SROAwRD method is able to robustly recover the
eigenpairs {(λi,vi)}i∈[n] of the underlying symmetric and orthogonal decomposable
tensor T .

In Theorem 3.2, ε is required to be at most on the order of 1/n1/(p−1), which
decreases with increasing tensor size. It is interesting to explore whether this dimen-
sional dependency is essential.

Open Question 1. Can we provide a better analysis for the SROAwRD method
to remove the dimensional dependance on the noise level? Or can we design a concrete
example to corroborate the necessity of this dimensional dependency?
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The existence of the dimensional dependency, at least for the current proof in
Mu, Hsu, and Goldfarb [20], can be briefly explained as follows. At the end of the
kth iteration, we subtract the rank-one tensor λ̂kv̂

⊗p
k from T̂ k−1. Since (λ̂k, v̂k) only

approximates the underlying truth, this deflation procedure introduces additional
errors into T̂ k. Although [20] has made substantial efforts to reduce the cumulative
effect from sequential deflation steps, the perturbation error ε still needs to depend
on the iteration number in order to control the perturbation bounds of the eigenvalue
and eigenvector, and we tend to believe that the dimensional dependency in Theorem
3.2 is necessary.

In contrast, the SROAwCD method, instead of changing the objective, imposes
additional constraints, which force the next eigenvector v̂k to be nearly orthogonal to
{v̂1, v̂2, . . . , v̂k−1}. As the SROAwCD method alters the search space rather than the
objective in the optimization, there is hope that the requirement on the noise level
might be dimension-free. In the next section, we will confirm this intuition.

4. SROAwCD. In this section, we establish the first perturbation bounds that
have been given for the SROAwCD method for tensor SOD. The main result can be
stated as follows.

Theorem 4.1. Let T̂ := T + E ∈
⊗p Rn, where T is a symmetric tensor with

orthogonal decomposition T =
∑n
i=1 λiv

⊗p
i , {v1,v2, . . . ,vn} is an orthonormal basis

of Rn, λi 6= 0 for all i ∈ [n], and E is a symmetric tensor with operator norm
ε := ‖E‖. Assume 0 < θ ≤ 1/(2κ) and ε ≤ θ2λmin/12.5, where κ := λmax/λmin,
λmin := mini∈[n]|λi| and λmax := maxi∈[n]|λi|. Let {(λ̂i, v̂i)}i∈[n] be the output of
Algorithm 2 for input (T̂ , θ). Then there exists a permutation π of [n] such that for
all j ∈ [n],

min
{
|λπ(j) − λ̂j |, |λπ(j) + λ̂j |

}
≤ ε,(4.1)

min
{∥∥vπ(j) − v̂j

∥∥ , ∥∥vπ(j) + v̂j
∥∥} ≤ (6.2 + 4κ)ε/|λπ(j)|.(4.2)

Theorem 4.1 guarantees that for an appropriately chosen θ, the SROAwCD
method can approximately recover {(λi,vi)}i∈[n] whenever the perturbation error
ε is small. A few remarks immediately come to mind. First, Theorem 4.1 specifies
the choice of the parameter θ, which depends on the ratio of the largest to smallest
eigenvalues of T in absolute value. In subsection 4.2, we will see this dependency is
necessary through numerical studies. Second, in contrast to the SROAwRD method,
Theorem 4.1 does not require the noise level to be dependent on the tensor size. This
could be a potential advantage for the SROAwCD method.

The rest of this section is organized as follows. In subsection 4.1, we provide
the proof for Theorem 4.1. In subsection 4.2, we present numerical experiments to
corroborate Theorem 4.1. In subsection 4.3, we discuss issues related to determining
the maximum spectral ratio κ defined in Theorem 4.1.

4.1. Proof of Theorem 4.1. We will prove Theorem 4.1 by induction. For
the base case, we need the perturbation result regarding the best rank-one tensor
approximation, which is proven in [20] and can be regarded as a generalization of its
matrix counterpart [32, 6]. In the following, we restate this result [20, Theorem 2.2]
with a minor variation.

Lemma 4.2. Let T̂ := T + E ∈
⊗p Rn, where T is a symmetric tensor with

orthogonal decomposition T =
∑n
i=1 λiv

⊗p
i , {v1,v2, . . . ,vn} is an orthonormal basis
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of Rn, λi 6= 0 for all i ∈ [n], and E is a symmetric tensor with operator norm ε := ‖E‖.
Let (λ̂, v̂) ∈ arg minλ∈R,‖v‖=1 ‖T̂ − λv⊗p‖F . Then there exist j ∈ [n] such that

min
{
|λj − λ̂|, |λj + λ̂|

}
≤ ε and

min
{
‖vj − v̂‖ , ‖vj + v̂‖

}
≤ 10

(
ε

|λj |
+
(
ε

λj

)2
)
.

Now we are ready to prove our main Theorem 4.1.

Proof. Without loss of generality, we assume p ≥ 3 is odd, and λi > 0 for all
i ∈ [n] (as we can always flip the signs of the v′is to ensure this). Then problem (1.3)
can be equivalently written as

v̂k ∈ arg max
v∈Rn

T̂ v⊗p s.t. ‖v‖ = 1, and | 〈v, v̂i〉 | ≤ θ ∀ i ∈ [k − 1],(4.3)

and λ̂k = T̂ v̂⊗pk .
To prove the theorem, it suffices to prove that the following property holds for

each k ∈ [n]: there is a permutation π of [n] such that for every j ∈ [k],

|λπ(j) − λ̂j | ≤ ε and
∥∥vπ(j) − v̂j

∥∥ ≤ (6.2 + 4κ)ε
λπ(j)

.(∗)

We will prove (∗) by induction.
For the base case k = 1, Lemma 4.2 implies that there exists a j ∈ [n] satisfying

|λ̂1 − λj | ≤ ε, and ‖v̂1 − vj‖ ≤ 10
ε

λj

(
1 +

ε

λj

)
≤ 10.2ε

λj
≤ (6.2 + 4κ)

ε

λj
,

where we have used the fact that ε/λj ≤ ε/λmin ≤ θ2/12.5 ≤ 1/50.
Next we assume the induction hypothesis (∗) is true for k ∈ [n − 1] and prove

that there exists an l ∈ [n]\ {π(j) : j ∈ [k]} that satisfies

|λ̂k+1 − λl| ≤ ε and ‖v̂k+1 − vl‖ ≤
(6.2 + 4κ)ε

λπ(l)
.(4.4)

Denote x̂ := v̂k+1 and λ̂ := λ̂k+1. Then based on (4.3), one has

x̂ ∈ arg max
v∈Rn

T̂ v⊗p s.t. ‖v‖ = 1, | 〈v̂i,v〉 | ≤ θ ∀i ∈ [k],(4.5)

and λ̂ = T̂ x̂⊗p. Since {vi}i∈[n] forms an orthonormal basis, we may write x̂ =∑
i∈[n] xivi. Without loss of generality, we renumber

{(
λπ(i),vπ(i)

)}
i∈[k] to

{(λi,vi)}i∈[k] and renumber {(λi,vi)}i∈[n]\{π(i)|i∈[k]} to {(λi,vi)}i∈[n]\[k], respectively,
to satisfy

λ1|x1|p−2 ≥ λ2|x2|p−2 ≥ · · · ≥ λk|xk|p−2 and(4.6)

λk+1|xk+1|p−2 ≥ λk+2|xk+2|p−2 ≥ · · · ≥ λn|xn|p−2.

In the following, we will show that l = k + 1 is indeed the index satisfying (4.4).
The idea of the rest of the proof is as follows. We first provide lower and upper
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bounds for λ̂ = T̂ x̂⊗p, based on which we are able to show that |λ̂− λl| = O(ε) and
1 − | 〈v̂,vl〉 | = O(ε). However, Theorem 4.1 requires 1− | 〈v̂,vl〉 | = O(ε2). To close
this gap, we characterize the optimality condition of (4.5), use of which enables us to
sharpen the upper bound of 1− | 〈v̂,vl〉 |.

We first consider the lower bound for λ̂ by finding a v that is feasible for (4.5).
For each (i, j) ∈ [n]\[k]× [k], one has

| 〈vi, v̂j〉 | = |
〈
vi, v̂j − vπ(j)

〉
| ≤

∥∥v̂j − vπ(j)
∥∥(4.7)

≤ (6.2 + 4κ)ε
λπ(j)

≤ (6.2 + 4κ)θ2���λmin

12.5���λmin
=

(6.2 + 4κ)θ
12.5

· θ =
6.2 + 4κ

25κ
θ < θ,

where we have used the Cauchy–Schwarz inequality, and the facts π(j) ∈ [k],
〈
vi,vπ(j)

〉
= 0, ε ≤ θ2λmin/12.5, and θ ≤ 1/(2κ). Hence, {vi}i∈[n]\[k] are all feasible to problem

(4.5) and then we can naturally achieve a lower bound for λ̂, as

λ̂ = T̂ x̂⊗p ≥ max
i∈[n]\[k]

T̂ v⊗pi ≥ max
i∈[n]\[k]

λi − ε ≥ λk+1 − ε.(4.8)

Regarding the upper bound for λ̂, one has

λ̂ = T̂ x̂⊗p = (T + E)x̂⊗p =

(
n∑
i=1

λiv
⊗p
i + E

)
x̂⊗p

=
k∑
i=1

λix
p
i +

n∑
i=k+1

λix
p
i + Ex̂⊗p

≤
k∑
i=1

λi|xi|p−2x2
i +

n∑
i=k+1

λi|xi|p−2x2
i + Ex̂⊗p

≤ max{λ1|x1|p−2, λk+1|xk+1|p−2}+ ε,(4.9)

where the last line is due to the assumptions made in (4.6), ‖x‖ = 1 and ε = ‖E‖.
Combining (4.8) and (4.9), we have

λk+1 − ε ≤ max
i∈[n]\[k]

λi − ε ≤ λ̂ ≤ max{λ1|x1|p−2, λk+1|xk+1|p−2}+ ε.(4.10)

Also note that

λ1|x1|p−2 + ε(4.11)

≤ λ1|x1|+ ε = λ1| 〈x̂,v1〉 |+ ε = λ1|
〈
x̂, v̂π−1(1)

〉
+
〈
x̂,v1 − v̂π−1(1)

〉
|+ ε

≤ λ1|
〈
x̂, v̂π−1(1)

〉
|+ λ1

∥∥v1 − v̂π−1(1)
∥∥ + ε ≤ λ1θ + ��λ1

(6.2 + 4κ)ε

��λ1
+ ε

≤ λ1

2κ
+ 6.2ε+ 4κε+ ε ≤ λmin

2
+
λmin

12.5
+ 7.2ε < λmin − ε

≤ λk+1 − ε,

where we have used the facts that θ ≤ 1/(2κ), ε ≤ θ2λmin/12.5 ≤ λmin/50, and

4κε ≤ 4 · λmax

�
��λmin
· θ

2
���λmin

12.5
≤ �4 · λmax

12.5 · �4κ2 ≤
λmin

12.5
.
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Therefore, in order to satisfy (4.10), we must have

max{λ1|x1|p−2, λk+1|xk+1|p−2} = λk+1|xk+1|p−2,(4.12)

which simplifies (4.10) to

λk+1 − ε ≤ max
i∈[n]\[k]

λi − ε ≤ λ̂ ≤ λk+1|xk+1|p−2 + ε.(4.13)

Based on (4.13), we have that

λk+1 ≥ max
i∈[n]\[k]

λi − 2ε, |λk+1 − λ̂| ≤ ε, and(4.14)

|xk+1| ≥ |xk+1|p−2 ≥ λk+1 − 2ε
λk+1

= 1− 2ε
λk+1

.

Thus, we have achieved the eigenvalue perturbation bound (4.1) promised in the
theorem. Next, we will sharpen the eigenvector perturbation bound by exploiting the
optimality conditions for problem (4.5).

The key observation is that, at the point x̂, the constraint | 〈v̂i, x̂〉 | ≤ θ is not
active. To see this, for any i ∈ [k],

(4.15)

| 〈v̂i, x̂〉 |
= |
〈
vπ(i), x̂

〉
+
〈
v̂i − vπ(i), x̂

〉
| ≤ |xπ(i)|+

∥∥v̂i − vπ(i)
∥∥ ≤ |xπ(i)|+(6.2 + 4κ)ε/λmin

≤
√

1− x2
k+1 + (6.2 + 4κ)θ2/12.5 ≤

√
4ε/λmin + (6.2 + 4κ)θ/12.5 · θ

≤
√

4θ2

12.5
+
(

3.1
12.5

+
2

12.5

)
· θ < θ,

where the last line is due to (4.14) and the fact that κθ ≤ 1/2 and ε ≤ θ2λmin/12.5.
Therefore, only the equality constraint is active and will be involved in the optimality
conditions at the point x̂. Consider the Lagrangian function at the point x̂,

L(x̂, λ) = T̂ x̂⊗p − pλ

2

(
‖x̂‖2 − 1

)
,

where λ ∈ R corresponds to the (scaled) Lagrange multiplier for the equality con-
straint on the norm of x̂, which we have squared. Since the linear independent
constraint qualification [33, section 12.3] can be easily verified, by the first-order op-
timality conditions (also known as the KKT condition), there exists a λ̄ ∈ R such
that

1
p

(
∇L

(
x̂, λ̄

))
= T̂ x̂⊗p−1 − λ̄x̂ = 0.

Moreover, as ‖x̂‖ = 1, λ̄ = λ̄ 〈x̂, x̂〉 = T̂ x̂⊗p = λ̂. Thus, we have

λ̂x̂ = T̂ x̂⊗p−1 = λk+1x
p−1
k+1vk+1 +

∑
i6=k+1

λix
p−1
i vi + Ex̂⊗p−1.
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Consider the quantity

‖λk+1(x̂− vk+1)‖(4.16)

=
∥∥∥(λk+1 − λ̂)x̂+ (λ̂x̂− λk+1vk+1)

∥∥∥
=

∥∥∥∥∥∥(λk+1 − λ̂)x̂+ λk+1(xp−1
k+1 − 1)vk+1 +

∑
i6=k+1

λix
p−1
i vi + Ex̂⊗p−1

∥∥∥∥∥∥
≤|λk+1 − λ̂|+ λk+1|xp−1

k+1 − 1|+

∥∥∥∥∥∥
∑
i 6=k+1

λix
p−1
i vi

∥∥∥∥∥∥ +
∥∥Ex̂⊗p−1

∥∥ .
Thanks to the intermediate result (4.14), we have

(4.17)

|λk+1 − λ̂| ≤ ε,
∥∥Ex̂⊗p−1

∥∥ ≤ ε, and

λk+1|xp−1
k+1 − 1| = λk+1

(
1− |xk+1| · |xk+1|p−2

)
≤ λk+1

(
1−

(
1− 2

ε

λk+1

)2
)
≤ 4ε.

Moreover, for the term ‖
∑
i 6=k+1 λix

p−1
i vi‖, we can derive that

∥∥∥∥∥∥
∑
i 6=k+1

λix
p−1
i vi

∥∥∥∥∥∥ =

 ∑
i 6=k+1

λ2
ix

2p−2
i

1/2

≤ max
{
λ1|x1|p−2

, λk+2|xk+2|p−2
}√ ∑

i 6=k+1

x2
i ≤ 4κε.(4.18)

The last line holds due to (4.6) and for j ∈ {1, k + 2},

λj |xj |p−2
√ ∑
i 6=k+1

x2
i ≤ λj

√
1− x2

k+1 ·
√

1− x2
k+1 = λj(1− x2

k+1) ≤ 4λjε
λk+1

≤ 4κε,

(4.19)

where we have used
∑
i∈[n] x

2
i = 1 and (4.14).

Therefore, by substituting (4.17) and (4.18) into (4.16), one has

‖λk+1(x̂− vk+1)‖ ≤ (6 + 4κ)ε,

which leads to the desired bound ‖x̂− vk+1‖ ≤ (6.2 + 4κ)ε/λk+1.
By mathematical induction, we complete the proof.

4.2. Numerical experiments. In this subsection, we present three sets of nu-
merical experiments to corroborate our theoretical findings in Theorem 4 regarding the
SROAwCD method.2 We solve the main subproblem (1.3) via the general polynomial

2All codes used in this paper are available from https://sites.google.com/site/mucun1988/publi.

https://sites.google.com/site/mucun1988/publi.
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Fig. 1. Histograms for the eigenvalue and eigenvector perturbations in the first experiment.

The left figure plots the histogram of the (normalized) eigenvalue perturbations. All perturbations in
the eigenvalues are upper bounded by 1, which is consistent with Theorem 4. The right figure plots
the histogram of the (normalized) eigenvector perturbations. All perturbations in the eigenvectors
are upper bounded by 1, which is also consistent with Theorem 4.

solver GloptiPoly 3 [11], which is a global solver based on the sum-of-squares framework
[27, 21, 24, 17, 25].

Experiment 1. In this experiment, we will synthetically verify the perturbation
bounds stated in Theorem 4. We generate nearly symmetric orthogonally decompos-
able tensor T̂ = T +E ∈ R5×5×5 in the following manner. The underlying symmetric
orthogonally decomposable tensor T is set as the diagonal tensor with all diagonal
entries equal to 300, i.e., T =

∑5
i=1 300 · e⊗3

i , and the perturbation tensors E are
produced by symmetrizing a randomly generated 5×5×5 tensor whose entries follow
standard normal distribution independently. We set θ to be 1/(2κ) = 1/2 (as sug-
gested in Theorem 4.1). We test 1000 random instances. Figure 1 plots the histogram
of perturbations in both eigenvalue and eigenvector. As depicted in Figure 1, both
types of perturbations are well controlled by the bounds provided in Theorem 4.

Experiment 2. In Theorem 4, the parameter θ is suggested to be set to 1/(2κ). In
this experiment, we compare the performance of SROAwCD with θ = 1/(2κ) = 1/2
and θ = 0 based on the criterion∥∥∥∥∥T −

5∑
i=1

λ̂iv̂
⊗3
i

∥∥∥∥∥
F

.(4.20)

The tensors are generated in the same way as in the first experiment. Among all
the 1000 random cases, the SROAwCD method with θ = 1/2 consistently outperforms
the one with θ = 0. This makes intuitive sense. As (λ̂k, v̂k) only approximate the
underlying truth, setting θ = 0, which forces strict orthogonality, tends to introduce
additional errors into the problem.

Experiment 3. In Theorem 4, the parameter θ is suggested to be set to 1/(2κ),
which depends on κ. In this experiment, we will demonstrate the necessity of this
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Fig. 2. Performance comparison for the SROAwCD method with θ = 1/2 and θ = 0 in the
second experiment. As plotted in the left figure, with respect to the criterion (4.20), the SROAwCD
method with θ = 1/2 outperforms the one with θ = 0 for all randomly generated cases. The right
figure is the boxplot of the differences in (4.20) between the two approaches.

dependency. We consider the SOD tensor T = 1000 ·e⊗3
1 +

∑5
i=2 100 ·e⊗3

i with E = 0.
We first apply the SROAwCD method with θ = 1/2. The output is as follows:

λ̂ = (1000.00, 189.95, 189.95, 189.95, 189.95)>, and

v̂1 = (1.00, 0.00, 0.00, 0.00, 0.00)>,

v̂2 = (0.50, 0.00, 0.87, 0.00, 0.00)>,

v̂3 = (0.50, 0.00, 0.00, 0.87, 0.00)>,

v̂4 = (0.50, 0.87, 0.00, 0.00, 0.00)>,

v̂5 = (0.50, 0.00, 0.00, 0.00, 0.87)>,

which deviate greatly from the underlying eigenvalues and eigenvectors of T . Next,
we apply the SROAwCD method again with θ = 1/(2κ) = 1/20 and the output is as
follows:

λ̂ = (1000.00, 100.00, 100.00, 100.00, 100.00)>, and

v̂1 = (1.00, 0.00, 0.00, 0.00, 0.00)>,

v̂2 = (0.00, 0.00, 1.00, 0.00, 0.00)>,

v̂3 = (0.00, 1.00, 0.00, 0.00, 0.00)>,

v̂4 = (0.00, 0.00, 0.00, 0.00, 1.00)>,

v̂5 = (0.00, 0.00, 0.00, 1.00, 0.00)>,

which exactly recovers (up to a permutation) the underlying eigenvalues and eigen-
vectors of T .

4.3. Determination of the maximum spectral ratio κ. As suggested by
Theorem 4.1, to choose a proper θ for the SROAwCD method, we need a rough
estimate for κ. This is not much of a problem, especially for applications in statistics
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and machine learning, due to several reasons. First, in many problems, we know
the maximum spectral ratio κ in advance. For example, if we apply independent
component analysis [3, 4] to the dictionary learning model considered in [28, 29], it is
known that κ = 1. Moreover, we can always pick the most favorable estimates for κ
using cross validation [8, section 7.10] based on the prediction errors. Furthermore,
as a supplement, we can modify Algorithm 2 to allow the algorithm to determine the
appropriate θ at each step through adaptive learning. We present the analysis of this
modification in the appendix.

5. Conclusion. In this paper, we are concerned with finding the (approximate)
symmetric and orthogonal decomposition of a nearly symmetric and decomposable
tensor. Two natural incremental rank-one approximation approaches, the SROAwRD
and the SROAwCD methods, have been considered. We first reviewed the existing
perturbation bounds for the SROAwRD method. Then we established the first per-
turbation results for the SROAwCD method that have been given and discussed issues
and potential advantages of this approach. Numerical results were also presented to
corroborate our theoretical findings.

We hope our discussion can also shed light on the numerical side. In the SROAwRD
method, the main computational bottleneck is the tensor best rank-one approximation
problem (1.2), to which a large amount of attention from a numerical optimization
point of view has been paid and for which many efficient numerical methods (e.g.,
[7, 35, 14, 31, 16, 9, 2, 36, 10, 13, 22, 34]) have been successfully proposed. In
the SROAwCD method, the main computational concern is problem (1.3), which is
similar to but slightly more complicated than problem (1.2) with additional linear
inequalities. Though general-purpose polynomial solvers based on the sum-of-squares
framework [27, 21, 24, 17, 25, 11, 23] can be utilized (as we did in subsection 4.2),
more efficient and scalable methods (e.g., projected gradient method [33], semidefinite
programming relaxations [13, 22, 12]), specifically tailored to the structure of (1.3),
may be anticipated. This is definitely a promising future research direction.

Appendix A. Adaptive SROAwCD. In this section, we provide a modifica-
tion to the SROAwCD method that adaptively learns an appropriate θ at each step
based on the information collected so far. The complete algorithm is described in
Algorithm 3. Note that we initially set θ as 1/2 (which is the largest value allowed in
Theorem 4.1), and gradually reduce it by checking certain conditions.

Theorem A.1. Let T̂ := T + E ∈
⊗p Rn, where T is a symmetric tensor with

orthogonal decomposition T =
∑n
i=1 λiv

⊗p
i , {v1,v2, . . . ,vn} is an orthonormal basis

of Rn, λi 6= 0 for all i ∈ [n], and E is a symmetric tensor with operator norm
ε := ‖E‖. Assume ε ≤ λmin/70κ2, where κ := λmax/λmin, λmin := mini∈[n]|λi|, and
λmax := maxi∈[n]|λi|. Then Algorithm 3 terminates in a finite number of steps and
its output {(θi, λ̂i, v̂i)}i∈[n] satisfies

1/2 = θ1 ≥ θ2 ≥ · · · ≥ θn > 0.96/2κ,

and there exists a permutation π of [n] such that for each j ∈ [n]

min
{
|λπ(j) − λ̂j |, |λπ(j) + λ̂j |

}
≤ ε,

min
{∥∥vπ(j) − v̂j

∥∥ , ∥∥vπ(j) + v̂j
∥∥} ≤ (6.2 + 4κ)ε/|λπ(j)|.

Remark 1. The condition in line 5 of Algorithm 3 consists of two components,
which are desired properties mainly inspired by the proof of Theorem 4.1. The first
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Algorithm 3. Adaptive successive rank-one approximation with constrained
deflation.
input symmetric tensor T̂ ∈

⊗p Rn.
1: initialize θ ← 1/2 and v0 ← 0
2: for k = 1 to n do
3: Solve the following optimization problem:

(λ̂k, v̂k) ∈ arg min
λ∈R,v∈Rn

∥∥∥T̂ − λv⊗p∥∥∥
F

(A.1)

s.t. ‖v‖ = 1
| 〈v, v̂i〉 | ≤ θ, i ∈ [k − 1]

to obtain (λ̂k, v̂k).
4:
5: while there exists one i ∈ [k− 1] such that | 〈v̂k, v̂i〉 | ≥ min{λ̂k/1.35λ̂i, θ} do
6: θ ← 0.96 · θ
7: Solve problem (A.1) again to replace (λ̂k, v̂k)
8: end while
9: θk ← θ

10: end for
11: return {(θk, λ̂k, v̂k)}k∈[n].

desired inequality |〈v̂k, v̂i〉| < λ̂k/1.35λ̂i would allow us to establish properties similar
to (4.12). The second desired inequality |〈v̂k, v̂i〉| < θ would help us make use of the
optimality condition to sharpen the perturbation bounds for the eigenvectors. The
constants chosen in Algorithm 3 and Theorem A.1, mainly for illustrative purposes,
might be better optimized.

Proof. Similar to the proof for Theorem 4.1, without loss of generality, we assume
p ≥ 3 is odd, and λi > 0 for all i ∈ [n]. Then problem (A.1) can be equivalently
written as

v̂k ∈ arg max
v∈Rn

T̂ v⊗p s.t. ‖v‖ = 1, and | 〈v, v̂i〉 | ≤ θ ∀ i ∈ [k − 1],(A.2)

and λ̂k = T̂ v̂⊗pk .
Our proof is by induction.
The base case regarding (θ1, λ̂1, v̂1) is the same as the base case in the proof of

Theorem 4.1.
We now make the induction hypothesis that for some k ∈ [n−1], {(θi, λ̂i, v̂i)}i∈[k]

satisfies
1/2 = θ1 ≥ θ2 ≥ · · · ≥ θk > 0.96/2κ,

and there exists a permutation π of [n] such that

|λπ(j) − λ̂j | ≤ ε,
∥∥vπ(j) − v̂j

∥∥ ≤ (6.2 + 4κ)ε/λπ(j) ∀j ∈ [k].

Then we are left to prove that

0.96/2κ < θk+1 ≤ θk,(A.3)
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and there exists an l ∈ [n]\ {π(j) : j ∈ [k]} that satisfies

|λ̂k+1 − λl| ≤ ε and ‖v̂k+1 − vl‖ ≤
(6.2 + 4κ)ε

λπ(l)
.(A.4)

To prove that θk+1 >
0.96
2κ , we show that whenever θ ∈ ( 0.96

2κ ,
1
2κ ], the condition

for the while loop in line 5 of Algorithm 3 will always be satisfied, so θ can never be
reduced to any value below 0.96

2κ .
Consider θ ∈ ( 0.96

2κ ,
1
2κ ], and denote

x̂ ∈ arg max
v∈Rn

T̂ v⊗p s.t. ‖v‖ = 1, and | 〈v, v̂i〉 | ≤ θ ∀ i ∈ [k],(A.5)

and λ̂ = T̂ x̂⊗p. As θ ≤ 1/2κ and ε ≤ λmin/70κ2 ≤ 0.962λmin
4·12.5·κ2 ≤ θ2λmin/12.5, results

from Theorem 4.1 and its proof can be directly borrowed. Based on (4.7), we know
that for any i ∈ {π(j) | j ∈ [n]\[k]}, vi is feasible to problem (A.5). Then it can be
easily verified that

λ̂ ≥ max
i∈{π(j) | j∈[n]\[k]}

(T + E)v⊗pi ≥ λmin − ε.(A.6)

Moreover, for any i ∈ [k],

λ̂i ≤ max
‖v‖=1

T v⊗p + max
‖v‖=1

Ev⊗p = λmax + ε.(A.7)

Using (A.6) and (A.7), we obtain that for each i ∈ [k],

λ̂

1.35λ̂i
≥ λmin − ε

1.35(λmax + ε)
≥ λmin − λmin/70κ2

1.35(λmax + λmin/70κ2)
≥ 69/70 · λmin

1.35 · 71/70 · λmax
>

1
2κ
≥ θ.

(A.8)

Based on (4.15), we also know that for all i ∈ [k],

| 〈v̂i, x̂〉 | < θ.(A.9)

So, the combination of (A.8) and (A.9) leads to

| 〈v̂i, x̂〉 | < θ = min

{
θ,

λ̂

1.35λ̂i

}
∀i ∈ [k],(A.10)

which implies that x̂ satisfies the condition in the while loop. Therefore, as we argued
previously, we must have θk+1 >

0.96
2κ . So θk+1 is either in ( 0.96

2κ ,
1
2κ ] or in ( 1

2κ ,
1
2 ].

For the first case, i.e., θk+1 ∈ ( 0.96
2κ ,

1
2κ ], we can directly establish the result by

using the argument for the induction hypothesis (∗) in the proof of Theorem 4.1.
Hence in the following, we only focus on the second case where θk+1 ∈ ( 1

2κ ,
1
2 ].

Denote x̂ =
∑
i∈[n] xivi := v̂k+1 and λ̂ := λ̂k+1. Without loss of generality, we

renumber
{(
λπ(i),vπ(i

)}
i∈[k] to {(λi,vi)}i∈[k] and renumber {(λi,vi)}i∈[n]\{π(i)|i∈[k]}

to {(λi,vi)}i∈[n]\[k], respectively, to satisfy

λ1|x1|p−2 ≥ λ2|x2|p−2 ≥ · · · ≥ λk|xk|p−2 and(A.11)

λk+1|xk+1|p−2 ≥ λk+2|xk+2|p−2 ≥ · · · ≥ λn|xn|p−2.
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In the following, we will show that l = k + 1 is the index satisfying (A.4).
Based on (A.2),

x̂ ∈ arg min
v∈Rn

T̂ v⊗p subject to ‖v‖ = 1, | 〈v̂i,v〉 | ≤ θk+1 for any i ∈ [k],
(A.12)

and λ̂ = T̂ x̂⊗p. We now bound λ̂ from below and above.
We first consider the lower bound by finding a v that is feasible for (A.12). For

any (i, j) ∈ [n]\[k]× [k], one has

| 〈vi, v̂j〉 | = |
〈
vi,vπ(j) + v̂j − vπ(j)

〉
| = |

〈
vi,vπ(j)

〉
+
〈
vi, v̂j − vπ(j)

〉
|

= |
〈
vi, v̂j − vπ(j)

〉
|

≤
∥∥v̂j − vπ(j)

∥∥≤ (6.2 + 4κ)ε/λπ(j) ≤ (6.2 + 4κ)λmin/(70κ2λmin)<
1

2κ
≤ θk.

Hence, {vi}i∈[n]\[k] are all feasible to problem (A.12) and then we can easily achieve

a lower bound for λ̂, as

λ̂ = T̂ x̂⊗p ≥ max
i∈[n]\[k]

T̂ v⊗pi ≥ max
i∈[n]\[k]

λi − ε ≥ λk+1 − ε.(A.13)

Regarding the upper bound, one has

λ̂ = T̂ x̂⊗p = (T + E)x̂⊗p =

(
n∑
i=1

λiv
⊗p
i + E

)
x̂⊗p

≤ max{λ1|x1|p−2, λk+1|xk+1|p−2}+ ε,(A.14)

as in (4.9).
Combining (A.13) and (A.14), we have

λk+1 − ε ≤ max
i∈[n]\[k]

λi − ε ≤ λ̂ ≤ max{λ1|x1|p−2, λk+1|xk+1|p−2}+ ε.(A.15)

Also note that

λ1|x1|p−2 + ε ≤ λ1|x1|+ ε ≤ λ1| 〈x̂,v1〉 |
+ ε = λ1|

〈
x̂, v̂π−1(1)

〉
+
〈
x̂,v1 − v̂π−1(1)

〉
|+ ε

≤ λ1|
〈
x̂, v̂π−1(1)

〉
|+ λ1

∥∥v1 − v̂π−1(1)
∥∥

+ ε ≤ λ1
λ̂

1.35λ̂π−1(1)
+ (6.2 + 4κ)λ1ε/λ1 + ε < λ̂.

Here, we have used ε ≤ λ̂
69 , due to ε ≤ λmin

70 and λ̂ ≥ λmin − ε. Therefore, in order to
satisfy (A.15), we must have

λk+1|xk+1|p−2 = max{λ1|x1|p−2, λk+1|xk+1|p−2},(A.16)

which simplifies (A.15) to

λk+1 − ε ≤ max
i∈[n]\[k]

λi − ε ≤ λ̂ ≤ λk+1|xk+1|p−2 + ε.(A.17)
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Hence,

λk+1 ≥ max
i∈[n]\[k]

λi − 2ε, |λk+1 − λ̂| ≤ ε, and

|xk+1| ≥ |xk+1|p−2 ≥ λk+1 − 2ε
λk+1

= 1− 2ε
λk+1

.

The eigenvector perturbation bound can be sharpened by exploiting the optimal-
ity condition of problem (A.12) as we did in the proof of Theorem 4.1. As explicitly
required in the algorithm, the constraint | 〈v̂i, x̂〉 | ≤ θk is not active for any i ∈ [k] at
the point x̂. Then by the optimality condition, we again have

λ̂x̂ = T̂ x̂⊗p−1.

By applying exactly the same argument as in the proof of Theorem 4.1, we can obtain

‖λk+1(x̂− vk+1)‖ ≤ (6.2 + 4κ)ε,

which leads to ‖x̂− vk+1‖ ≤ (6.2 + 4κ)ε/λk+1.
By mathematical induction, we have completed the proof.
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