
SIAM J. OPTIM. c© 2013 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 213–240

STOCHASTIC CONVEX OPTIMIZATION WITH BANDIT
FEEDBACK∗

ALEKH AGARWAL† , DEAN P. FOSTER‡ , DANIEL HSU§ , SHAM M. KAKADE§, AND

ALEXANDER RAKHLIN‡

Abstract. This paper addresses the problem of minimizing a convex, Lipschitz function f over
a convex, compact set X under a stochastic bandit (i.e., noisy zeroth-order) feedback model. In
this model, the algorithm is allowed to observe noisy realizations of the function value f(x) at any
query point x ∈ X . The quantity of interest is the regret of the algorithm, which is the sum of the
function values at algorithm’s query points minus the optimal function value. We demonstrate a
generalization of the ellipsoid algorithm that incurs ˜O(poly(d)

√
T) regret. Since any algorithm has

regret at least Ω(
√
T) on this problem, our algorithm is optimal in terms of the scaling with T .

Key words. derivative-free optimization, bandit optimization, ellipsoid method

AMS subject classifications. 90C56, 90C25, 68T05

DOI. 10.1137/110850827

1. Introduction. Zeroth-order or derivative-free optimization concerns the op-
timization of an objective, given access only to function evaluations at desired query
points. Since these problems arise across many disciplines, there is a rich history of
literature in this area. We point the interested reader to Chapter 7 of the book [16]
or the more recent text [7] and the references therein for the relevant background.
Recently and somewhat independently, these problems have received increased atten-
tion from the statistics and theoretical computer science communities, due to natural
applications in decision making under limited feedback; some canonical examples are
network routing and Internet ad display from a pool of choices in order to maximize
revenue. In this literature, the zeroth-order feedback model has been termed “bandit
feedback,” with emphasis on somewhat different performance measures owing to the
sequential nature of the problems. We start by describing this bandit feedback model
before formally stating the problem we study in this paper.

The classical multiarmed bandit problem, formulated by Robbins in 1952, is ar-
guably the most basic setting of sequential decision making under uncertainty. Upon
choosing one of k available actions (“arms”), the decision maker observes an indepen-
dent realization of the arm’s cost drawn according to a distribution associated with
the arm. The performance of an allocation rule (algorithm) in sequentially choosing
the arms is measured by regret, that is, the difference between the expected costs of
the chosen actions and the expected cost of the best action. Various extensions of

∗Received by the editors October 10, 2011; accepted for publication (in revised form) October 23,
2012; published electronically February 14, 2013. Part of this work was done while AA and DH were
at the University of Pennsylvania. An extended abstract containing the main result appeared in the
proceedings of the NIPS 2011 conference.

http://www.siam.org/journals/siopt/23-1/85082.html
†Microsoft Research, New York, NY 10016 (alekha@microsoft.com). The research of this author

was partially supported by MSR and Google Ph.D. fellowships.
‡Department of Statistics, University of Pennsylvania, Philadelphia, PA 19104 (dean.foster@

gmail.com, rakhlin@wharton.upenn.edu). The research of the fifth author was supported by NSF
grant CAREER DMS-0954737.

§Microsoft Research, New England, Cambridge, MA 02142 (dahsu@microsoft.com, skakade@
microsoft.com). The research of the third author was partially supported by grants AFOSR FA9550-
09-1-0425, NSF IIS-1016061, and NSF IIS-713540.

213

214 AGARWAL, FOSTER, HSU, KAKADE, AND RAKHLIN

the classical formulation have received much attention in recent years. In particular,
research has focused on the development of optimal and efficient algorithms for multi-
armed bandits with large or even infinite action spaces, relying on various assumptions
on the structure of costs (rewards) over the action space. When such a structure is
present, the information about the cost of one arm propagates to other arms as well,
making the problem tractable. For instance, the mean cost function is assumed to
be linear in the paper [9], facilitating global “sharing of information” over a compact
convex set of actions in a d-dimensional space. A Lipschitz condition on the mean cost
function allows a local propagation of information about the arms, as costs cannot
change rapidly in a neighborhood of an action. This has been exploited in a number
of works, notably [2, 13, 14]. Instead of the Lipschitz condition, Srinivas et al. [19]
exploit the structure of Gaussian processes, focusing on the notion of the effective
dimension. These various “nonparametric” bandit problems typically suffer from the
curse of dimensionality, that is, the best possible convergence rates (after T queries)
are typically of the form Tα, with the exponent α approaching 1 for large dimension d.

The question addressed in the present paper is, How can we leverage convexity
of the mean cost function as a structural assumption? The main contribution of the
paper is an algorithm which achieves, with high probability, an Õ(poly(d)

√
T) re-

gret after T requests. This result holds for all convex Lipschitz mean cost functions.
We remark that the rate does not deteriorate with d (except in the multiplicative
term), implying that convexity is a strong structural assumption which turns “non-
parametric” Lipschitz problems into “parametric” ones. Nevertheless, convexity is
a very natural and basic assumption, and applications of our method are therefore
abundant. Let us also remark that Ω(

√
dT) lower bounds have been shown for linear

mean cost functions [9], making our algorithm optimal up to factors polynomial in
the dimension d and logarithmic in the number of iterations T .

We note that our work focuses on the so-called stochastic bandits setting, where
the observed costs of an action are independent draws from a fixed distribution. A
parallel line of literature focuses on the more difficult adversarial setting where the
costs of actions change arbitrarily from round to round. Leveraging structure in
nonstochastic bandit settings is more complex and is not a goal of this paper.

We start by defining some notation and the problem setup below. The next
section will survey prior works and describe their connections with our work. Section 4
gives the algorithm and analysis for the special case of univariate optimization. The
algorithm and analysis for higher dimensions are given in section 5.

Notation and setup. Let X be a compact and convex subset of R
d, and let

f : X → R be a 1-Lipschitz convex function on X , so |f(x) − f(x′)| ≤ ‖x − x′‖
for all x, x′ ∈ X . We assume that X is specified in a way so that an algorithm can
efficiently construct an approximation to smallest Euclidean ball containing the set
(for instance, a separation oracle suffices). Furthermore, we assume the algorithm has
noisy black-box access to f . Specifically, the algorithm is allowed to query the value
of f at any x ∈ X , and the response to the query x is

y = f(x) + ε

where ε is an independent σ-subgaussian random variable with mean zero:
E[exp(λε)] ≤ exp(λ2σ2/2) for all λ ∈ R. The algorithm incurs a cost f(x) for each
query x. The goal of the algorithm is to minimize its regret : after making T queries
x1, . . . , xT ∈ X , the regret of the algorithm is

RT =
T∑

t=1

(
f(xt)− f(x∗)

)
,

where x∗ is a minimizer of f over X . (We do not require uniqueness of x∗.)

STOCHASTIC CONVEX BANDIT OPTIMIZATION 215

Since we observe noisy function values, our algorithms will make multiple queries
of f at the same point. We will construct an average and confidence interval (CI)
around the average for the function values at points queried by the algorithm. We
will use the notation LBγi(x) and UBγi(x) to denote the lower and upper bounds of
a CI of width γi for the function estimate of a point x. We will say that CIs at two
points are γ-separated if LBγi(x) ≥ UBγi(y) + γ or LBγi(y) ≥ UBγi(x) + γ.

2. Related work. Asymptotic rates of O(
√
T) have been previously achieved

by Cope [8] for unimodal functions under stringent conditions (smoothness and strong
convexity of the mean cost function, in addition to the unconstrained optimum being
achieved inside the constraint set). The method employed by the author is a variant
of the classical Kiefer–Wolfowitz procedure [12] for estimation of an optimum point.
Further, the rate Õ(

√
T) has been achieved in Auer, Ortner, and Szepesvári [3] for a

one-dimensional nonconvex problem with finite number of optima. The result assumes
continuous second derivatives of the mean function, not vanishing at the optimum,
while the first derivative is assumed to be zero at the optima. The method is based
on discretizing the interval and does not exploit convexity. Yu and Mannor [20]
recently studied unimodal bandits, but they only consider one-dimensional and graph-
structured settings. Bubeck et al. [5] consider the general setup of X -armed bandits
with Lipschitz mean cost functions and their algorithm does give O(c(d)

√
T) regret

for a dimension dependent constant c(d) in some cases when the problem has a near-
optimality dimension of 0. However, not all convex, Lipschitz functions satisfy this
condition, and c(d) can grow exponentially in d even in these special cases.

The case of convex, Lipschitz cost functions has also been looked at in the harder
adversarial model [10, 13] by constructing one-point gradient estimators. However,
the best-known regret bounds for these algorithms are O(T 3/4). Agarwal, Dekel, and
Xiao [1] show a regret bound of O(

√
T) in the adversarial setup, when two evalua-

tions of the same function are allowed, instead of just one. However, this does not
include the stochastic bandit optimization setting since each function evaluation in
the stochastic case is corrupted with independent noise, violating the critical require-
ment of a bounded gradient estimator that their algorithm exploits. Indeed, applying
their result in our setup yields a regret bound of O(T 3/4).

A related line of work attempts to solve convex optimization problems by instead
posing the problem of finding a feasible point from a convex set. Different oracle
models of specifying the convex set correspond to different optimization settings. The
bandit setting is identical to finding a feasible point, given only a membership oracle
for the convex set. Since we get only noisy function evaluations, we in fact only
have access to a noisy membership oracle. While there are elegant solutions based
on random walks in the easier separation oracle model [4], the membership oracle
setting has been mostly studied in the noiseless setting only and uses much more
complex techniques building on the seminal work of Nemirovski and Yudin [16]. The
techniques have the additional drawback that they do not guarantee a low regret since
the methods often explore aggressively.

As noted in the introduction, the problem addressed in this paper is closely related
to noisy zeroth-order (also called derivative-free) convex optimization, whereby the
algorithm queries a point of the domain and receives a noisy value of the function.
Given ε > 0, such algorithms are guaranteed to produce an ε-minimizer at the end
of T iterations. While the literature on stochastic optimization is vast, we emphasize
that an optimization guarantee does not necessarily imply a bound on regret. We
explain this point in more detail below.

216 AGARWAL, FOSTER, HSU, KAKADE, AND RAKHLIN

Since f is convex by assumption, the average x̄T = 1
T

∑T
t=1 xt must satisfy

f(x̄T)−f(x∗) ≤ RT /T (by Jensen’s inequality). That is, a method guaranteeing small
regret is also an optimization algorithm. The converse, however, is not necessarily
true. Suppose an optimization algorithm queries T points of the domain and then
outputs a candidate minimizer x∗

T . Without any assumption on the behavior of the
optimization method nothing can be said about the regret it suffers over T iterations.
In fact, depending on the particular setup, an optimization method might prefer to
spend time querying far from the minimum of the function (that is, explore) and then
output the solution at the last step. Guaranteeing a small regret typically involves a
more careful balancing of exploration and exploitation. This distinction between arbi-
trary optimization schemes and anytimemethods is discussed further in the paper [18].

We note that most of the existing approaches to derivative-free optimization out-
lined in the recent book [7] typically search for a descent or sufficient descent direction
and then take a step in this direction. However, most convergence results are asymp-
totic and do not provide concrete rates even in an optimization error setting. The main
emphasis is often on global optimization of nonconvex functions, while we are mainly
interested in convex functions in this work. Nesterov [17] analyzes schemes similar
to that of Agarwal, Dekel, and Xiao [1] with access to noiseless function evaluations,
showing O(

√
dT) convergence for nonsmooth functions and accelerated schemes for

smooth mean cost functions. However, when analyzed in a noisy evaluation setting,
his rates suffer from the degradation as those of Agarwal, Dekel, and Xiao [1].

3. Outline of our approach. The close relationship between convex optimiza-
tion and the regret-minimization problem suggests a plan of attack: Check whether
existing stochastic zeroth-order optimization methods (that is, methods that only
query the oracle for function values) in fact minimize regret. Two types of meth-
ods for stochastic zeroth-order convex optimization are outlined in Nemirovski and
Yudin [16, Chapter 9]. The first approach uses the noisy function values to estimate
a gradient direction at every step and then passes this information to a stochastic
first-order method. The second approach is to use the zeroth-order information to
estimate function values and pass this information to a noiseless zeroth-order method.
Nemirovski and Yudin argue that the latter approach has greater stability when com-
pared to the former. Indeed, for a gradient estimate to be meaningful, function values
should be sampled close to the point of interest, which, in turn, results in a poor
quality of the estimate. This tension is also the source of difficulty in minimizing
regret with a convex mean cost function.

Owing to the insights of Nemirovski and Yudin [16], we opt for the second ap-
proach, giving up the idea of estimating the first-order information. The main novel
tool of the paper is a “center-point device” that allows one to quickly detect that
the optimization method might be paying high regret and to act on this informa-
tion. Unlike discretization-based methods, the proposed algorithm uses convexity in
a crucial way. We first demonstrate the device on one-dimensional problems, where
the solution is clean and intuitive. We then develop a version of the algorithm for
higher dimensions, basing our construction on the beautiful zeroth-order optimization
method of Nemirovski and Yudin [16]. Their method does not guarantee vanishing
regret by itself, and a careful fusion of this algorithm with our center-point device is
required. The overall approach would be to use the center-point device in conjunction
with a modification of the classical ellipsoid algorithm.

To motivate the center-point device, consider the following situation. Suppose f
is the unknown function on X = [0, 1], and assume for now that it is linear with a slope

STOCHASTIC CONVEX BANDIT OPTIMIZATION 217

T−1/3. Let us sample function values at x = 1/4 and x = 3/4. To even distinguish
the slope from a slope −T−1/3 (which results in a minimizer on the opposite side of
X), we need O(T 2/3) points. If the function f is indeed linear, we only incur O(T 1/3)
regret on these rounds. However, if instead f is a quadratic dipping between the
sampled points, we incur regret of O(T 2/3). To quickly detect that the function is not
flat between the two sampled points, we additionally sample at x = 1/2. The center
point acts as a sentinel : if it is recognized that the function value at the center point
is noticeably below the other two values, the region [0, 1/4]∪ [3/4, 1] can be discarded.
If it is recognized that the value of f either at x = 1/4 or at x = 3/4 is greater than
others, then either [0, 1/4] or [3/4, 1] can be discarded. Finally, if f at all three points
appears to be similar at a given scale, we have a certificate that the algorithm is
not paying regret larger than this scale per query. The remaining argument proceeds
similarly to the binary search or the method of centers of gravity: since a constant
portion of the set is discarded every time, it only requires a logarithmic number of
“cuts.” We remark that the novelty is in ensuring that regret is kept small in the
process; a simpler algorithm which does not query the center is sufficient to guarantee
a small optimization error but incurs a large regret on the above example.

In the next section we present the algorithm that results from the above ideas
for one-dimensional convex optimization. The general case in higher dimensions is
presented in section 5.

4. One-dimensional case. We start with a specialization of the setting to one
dimension to illustrate some of the key ideas including the center-point device. We
assume without loss of generality that the domain X = [0, 1] and f(x) ∈ [0, 1]. (The
latter can be achieved by pinning f(x∗) = 0 since f is 1-Lipschitz.)

4.1. Algorithm description. Algorithm 1 proceeds in a series of epochs de-
marcated by a working feasible region (the interval [lτ , rτ] in epoch τ). In each epoch,
the algorithm aims to discard a portion of the working feasible region determined to
only contain suboptimal points. To do this, the algorithm repeatedly makes noisy
queries to f at three different points in the working feasible region. Each epoch is
further subdivided into rounds, where we query the function (4σ2 logT)/γ2

i times in
round i at each of the points. Since the noise is σ-subgaussian by assumption, this
implies that we know the function value to within γi with high probability (see, e.g.,
Lemma 4 in the paper [6]). The value γi is halved at every round so that the algo-
rithm can stop the epoch with the minimal number of queries that suffice to resolve
the difference between function values at any two of xl, xc, xr, ensuring a low regret
in each epoch. At the end of an epoch τ , the working feasible region is reduced to a
subset [lτ+1, rτ+1] ⊂ [lτ , rτ] of the current region for the next epoch τ + 1, and this
reduction is such that the new region is smaller in size by a constant fraction. This
geometric rate of reduction guarantees that only a small number of epochs can occur
before the working feasible region only contains near-optimal points.

In order for the algorithm to identify a sizable portion of the working feasible
region containing only suboptimal points to discard, the queries in each epoch should
be suitably chosen, and the convexity of f must be judiciously exploited. To this end,
the algorithm makes its queries at three equally spaced points xl < xc < xr in the
working feasible region.
Case 1. If the confidence intervals around f(xl) and f(xr) are sufficiently separated,

then the algorithm can identify a subset of the feasible region (either to the
left of xl or to the right of xr) that contains no near-optimal points—i.e., every
point x in the subset has f(x)
 f(x∗). This subset, which is a fourth of the

218 AGARWAL, FOSTER, HSU, KAKADE, AND RAKHLIN

Algorithm 1. One-dimensional stochastic convex bandit algorithm.

input noisy black-box access to f : [0, 1] → R, total number of queries allowed T .
1: Let l1 := 0 and r1 := 1.
2: for epoch τ = 1, 2, . . . do
3: Let wτ := rτ − lτ .
4: Let xl := lτ + wτ/4, xc := lτ + wτ/2, and xr := lτ + 3wτ/4.
5: for round i = 1, 2, . . . do
6: Let γi := 2−i.

7: For each x ∈ {xl, xc, xr}, query f(x) 4σ2

γ2
i
logT times.

8: if max{LBγi(xl),LBγi(xr)} ≥ min{UBγi(xl),UBγi(xr)}+ γi then
9: {Case 1: CI’s at xl and xr are γi separated}

10: if LBγi(xl) ≥ LBγi(xr) then let lτ+1 := xl and rτ+1 := rτ .
11: if LBγi(xl) < LBγi(xr) then let lτ+1 := lτ and rτ+1 := xr.
12: Continue to epoch τ + 1.
13: else if max{LBγi(xl),LBγi(xr)} ≥ UBγi(xc) + γi then
14: {Case 2: CI’s at xc and xl or xr are γi separated}
15: if LBγi(xl) ≥ LBγi(xr) then let lτ+1 := xl and rτ+1 := rτ .
16: if LBγi(xl) < LBγi(xr) then let lτ+1 := lτ and rτ+1 := xr.
17: Continue to epoch τ + 1.
18: end if
19: end for
20: end for

lτ xl xc xr rτ

{≥ γi

lτ xl xc xr rτ

{≥ γi

Fig. 1. Two possible configurations when the algorithm enters Case 1.

working feasible region by construction, is then discarded and the algorithm
continues to the next epoch. This case is depicted in Figure 1.

Case 2. If the above deduction cannot be made, the algorithm looks at the confidence
interval around f(xc). If this interval is sufficiently below at least one of the
other intervals (for f(xl) or f(xr)), then again the algorithm can identify a
quartile that contains no near-optimal points, and this quartile can then be
discarded before continuing to the next epoch. One possible arrangement of
CIs for this case is shown in Figure 2.

Case 3. Finally, if none of the earlier cases is true, then the algorithm is assured that
the function is sufficiently flat on working feasible region and hence it has
not incurred much regret so far. The algorithm continues the epoch, with an
increased number of queries to obtain smaller confidence intervals at each of
the three points. An example arrangement of CIs for this case is shown in
Figure 3.

STOCHASTIC CONVEX BANDIT OPTIMIZATION 219

lτ xl xc xr rτ

{≥ γi

Fig. 2. One of the possible configurations
when the algorithm enters Case 2.

lτ xl xc xr rτ

{≤ 3γi

Fig. 3. Configuration of the confidence in-
tervals in Case 3 of Algorithm 1.

4.2. Analysis. The analysis of Algorithm 1 relies on the function values being
contained in the confidence intervals we construct at each round of each epoch. To
avoid having probabilities throughout our analysis, we define an event E where at each
epoch τ and each round i, f(x) ∈ [LBγi(x),UBγi(x)] for x ∈ {xl, xc, xr}. We will carry
out the remainder of the analysis conditioned on E and bound the probability of Ec

at the end.
The following theorem bounds the regret incurred by Algorithm 1. We note that

the regret would be maintained in terms of the points xt queried by the algorithm at
time t.

Theorem 1 (regret bound for Algorithm 1). Suppose Algorithm 1 is run on a
convex, 1-Lipschitz function f bounded in [0, 1]. Suppose the noise in observations
is independently and identically distributed (i.i.d.) and σ-subgaussian. Then with
probability at least 1− 2/T we have

T∑
t=1

f(xt)− f(x∗) ≤ 108 σ
√
T logT log4/3

(
T

8σ2 logT

)
.

Remarks. As stated, Algorithm 1 and Theorem 1 assume knowledge of T , but we
can make the algorithm adaptive to T by a standard doubling argument. We remark
that O(

√
T) is the smallest possible regret for any algorithm even with noisy gradient

information. Hence, this result shows that for purposes of regret, noisy zeroth-order
information is no worse than noisy first-order information apart from logarithmic
factors. We also observe that at the end of the procedure, the midpoint xc of the
working feasible region [lτ , rτ], where τ was the last epoch, has an optimization error
of at most Õ(1/

√
T). This is unlike noisy first-order methods where all the iterates

have to be averaged in order to get a point with low optimization error.
The theorem is proved via a series of lemmas in the next few sections. The key

idea is to show that the regret on any epoch is small and the total number of epochs
is bounded. To bound the per-epoch regret, we will show that the total number of
queries made on any epoch depends on how close to flat the function is on the working
feasible region. Thus we either take a long time but the function is very flat or we
stop early when the function has sufficient slope, never accruing too much regret.

4.2.1. Bounding the regret in one epoch. We start by showing that the
reduction in the working region after each epoch never discards near-optimal points.

Lemma 1. Suppose that the event E holds. If epoch τ ends in round i, then
the interval [lτ+1, rτ+1] contains every x ∈ [lτ , rτ] such that f(x) ≤ f(x∗) + γi. In
particular, x∗ ∈ [lτ , rτ] for all epochs τ .

220 AGARWAL, FOSTER, HSU, KAKADE, AND RAKHLIN

Proof. Suppose epoch τ terminates in round i via Case 1. This means that either
LBγi(xl) ≥ UBγi(xr) + γi or LBγi(xr) ≥ UBγi(xl) + γi. Consider the former case.
(The argument for the latter is analogous.) Since the event E holds, this implies that

(1) f(xl) ≥ f(xr) + γi.

Since f is convex, we can immediately conclude that every x ∈ [lτ , lτ+1] = [lτ , xl] has
f(x) ≥ f(x∗) + γi.

Now suppose epoch τ terminates in round i via Case 2. This means

max{LBγi(xl),LBγi(xr)} ≥ UBγi(xc) + γi.

Suppose LBγi(xl) ≥ LBγi(xr). (The argument for the case LBγi(xl) < LBγi(xr) is
analogous.) The above inequality implies

f(xl) ≥ f(xc) + γi.

We need to show that every x ∈ [lτ , lτ+1] = [lτ , xl] has f(x) ≥ f(x∗) + γi. But the
same argument as given in Case 1, with xr replaced with xc, gives the required claim.

The fact that x∗ ∈ [lτ , rτ] for all epochs τ follows by induction.
The next two lemmas bound the regret incurred in any single epoch. To show

this, we first establish that an algorithm incurs low regret in a round as long as it
does not end an epoch. Then, as a consequence of the doubling trick, we show that
the regret incurred in an epoch is on the same order as that incurred in the last round
of the epoch.

Lemma 2 (certificate of low regret). Suppose the event E holds. If epoch τ
continues from round i to round i + 1, then the regret incurred in round i is at most
144σ2 log T

γi
.

Proof. The regret incurred in round i of epoch τ is

4σ2 logT

γ2
i

·
(
(f(xl)− f(x∗)) + (f(xc)− f(x∗)) + (f(xr)− f(x∗))

)
so it suffices to show that

f(x) ≤ f(x∗) + 12γi

for each x ∈ {xl, xc, xr}.
The algorithm continues from round i to round i+ 1 iff

max{LBγi(xl),LBγi(xr)} < min{UBγi(xl),UBγi(xr)}+ γi

and

max{LBγi(xl),LBγi(xr)} < UBγi(xc) + γi.

This implies that f(xl), f(xc), and f(xr) are contained in an interval of width at most
3γi (recall Figure 3).

By Lemma 1, we have x∗ ∈ [lτ , rτ]. Assume x∗ ≤ xc. (The case x∗ > xc is
analogous.) There exists t ≥ 0 such that x∗ = xc + t(xc − xr), so

xc =
1

1 + t
x∗ +

t

1 + t
xr.

STOCHASTIC CONVEX BANDIT OPTIMIZATION 221

Note that t ≤ 2 because |xc − lτ | = wτ/2 and |xr − xc| = wτ/4, so

t =
|x∗ − xc|
|xr − xc| ≤

|lτ − xc|
|xr − xc| =

wτ/2

wτ/4
= 2.

By convexity,

f(x∗) ≥ (1 + t)

(
f(xc)− t

1 + t
f(xr)

)
= f(xr) + (1 + t) (f(xc)− f(xr))

≥ f(xr)− (1 + t)|f(xc)− f(xr)| ≥ f(xr)− (1 + t) · 3γi
≥ f(xr)− 9γi.

We conclude that for each x ∈ {xl, xc, xr},

f(x) ≤ f(xr) + 3γi ≤ f(x∗) + 12γi.

Lemma 3 (regret in an epoch). Suppose the event E holds. If epoch τ ends in

round i, then the regret incurred in the entire epoch is at most 432σ2 log T
γi

.

Proof. If i = 1, then f(x)− f(x∗) ≤ |x− x∗| ≤ 1 for each x ∈ {xl, xc, xr} because
f is 1-Lipschitz and |x − x′| ≤ 1 for any x, x′ ∈ [0, 1]. Therefore, the regret incurred
in epoch τ is

4σ2 logT

γ2
1

·
(
(f(xl)− f(x∗)) + (f(xc)− f(x∗)) + (f(xr)− f(x∗))

)
≤ 24σ2 logT

γ1
.

Now assume i ≥ 2. Lemma 2 implies that the regret incurred in round j, for

1 ≤ j ≤ i− 1, is at most 144σ2 log T
γj

. Furthermore, for round i, we still know that the

regret on each query in round i is bounded by 36γi−1 (12γi−1 for each of xl, xc, xr).
Recalling that γi−1 = 2γi and that we make 4(σ2 logT)/γ2

i queries at round i, the
regret incurred in round i (the final round of epoch τ) is at most

36γi−1
4σ2 logT

γ2
i

=
288σ2 logT

γi
.

Therefore, the overall regret incurred in epoch τ is

i−1∑
j=1

144σ2 logT

γj
+

288σ2 logT

γi
=

i−1∑
j=1

144σ2 logT · 2j + 288σ2 logT

γi

< 144σ2 log T · 2i + 288σ2 logT

γi
=

432σ2 logT

γi
.

4.2.2. Bounding the number of epochs. To establish the final bound on the
overall regret, we bound the number of epochs that can occur before the working
feasible region only contains near-optimal points. The final regret bound is simply
the product of the number of epochs and the regret incurred in any single epoch.

Lemma 4 (bound on the number of epochs). Suppose the event E holds. Then
the total number of epochs τ performed by Algorithm 1 is bounded as

τ ≤ 1

2
log4/3

(
T

8σ2 logT

)
.

222 AGARWAL, FOSTER, HSU, KAKADE, AND RAKHLIN

Proof. The proof is based on observing that γi ≥ (T/4σ2 logT)−1/2 at all epochs
and rounds. Indeed if γi ≤ (T/4σ2 logT)−1/2, step 7 of the algorithm would require
more than T queries to get the desired confidence intervals in that round. Hence
we set γmin = (T/4σ2 logT)−1/2 and define the interval I := [x∗ − γmin, x

∗ + γmin]
which has width 2γmin. For any x ∈ I, f(x) − f(x∗) ≤ |x − x∗| ≤ γmin because f
is 1-Lipschitz. Moreover, for any epoch τ ′ which ends in round i′, γmin ≤ γi′ , by
definition and therefore by Lemma 1,

I ⊆ {x ∈ [0, 1] : f(x) ≤ f(x∗) + γi′} ⊆ [lτ ′+1, rτ ′+1].

This implies that 2γmin ≤ rτ ′+1 − lτ ′+1 = wτ ′+1. Furthermore, by the definitions of
lτ ′+1, rτ ′+1, and wτ ′+1 in the algorithm, it follows that

wτ ′+1 ≤ 3

4
· wτ ′

for any τ ′ ∈ {1, . . . , τ}. Therefore, we conclude that

2γmin ≤ wτ+1 ≤
(
3

4

)τ

· w1 =

(
3

4

)τ

,

which gives the claim after rearranging the inequality.

4.2.3. Proof of Theorem 1. The statement of the theorem follows by combin-
ing the per-epoch regret bound of Lemma 3 with the above bound on the number of
epochs and showing that all these bounds hold with sufficiently high probability.

Lemma 3 implies that the regret incurred in any epoch τ ′ ≤ τ that ends in round
i′ is at most

432σ2 logT

γi′
≤ 432σ2 log T

γmin
≤ 216σ

√
T logT .

So the overall regret incurred in all τ epochs is at most

216 σ
√
T logT · 1

2
log4/3

(
T

8σ2 logT

)
.

Finally we recall that the entire analysis thus far has been conditioned on the event
E where all the confidence intervals we construct do contain the function values. We
would now like to control the probability P(Ec). Consider a fixed round and a fixed
point x. Since the noise is σ-subgaussian, after making 4σ2 logT/γ2

i queries we have
the bound (see, e.g., Lemma 4 in [6])

P

(
|f(x)− f̂(x)| ≥ γi

)
≤ 2

T 2
,

where f̂(x) is the average of the observed function values. Once we have a bound for
a fixed round of a fixed epoch, we would like to bound this probability uniformly over
all rounds played across all epochs. We note that we make at most T queries, which
is also an upper bound on the total number of rounds. Hence union bound gives

P(Ec) ≤ 2

T
,

which completes the proof of the theorem.

STOCHASTIC CONVEX BANDIT OPTIMIZATION 223

ϕ

h

APEX

Fig. 4. Pyramid in three dimensions.

5. Algorithm for optimization in higher dimensions. We now move to
present the general algorithm that works in d dimensions. The natural approach
would be to try to generalize Algorithm 1 to work in multiple dimensions. However,
the obvious extension requires constructing a covering of the unit sphere and querying
the function along every direction in the covering so that we know the behavior of
the function along every direction. While such an approach yields regret that scales
as

√
T , the dependence on dimension d is exponential both in regret and the running

time. The same problem was encountered in the scenario of zeroth-order optimization
by Nemirovski and Yudin [16], and they use a clever construction to capture all the
directions in polynomially many queries. We define a pyramid to be a d-dimensional
polyhedron defined by d + 1 points; d points form a d-dimensional regular polygon
that is the base of the pyramid, and the apex lies above the hyperplane containing
the base. (See Figure 4 for a graphical illustration in three dimensions.) The idea
of Nemirovski and Yudin was to build a sequence of pyramids, each capturing the
variation of function in certain directions, in such a way that in O(d log d) pyramids
we can explore all the directions. However, as mentioned earlier, their approach fails
to give a low regret. We combine their geometric construction with ideas from the one-
dimensional case to obtain a low-regret algorithm as described in Algorithm 2 below.
Concretely, we combine the geometrical construction of Nemirovski and Yudin [16]
with the center-point device to show low regret.

Just like the one-dimensional case, Algorithm 2 proceeds in epochs. We start with
the optimization domain X , and at the beginning we set X0 = X . At the beginning
of epoch τ , we have a current feasible set Xτ which contains an approximate optimum
of the convex function. The epoch ends with discarding some portion of the set Xτ

such that we still retain at least one approximate optimum in the remaining set Xτ+1.
At the start of the epoch τ , we start by constructing an approximation to the

Löwner–John ellipsoid for the set Xτ , the minimum volume ellipsoid enclosing the
set. While the construction of the exact Löwner–John ellipsoid is computationally
intractable in general, one can use approximate construction through the ellipsoid
method. (See, e.g., [16] and the discussion following Theorem 3.1 in Lovász [15].)
Following the notation of Lovász [15], we call such an enclosing ellipsoid a weak
Löwner–John ellipsoid. We next apply an affine transformation to Xτ so that this el-
lipsoid is a Euclidean ball of radius Rτ (denoted as B(Rτ)). We define rτ = Rτ/c1d

3/2

for a constant c1 ≥ 1, so that B(rτ) ⊆ Xτ . (Such a construction is always possible;
see, e.g., Theorem 3.1 in Lovász [15].) We will use the notation Bτ to refer to the
enclosing ball. Within each epoch, the algorithm proceeds in several rounds, each
round maintaining a value γi which is successively halved.

Let x0 be the center of the ball B(Rτ) containing Xτ . At the start of a round i,
we construct a regular simplex centered at x0 and contained in B(rτ). The algorithm
queries the function f at all the vertices of the simplex, denoted by x1. . . . , xd+1,

224 AGARWAL, FOSTER, HSU, KAKADE, AND RAKHLIN

Algorithm 2. Stochastic convex bandit algorithm.

input feasible region X ⊂ R
d; noisy black-box access to f : X → R, constants c1 and

c2, functions Δτ (γ), Δ̄τ (γ) and number of queries T allowed.
1: Let X1 := X .
2: for epoch τ = 1, 2, . . . do
3: Round Xτ so B(rτ) ⊆ Xτ ⊆ B(Rτ) and rτ := Rτ/(c1d

3/2). Let Bτ = B(Rτ).
4: Construct regular simplex with vertices x1, . . . , xd+1 on the surface of B(rτ).
5: for round i = 1, 2, . . . do
6: Let γi := 2−i.

7: Query f at xj for each j = 1, . . . , d+ 1 4σ2 log T
γ2
i

times.

8: Let y1 := argmaxxj LBγi(xj).
9: for pyramid k = 1, 2, . . . do

10: Construct pyramid Πk with apex yk; let z1, . . . , zd be the vertices of the
base of Πk and z0 be the center of Πk.

11: Let γ̂ := 2−1.
12: loop

13: Query f at each of {yk, z0, z1, . . . , zd} 4σ2 log T
γ̂2 times.

14: Let center := z0, apex := yk, top be the vertex v of Πk maximizing
LBγ̂(v), bottom be the vertex v of Πk minimizing LBγ̂(v).

15: if LBγ̂(top) ≥ UBγ̂(bottom)+Δτ (γ̂) and LBγ̂(top) ≥ UBγ̂(apex)+γ̂
then

16: {Case 1(a)}
17: Let yk+1 := top, and immediately continue to pyramid k + 1.
18: else if LBγ̂(top) ≥ UBγ̂(bottom) + Δτ (γ̂) and LBγ̂(top) <

UBγ̂(apex) + γ̂ then
19: {Case 1(b)}
20: Set (Xτ+1,B′

τ+1) =Cone-cutting(Πk,Xτ ,Bτ), and proceed to epoch
τ + 1.

21: else if LBγ̂(top) < UBγ̂(bottom) + Δτ (γ̂) and UBγ̂(center) ≥
LBγ̂(bottom)− Δ̄τ (γ̂) then

22: {Case 2(a)}
23: Let γ̂ := γ̂/2.
24: if γ̂ < γi then start next round i+ 1.
25: else if LBγ̂(top) < UBγ̂(bottom) + Δτ (γ̂) and UBγ̂(center) <

LBγ̂(bottom)− Δ̄τ (γ̂) then
26: {Case 2(b)}
27: Set (Xτ+1,B′

τ+1)= Hat-raising(Πk,Xτ ,Bτ), and proceed to epoch
τ + 1.

28: end if
29: end loop
30: end for
31: end for
32: end for

until the CIs at each vertex shrink to γi. The algorithm then picks the point y1 for
which the average of observed function values is the largest. By construction, we are
guaranteed that f(y1) ≥ f(xj) − γi for all j = 1, . . . , d + 1. This step is depicted in
Figure 5.

STOCHASTIC CONVEX BANDIT OPTIMIZATION 225

Algorithm 3. Cone-cutting.
input pyramid Π with apex y, (rounded) feasible region Xτ for epoch τ , enclosing

ball Bτ

1: Let z1, . . . , zd be the vertices of the base of Π, and ϕ̄ the angle at its apex.
2: Define the cone

Kτ =

{
x | ∃λ > 0, α1, . . . , αd > 0,

d∑
i=1

αi = 1 : x = y − λ
d∑

i=1

αi(zi − y)

}
.

3: Set B′
τ+1 to be a weak Löwner–John ellipsoid containing Bτ \ Kτ .

4: Set Xτ+1 = Xτ ∩ B′
τ+1.

output new feasible region Xτ+1 and enclosing ellipsoid B′
τ+1.

Algorithm 4. Hat-raising.
input pyramid Π with apex y, (rounded) feasible region Xτ for epoch τ , enclosing

ball Bτ .
1: Let center be the center of Π.
2: Set y′ = y + (y − center).
3: Set Π

′
to be the pyramid with apex y′ and same base as Π.

4: Set (Xτ+1,B′
τ+1) = Cone-cutting(Π

′
,Xτ ,Bτ).

output new feasible region Xτ+1 and enclosing ellipsoid B′
τ+1.

x0

x2xd+1

x1

rτ

Rτ
Xτ

Fig. 5. The regular simplex constructed at round i of epoch τ with radius rτ , center x0, and
vertices x1, . . . , xd+1.

The algorithm now successively constructs a sequence of pyramids with the goal of
identifying a region of the feasible set Xτ such that at least one approximate optimum
of f lies outside the selected region. This region will be discarded at the end of the
epoch. The construction of the pyramids follows the construction from section 9.2.2
of the book [16]. The pyramids we construct will have an angle 2ϕ at the apex, where
cosϕ = c2/d. The base of the pyramid consists of vertices z1, . . . , zd such that zi−x0

and y1−zi are orthogonal. We note that the construction of such a pyramid is always
possible—we take a sphere with y1 − x0 as the diameter, and arrange z1, . . . , zd on
the boundary of the sphere such that the angle between y1 − x0 and y1 − zi is ϕ. The
construction of the pyramid is depicted in Figure 6. Given this pyramid, we set γ̂ = 1
and sample the function at y1 and z1, . . . , zd as well as the center of the pyramid until

226 AGARWAL, FOSTER, HSU, KAKADE, AND RAKHLIN

x0

ϕ
z1 z2

y1

x0

y1

y2

x0

y1

y2

y3

Fig. 6. Pyramids constructed by Algorithm 2. First diagram is the initial pyramid constructed
by the algorithm at round i of epoch τ with apex y1, base vertices z1, . . . , zd, and angle ϕ at the
vertex. The other diagrams show the subsequent pyramids which successively get closer to the center.

. . .

}= γ̂

}TOP

APEX

BOTTOM

. . . ≥ γ̂

}. . .

}= γ̂

}≤ γ̂
TOP

APEX

BOTTOM

. . .

≥ poly(d)Rτ γ̂

)b()a(
Fig. 7. Relative ordering of confidence intervals of top, bottom, and apex in Cases 1(a) and

1(b) of the algorithm, respectively.

the CIs all shrink to γ̂. Let top and bottom denote the vertices of the pyramid
(including y1) with the largest and the smallest function value estimates, respectively.
For consistency, we will also use apex to denote the apex y1. We then check for one
of the following conditions:

1. If LBγ̂(top) ≥ UBγ̂(bottom) + Δτ (γ̂), we proceed based on the separation
between top and apex CIs as illustrated in Figures 7(a) and 7(b).
(a) If LBγ̂(top) ≥ UBγ̂(apex)+ γ̂, then we know that with high probability

(2) f(top) ≥ f(apex) + γ̂ ≥ f(apex) + γi.

In this case, we set top to be the apex of the next pyramid, reset γ̂ = 1,
and continue the sampling procedure on the next pyramid.

(b) If LBγ̂(top) ≤ UBγ̂(apex) + γ̂, then we know that

LBγ̂(apex) ≥ UBγ̂(bottom) + Δτ (γ̂)− 2γ̂.

In this case, we declare the epoch over and pass the current apex to the
cone-cutting step.

2. If LBγ̂(top) ≤ UBγ̂(bottom) + Δτ (γ̂), then one of the two events depicted
in Figure 8(a) or 8(b) has to happen:
(a) If UBγ̂(center) ≥ LBγ̂(bottom)−Δ̄τ (γ̂), then all the vertices and the

center of the pyramid have their function values within a 2Δτ (γ̂) + 3γ̂
interval. In this case, we set γ̂ = γ̂/2. If this sets γ̂ < γi, we start
the next round with γi+1 = γi/2. Otherwise, we continue sampling the
current pyramid with the new value of γ̂.

STOCHASTIC CONVEX BANDIT OPTIMIZATION 227

. . .

} = γ̂
TOP

BOTTOM

CENTER

. . . < poly(d)Rτ γ̂}
< poly(d)Rτ γ̂} . . .

}= γ̂
TOP

BOTTOM

CENTER

. . . < poly(d)Rτ γ̂}
}≥ poly(d)Rτ γ̂

)b()a(

Fig. 8. Relative ordering of confidence intervals of top, bottom, and center in Cases 2(a)
and 2(b) of the algorithm, respectively.

z1 z2

yi

yi

ϕ̄

ϕ

Fig. 9. Transformation of the pyramid Π in the hat-raising step.

(b) If UBγ̂(center) ≤ LBγ̂(bottom)−Δ̄τ (γ̂), then we terminate the epoch
and pass the center and the current apex to the hat-raising step.

Hat-raising. This step happens when we construct a pyramid where LBγ̂(top)
≤ UBγ̂(bottom) + Δτ (γ̂) but UBγ̂(center) ≤ LBγ̂(bottom) − Δ̄τ (γ̂). (See Fig-
ure 8(b) for an illustration.) In this case, we will show that if we move the apex of
the pyramid a little from yi to y

′
i, then y

′
i’s CI is above the top CI, while the angle

of the new pyramid at y
′
i is not much smaller than 2ϕ. In particular, letting centeri

denote the center of the pyramid, we set y
′
i = yi + (yi − centeri). Figure 9 shows

transformation of the pyramid involved in this step. The correctness of this step and
the sufficiency of the perturbation from y to y

′
will be proved in the next section.

Cone-cutting. This step is the concluding step for an epoch. The algorithm
gets to this step either through Case 1(b) or through the hat-raising step. In either
case, we have a pyramid with an apex y, a base z1, . . . , zd, and an angle 2ϕ̄ at the
apex, where cos(ϕ̄) ≤ 1/2d. We now define a cone

(3) Kτ =

{
x | ∃λ > 0, α1, . . . , αd > 0,

d∑
i=1

αi = 1 : x = y − λ

d∑
i=1

αi(zi − y)

}
which is centered at y and a reflection of the pyramid around the apex. By construc-
tion, the cone Kτ has an angle 2ϕ̄ at its apex. We set B′

τ+1 to be a weak Löwner–John

ellipsoid containing Bτ \ Kτ and define Xτ+1 = Xτ ∩ B′
τ+1. This is illustrated in Fig-

ure 10. Finally, we put things back into an isotropic position and Bτ+1 is the ball
containing Xτ+1 is in the isotropic coordinates, which is just obtained by applying an
affine transformation to B′

τ+1.
Let us end the description with a brief discussion regarding the computational

aspects of this algorithm. It is clear that the most computationally intensive steps

228 AGARWAL, FOSTER, HSU, KAKADE, AND RAKHLIN

Bτ

B τ+1Kτ

Fig. 10. Illustration of the cone-cutting step at epoch τ . Solid circle is the enclosing ball Bτ .
Shaded region is the intersection of Kτ with Bτ . The dotted ellipsoid is the new enclosing ellipsoid

B′
τ+1 for the residual domain.

of this algorithm are the cone-cutting and isotropic transformation at the end. In
particular, the cone-cutting step requires the construction of a weak Löwner–John
ellipsoid, which can be done in polynomial time using the ellipsoid algorithm, as
remarked earlier. Scaling this outer ellipsoid down by a factor of 2d3/2 yields a
concentric ellipsoid fully contained in Xτ+1, allowing us to proceed to the next epoch.

6. Analysis. We start by showing the correctness of the algorithm and then
proceed to regret analysis. To avoid having probabilities throughout our analysis, we
define an event E where at each epoch τ and each round i, f(x) ∈ [LBγi(x),UBγi(x)]
for any point x sampled in the round. We will carry out the remainder of the analysis
conditioned on E and bound the probability of Ec at the end. We also assume that
the algorithm is run with the settings

(4) Δτ (γ) =

(
6c1d

4

c22
+ 3

)
γ and Δ̄τ (γ) =

(
6c1d

4

c22
+ 5

)
γ

and constants c1 ≥ 64, c2 ≤ 1/32.

6.1. Correctness of the algorithm. In order to complete the proof of our al-
gorithm’s correctness, we only need to further show that when the algorithm proceeds
to cone-cutting via Case 1(b), then it does not discard all the approximate optima
of f by mistake, and we show that the hat-raising step is indeed correct as claimed.
These two claims are established in the next couple of lemmas.

For these two lemmas, we assume that the distance of the apex of any Π con-
structed in epoch τ from the center of B(rτ) is at least rτ/d. This assumption will be
established later.

Lemma 5. Assume the event E holds. Let Kτ be the cone discarded at epoch τ
which is ended through Case (1b) in round i. Let bottom be the lowest CI of the last
pyramid Π constructed in the epoch, and assume the distance from the apex of Π to
the center of B(rτ) is at least rτ/d. Then f(x) ≥ f(bottom) + γi for all x ∈ Kτ .

Proof. Consider any x ∈ Kτ . By construction, there is a point z in the base of the
pyramid Π such that the apex y of Π satisfies y = αz + (1− α)x for some α ∈ [0, 1).
(See Figure 11 for a graphical illustration.)

Since f is convex and z is in the base of the pyramid, we have that

f(z) ≤ f(top) ≤ f(y) + 3γ̂.

Also, the condition of Case 1(b) ensures

f(y) > f(bottom) + Δτ (γ̂)− 2γ̂,

STOCHASTIC CONVEX BANDIT OPTIMIZATION 229

z

xKτ

z1 z2

y = αz + (1 − α)x

Fig. 11. The points of interest in Lemma 5 (see text). Solid lines depict the pyramid Π and
the Kτ .

where γ̂ is the CI level used for the pyramid. Then by convexity of f

f(y) ≤ αf(z) + (1− α)f(x) ≤ α(f(y) + 3γ̂) + (1− α)f(x).

Simplifying yields

f(x) ≥ f(y)− 3
α

1− α
γ̂ > f(bottom) + Δτ (γ̂)− 2γ̂ − 3

α

1− α
γ̂.

Also, we know that α/(1− α) = ‖y− x‖/‖y− z‖. Since we know that x ∈ B(Rτ), we
observe that

‖y − x‖ ≤ 2Rτ ≤ 2c1 drτ .

Moreover, ‖y− z‖ is at least the height of Π, which is at least rτ c
2
2/d

3 by Lemma 15.
Therefore

α

1− α
=

‖y − x‖
‖y − z‖ ≤ 2c1drτ

rτ c22/d
3
≤ 2c1d

4

c22
.

Thus, we have

f(x) > f(bottom) + Δτ (γ̂)− 2γ̂ − 6c1d
4

c22
γ̂ ≥ f(bottom) + γi,(5)

where the last line uses the setting of Δτ (γ̂) (4), completing the proof of the
lemma.

This lemma guarantees that we cannot discard all the approximate minima of f
by mistake in Case 1(b) and that any point discarded by the algorithm through this
step in round i has regret at least γi. The final check that needs to be done is the
correctness of the hat-raising step, which we do in the next lemma.

Lemma 6. Let Π′ be the new pyramid formed in hat-raising with apex y′ and
same base as Π in round i of epoch τ , and let K′

τ be the cone discarded. Assume the
event E holds and that the distance from the apex of Π to the center of B(rτ) is at
least rτ/d. Then the Π′ has an angle ϕ̄ at the apex with cos ϕ̄ ≤ 2c2/d, height at most
2rτc

2
1/d

2, and with every point x in the cone K′
τ having f(x) ≥ f(x∗) + γi.

Proof. Let y′ := y+(y−center) be the apex of Π′. Let h be the height of Π (the
distance from y to the base), h′ be the height of Π′, and b be the distance from any
vertex of the base to the center of the base. Then h′ < 2h ≤ 2rτ c

2
1/d

2 by Lemma 15.
Moreover, since cos(ϕ) = h/

√
h2 + b2 = 1/d, we have

cos(ϕ̄) = h′/
√
h′2 + b2 ≤ 2h/

√
h2 + b2 = 2 cos(ϕ) = 2c2/d.

It remains to show that every x ∈ K′
τ has f(x) ≥ f(x∗) + γ̂. By convexity of f ,

f(y) ≤ (f(y′) + f(center))/2, so f(y′) ≥ 2f(y) − f(center). Since we enter hat-
raising via Case 2(b) of the algorithm, we know that f(center) ≤ f(y)− Δ̄τ (γ̂), so

f(y′) ≥ f(y) + Δ̄τ (γ̂).

230 AGARWAL, FOSTER, HSU, KAKADE, AND RAKHLIN

The condition for entering Case 2(b) also implies that

f(y) > f(top)−Δτ (γ̂)− 2γ̂ > f(x) −Δτ (γ̂)− 2γ̂

for all x ∈ Π, and therefore for any z on the base of Π,

f(y′) > f(z) + Δ̄τ (γ̂)−Δτ (γ̂)− 2γ̂ ≥ f(z),

where the last line uses the settings of Δτ (γ̂) and Δ̄τ (γ̂) (4). Now take any x ∈ K′
τ .

There exists α ∈ [0, 1) and z on the base of Π′ such that y′ = αz + (1 − α)x, so by
convexity of f , f(y′) ≤ αf(z) + (1 − α)f(x) ≤ αf(y′) + (1 − α)f(x), which implies
f(x) ≥ f(y′) ≥ f(y) + Δ̄τ (γ̂) ≥ f(x∗) + γi.

6.2. Regret analysis. The following theorem states our regret guarantee on
the performance of Algorithm 2.

Theorem 2. Assume that the convex set X satisfies R1 ≤ T d/2. Suppose Algo-
rithm 2 is run with c1 ≥ 64, c2 ≤ 1/32, and parameters

Δτ (γ) =

(
6c1d

4

c22
+ 3

)
γ and Δ̄τ (γ) =

(
6c1d

4

c22
+ 5

)
γ.

Suppose the noise in observations is i.i.d. and σ-subgaussian. Then with probability
at least 1− 2/T , the net regret incurred by the algorithm is bounded by

1536 d7/2σ2
√
T log2 T

(
2d2 log d

c22
+ 1

)(
4d7c1
c32

+
d(d + 1)

c2

)(
12c1d

4

c22
+ 11

)
.

Remarks. The prior knowledge of T in Algorithm 2 and Theorem 2 can again
be addressed using a doubling argument. As earlier, Theorem 2 is optimal in the
dependence on T . The large dependence on d is also seen in Nemirovski and Yudin
[16], who obtain a d7 scaling in the noiseless case and leave it an unspecified polynomial
in the noisy case. Using random walk ideas [4] to improve the dependence on d is an
interesting question for future research. We also note that the assumption R1 ≤ T d/2

is only made for ease of presentation of the final theorem statement. A more general
result in terms of R1 easily follows from our proofs.

The analysis will start by controlling the regret incurred on different rounds, and
then we will piece it together across rounds and epochs to get the net regret for the
entire procedure.

6.2.1. Bounding the regret incurred in one round. We will start by a
simple lemma regarding the regret incurred while playing a pyramid if condition 2(a)
is encountered in the algorithm. This lemma highlights the importance of evaluating
the function at the center of the pyramid, a step that was not needed in the framework
of Nemirovski and Yudin [16]. We will use the symbol Π to refer to a generic pyramid
constructed by the algorithm during the course of its operation, with apex y, base
z1, . . . , zd, center denoted as center, and an angle ϕ at the apex. We also recall that
the pyramids constructed by the algorithm are such that the distance from the center
to the base is at least rτc

2
2/d

3.
Lemma 7. Assume the event E holds. Suppose the algorithm reaches Case 2(a)

in round i of epoch τ , and assume x∗ ∈ B(Rτ), where x∗ is the minimizer of f . Let Π
be the current pyramid and γ̂ be the current CI width. Assume the distance from the

STOCHASTIC CONVEX BANDIT OPTIMIZATION 231

apex of Π to the center of B(rτ) is at least rτ/d. Then the net regret incurred while
evaluating the function on Π in round i is at most

12dσ2 logT

γ̂

(
4d7c1
c32

+
d(d+ 2)

c2

)(
12c1d

4

c22
+ 11

)
.

Proof. The proof is a consequence of convexity. We start by bounding the vari-
ation of the function inside the pyramid. Since the pyramid is a convex hull of its
vertices, we know that the function value at any point in the pyramid is also upper
bounded by the largest function value achieved at any vertex. Furthermore, the con-
dition for reaching Case (2a) implies that the function value at any vertex is at most
f(center) + Δτ (γ̂) + Δ̄τ (γ̂) + 3γ̂, and therefore

(6) f(x) ≤ f(center) + Δτ (γ̂) + Δ̄τ (γ̂) + 3γ̂ for all x ∈ Π.

For brevity, we use the shorthand δ := Δτ (γ̂) + Δ̄τ (γ̂) + 3γ̂. Consider any point
x ∈ Π, and let b be the point where the ray center−x intersects a face of Π on
the other side. Then we know that there is a positive constant α ∈ [0, 1] such that
center = αx + (1 − α)b; in particular, (1 − α)/α = ‖center−x‖/‖center−b‖.
Note that ‖center−x‖ is at most the distance from center to a vertex of Π, and
‖center−b‖ is at least the radius of the largest ball centered at center inscribed
in Π. Therefore by item 2 of Lemma 16,

1− α

α
=

‖center−x‖
‖center−b‖ ≤ d(d+ 1)

c2
.

Then the convexity of f and the upper bound on function values over Π from (6)
guarantee that

f(center) ≤ αf(x) + (1− α)f(b) ≤ αf(x) + (1− α)(f(center) + δ).

Rearranging, we get

f(x) ≥ f(center)− d(d+ 1)δ

c2
.(7)

Combining (6) and (7) we have shown that for any x, x′ ∈ Π

(8) |f(x)− f(x′)| ≤ d(d + 2)δ

c2
.

Now we will bootstrap to show that the above bound implies low regret while
sampling the vertices and center of Π. We first note that if x∗ ∈ Π, then the regret on
any vertex or the center is bounded by d(d+2)δ/c2. In that case, the regret incurred
by sampling the vertices and center of this pyramid (so d + 2 points) is bounded
by (d + 2) · d(d + 2)δ/c2. Furthermore, we only need to sample each point pyramid
4σ2 logT/γ̂2 times to get the CIs of width γ̂, which completes the proof in this case,
so the total regret incurred is

(d+ 2)
d(d+ 2)δ

c2
· 4σ

2 logT

γ̂2
.

Now we consider the case where x∗ /∈ Π. Recall that Lemma 5 guarantees that
x∗ ∈ Bτ . There is a point b on a face of Π such that b = αx∗ + (1 − α)center for

232 AGARWAL, FOSTER, HSU, KAKADE, AND RAKHLIN

some α ∈ [0, 1]. Then α = ‖center−b‖/‖center−x∗‖. By the triangle inequality,
‖center−x∗‖ ≤ 2Rτ = 2c1drτ . Moreover, ‖center−b‖ is at least the radius of
the largest ball centered at center inscribed in Π, which is at least rτ c

2
2/(2d

4) by
Lemma 16. Therefore α ≥ c22/(4c1d

5). By convexity and (7),

f(center)− d(d+ 2)δ

c2
≤ f(b) ≤ αf(x∗) + (1− α)f(center),

so

f(x∗) ≥ f(center)− d(d+ 2)δ

c2α
≥ f(center)− 4d7c1δ

c32
≥ f(x)− 4d7c1δ

c32
− d(d+ 2)δ

c2

for any x ∈ Π. Therefore, using the same argument as before, the net regret incurred
in the round is

(d+ 2)

(
4d7c1
c32

+
d(d+ 2)

c2

)
δ · 4σ

2 log T

γ̂2
.

Substituting in the values of Δτ (γ̂) and Δ̄τ (γ̂) completes the proof.
Lemma 7 is critical because it allows us to claim that at any round, when we

sample the function over a pyramid with a value γ̂, the regret on that pyramid during
this sampling is at most poly(d)/γ̂ since we must have been in Case 2(a) with 2γ̂ if
we’re using γ̂. The only exception is at the first round, where this statement holds
trivially as the function is 1-Lipschitz by assumption.

We next show that the algorithm can visit Case 1(a) only a bounded number of
times every round. The round is ended when the algorithm enters Case 1(b) or 2(b),
and the regret incurred on Case 2(a) would be bounded using the above Lemma 7.

The key idea for this bound is present in section 9.2.2 of Nemirovski and Yudin [16].
We need a slight modification of their argument because the function evaluations have
noise and our sampling strategy is a little different from theirs.

Lemma 8. Assume the event E holds. At any round, the number of visits to
Case 1(a) is 2d2 log d/c22, and each pyramid Π constructed by the algorithm satisfies
‖y − x0‖ ≥ rτ/d, where y is the apex of Π.

Proof. The proof follows by a simple geometric argument that exploits the fact
that we have an angle 2ϕ at the apex of our pyramid which is almost equal to π and
that y−x0 and zi−x0 are orthogonal for any pyramid Π we construct (see Figure 6).
By definition of Case 1(a), top �= y, so we assume top = z1 without loss of generality.
By construction,

(9) ‖z1 − x0‖ = sinϕ‖y − x0‖.
Since this step applies every time we enter Case 1(a), the total number k of visits
to Case 1(a) satisfies ‖z1 − x0‖ = (sinϕ)krτ , where we recall that rτ is the radius
of the regular simplex we construct in the first step on every round. We further
note that for a regular simplex of radius rτ , a Euclidean ball of radius rτ/d is con-
tained in the simplex. We also note that by construction, cosϕ = c2/d and hence
sinϕ =

√
1− c22/d

2 ≤ 1− c22/(2d
2). Hence, setting k = 2d2 log d/c22 suffices to ensure

that ‖z1 − x0‖ ≤ rτ/d, guaranteeing that z1 lies in the initial simplex of radius rτ
centered at x0, as depicted in Figure 12.

Let y1, . . . , yk be the apexes of the pyramids we have constructed in this round.
Then by construction, we have a sequence of points such that

f(z1) = f(top) ≥ f(yk) + γ ≥ f(yk−1) + 2γ · · · ≥ f(y1) + kγ.

STOCHASTIC CONVEX BANDIT OPTIMIZATION 233

x0

y1

y2

y3

Fig. 12. The apexes of the successive pyramids get closer to the center of the simplex x0 and
eventually enter the simplex after at most O(d2 log d) pyramids.

On the other hand, we know that y1 satisfies f(y1) ≥ f(xi)−γ for all the vertices xi of
the simplex by definition of y1. Since z1 lies in the simplex, convexity of f guarantees

f(y1) ≥ f(z1)− γ ≥ f(y1) + (k − 1)γ,

which is a contradiction unless k ≤ 1. Thus it must be the case that z1 is not in the
simplex if k > 1, in which case k can be at most 2d2 log d/c22.

This lemma guarantees that in at most 2d2 log d/c22 pyramid constructions, the
algorithm will enter one of Case 1(b) or 2(b) and terminate the epoch, unless the CI
level γ at this round is insufficient to resolve things and we end in Case 2(a). It also
shows that all the pyramids constructed by our algorithm are sufficiently far from the
center, which is assumed by Lemmas 5–7. Until now, we have focused on controlling
the regret on the pyramids we construct, which is convenient since we sample the
center points of the pyramids. To bound the regret incurred over one round, we also
need to control the regret over the initial simplex we query at every round. We start
with a lemma that shows how to control the net regret accrued over an entire round,
when the round ends in Case 2(a).

Lemma 9. Assume the event E holds. For any round with a CI width of γ that
terminates in Case 2(a), the net regret incurred on the round is at most

24dσ2 logT

γ

(
2d2 log d

c22
+ 1

)(
4d7c1
c32

+
d(d+ 2)

c2

)(
12c1d

4

c22
+ 11

)
.

Proof. Suppose we constructed a total of k pyramids on the round with
k ≤ 2d2 log d/c2 by Lemma 8. Then we know that the instantaneous regret on any
point of the kth pyramid Πk is bounded by

δ := γ

(
4d7c1
c32

+
d(d+ 2)

c2

)(
12c1d

4

c22
+ 11

)
by Lemma 7. We also note that by construction, yk is the top vertex of the (k− 1)st
pyramid Πk−1. Hence by definition of Case 1(a) (which caused us to go from Πk−1 to
Πk), we know that f(x) ≤ f(yk)+ γ for all x ∈ Πk−1. Reasoning in the same way, we
get that the function value at each vertex of the pyramid we constructed in this round
is bounded by the function value at yk. Furthermore, just like the proof of Lemma 8,

234 AGARWAL, FOSTER, HSU, KAKADE, AND RAKHLIN

the function value at any vertex of the initial simplex is also bounded by the function
value at yk. As a result, the instantaneous regret incurred at any point we sampled in
this round is bounded by the net regret at yk which is at most by δ using Lemma 7.
Since every pyramid as well as the simplex samples at most d + 2 vertices, and the
total number of pyramids we construct is bounded by Lemma 8, we query at most
(d+2)(2d2/c22 log d+1) points at any round. In order to bound the number of queries
made at any point, we observe that for a CI level γ̂, we make 4σ2 logT/γ̂2 queries.
Suppose γ = 2−1. Since γ̂ is geometrically decreased to γ, the total number of queries
made at any point is bounded by

i∑
j=1

4σ2 logT

2−2j
≤ 16σ2 logT 22i =

16σ2 logT

γ2
.

Putting all the pieces together, the net regret accrued over this round is at most

48dσ2 logT

γ

(
2d2 log d

c22
+ 1

)(
4d7c1
c32

+
d(d+ 2)

c2

)(
12c1d

4

c22
+ 11

)
,

which completes the proof.
We are now in a position to state a regret bound on the net regret incurred in any

round. The key idea would be to use the bound from Lemma 9 to bound the regret
even when the algorithm terminates in Case 1(b) or 2(b).

Lemma 10. Assume the event E holds. For any round that terminates in a CI
level γ, the net regret over the round is bounded by

96dσ2 logT

γ

(
2d2 log d

c22
+ 1

)(
4d7c1
c32

+
d(d+ 2)

c2

)(
12c1d

4

c22
+ 11

)
.

Proof. We just need to control the regret incurred in rounds that end in Case
1(b) or 2(b). We recall from the description of the algorithm that a CI level of γ is
used at a round only when the algorithm terminates the round with a CI level of 2γ in
Case 2(a). The only exception is the first round with γ = 1, where the instantaneous
regret is bounded by 1 at any point using the Lipschitz assumption. Now suppose we
did end a round with CI level 2γ in Case 2(a). In particular, the proof of Lemma 9
guarantees that the instantaneous regret at any vertex of the simplex we construct is
at most

2γ

(
4d7c1
c32

+
d(d+ 2)

c2

)(
12c1d

4

c22
+ 11

)
.

Now consider any pyramid constructed on this round. We know that the instan-
taneous regret incurred if the pyramid ends in Case 2(a) is bounded by Lemma 7.
Furthermore, if the algorithm was in Case 1(a), 1(b), or 2(b) with a CI level γ̂ (which
could be larger than γ in general), then it must have been in Case 2(a) with a CI level
2γ̂. Hence the instantaneous regret on the vertices of the pyramid is at most

2γ̂

(
4d7c1
c32

+
d(d+ 2)

c2

)(
12c1d

4

c22
+ 11

)
,

and we make at most 16σ2 log T
γ̂2 queries on any point of the pyramid by a similar

argument like the previous lemma. Thus the net regret incurred at any pyramid

STOCHASTIC CONVEX BANDIT OPTIMIZATION 235

constructed by the algorithm is at most

96dσ2 logT

γ̂

(
4d7c1
c32

+
d(d+ 2)

c2

)(
12c1d

4

c22
+ 11

)
.

Recalling our bound on the number of pyramids constructed at any round completes
the proof.

Putting all the pieces together, we have shown that the regret incurred on any
round with a CI level γ is bounded by C/γ, where C comes from the above lemmas.
We further observe that since γ is reduced geometrically, the net regret incurred on
an epoch where the largest CI level we encounter is γ is at most

i∑
j=1

C

2−j
≤ 2C2i = 2C/γ.

This allows us to get a bound on the regret of one epoch stated in the next lemma.
Lemma 11. The regret in any epoch which ends in CI level γ is at most

(10)
192dσ2 logT

γ

(
2d2 log d

c22
+ 1

)(
4d7c1
c32

+
d(d + 2)

c2

)(
12c1d

4

c22
+ 11

)
.

6.2.2. Bound on the number of epochs. In order to bound the number of
epochs, we first need to show that the cone-cutting step discards a sizeable chunk of
the set Xτ in epoch τ . Recall that we need to understand the ratio of the volumes of
Bτ+1 to Bτ in order to understand the amount of volume discarded in any epoch.

Lemma 12. Let Bτ be the smallest ball containing Xτ , and let B′
τ+1 be the min-

imum volume ellipsoid containing Bτ \ Kτ . Then for small enough constants c1, c2,
vol(B′

τ+1) ≤ ρ · vol(Bτ) for ρ = exp(− 1
4(d+1)3/2

).

Proof. This lemma is analogous to the volume reduction results proved in the
analysis of the ellipsoid method for convex programming with a gradient oracle. We
start by arguing that it suffices to consider the intersection of Bτ with a half-space in
order to understand the set Bτ \ Kτ . It is clear from the figure that we only increase
the volume of the enclosing ellipsoid B′

τ+1 if we consider discarding only the spherical
cap instead of discarding the entire cone. But the spherical cap is exactly obtained
by taking the intersection of Bτ with a half-space.

The choices of the constants c1, c2 earlier guarantee that the distance of the hy-
perplane from the origin is at most Rτ/(4(d + 1)3/2). This is because the apex of
the cone Kτ is always contained in B(rτ) by construction and the height of the cone
is at most Rτ cos ϕ̄ ≤ Rτ/(8(d + 1)), where the last inequality will be ensured by
construction. Ensuring rτ ≤ Rτ/(32(d+ 1)3/2) suffices to ensure that the distance of
the hyperplane to the origin is at most Rτ/(4(d+ 1)3/2).

Thus B′
τ+1 is the minimum volume ellipsoid enclosing the intersection of a sphere

with a hyperplane at a distance at most Rτ/(4(d+1)3/2) from its center. The volume
of B′

τ+1 is then bounded as stated by using Theorem 2.1 of Goldfarb and Todd [11]
in their work on deep cuts for the ellipsoid algorithm. In particular, we apply their
result with α = −1/(4(d+ 1)3/2) giving that vol(B′

τ+1) ≤ ρ · vol(Bτ), where

ρ =

(
d2

d2 − 1

)(d−1)/2
d

d+ 1
(1− α2)(d−1)/2(1− α).

236 AGARWAL, FOSTER, HSU, KAKADE, AND RAKHLIN

Noting that 1+ x ≤ ex and 1− x ≤ e−x allows us to simplify the above expression as

ρ ≤ exp

(
d− 1

2

1

d2 − 1
− 1

d+ 1
+

d− 1

2
α2 − α

)
.

Simplifying the above expression and plugging in our choice of α yields the statement
of our lemma.

We note that the connection from volume reduction to a bound on the number of
epochs is somewhat delicate for our algorithm. The key idea is to show that at any
epoch that ends with a CI level γ, the cone Kτ contains points with regret at least γ.
This will be shown in the next lemma.

Lemma 13. Assume that the event E holds. At any epoch ending with CI level
γ, the instantaneous regret of any point in Kτ is at least γ

Proof. Since every epoch terminates either through Case 1(b) or through Case
2(b) followed by hat-raising, we just need to check the condition of the lemma for both
cases. If the epoch proceeds to cone-cutting through Case 1(b), this is already shown
in (5). Thus we only need to verify the claim when we terminate via the hat-raising
step. Recall that after hat-raising, the apex y′ of the final pyramid Π′ constructed
in the hat-raising step satisfies that f(y′) ≥ f(zi) + γ for all the vertices z1, . . . , zd of
the pyramid. Consider any point x ∈ Kτ . This point lies on a ray from the base of
Π′ passing through y′. We know the function f is increasing along this ray at y′ and
hence continues to increase from y′ to x by convexity of f , as argued in the proof of
Lemma 6. Hence in this case also the instantaneous regret of any point in Kτ is at
least γ, completing the proof.

The next lemma bounds the number of epochs played by the algorithm.
Lemma 14. Assume that R1 ≤ T d/2 and that the event E holds. The total number

of epochs in the algorithm is bounded by d log T
log(1/ρ) with ρ = exp(− 1

4(d+1)3/2
).

Proof. Let x∗ be the optimum of f . Since f is 1-Lipschitz, any point in a ball of
radius 1/

√
T centered around x∗ has instantaneous regret at most 1/

√
T . The volume

of this ball is T−d/2Vd, where Vd is the volume of a unit ball in d dimensions. Suppose
the algorithm goes on for k epochs. We know that the volume of X after k epochs
is at most ρkR1Vd by Lemma 12. We also note that the instantaneous regret of any
point discarded by the algorithm in any epoch is at least 1/

√
T using Lemma 13, since

we always maintain γ ≥ 1/
√
T . Thus any point in the ball of radius 1/

√
T around

x∗ is never discarded by the algorithm. As a result, the algorithm must stop once we
have

ρkR1Vd ≤ T−d/2Vd,

which means k ≤ (d log T/2 + logR1)/ log 1/ρ. Finally, recalling that

logR1 ≤ d logT/2

by assumption completes the proof.
We are now in a position to put together all the pieces.
Proof of Theorem 2. We are guaranteed that there are at most d logT/ log(1/ρ)

epochs where the regret on each epoch is bounded by (10). Observing that γ ≥ 1/
√
T

guarantees that every epoch has regret at most

192dσ2
√
T logT

(
2d2 log d

c22
+ 1

)(
4d7c1
c32

+
d(d+ 2)

c2

)(
12c1d

4

c22
+ 11

)
.

STOCHASTIC CONVEX BANDIT OPTIMIZATION 237

Combining with the above bound on the number of epochs guarantees that the cu-
mulative regret of our algorithm is bounded by

192d2σ2
√
T log2 T

log(1/ρ)

(
2d2 log d

c22
+ 1

)(
4d7c1
c32

+
d(d+ 2)

c2

)(
12c1d

4

c22
+ 11

)
.

Finally, we recall that the entire analysis this far has been conditioned on the even
E which assumes that the function value lies in the confidence intervals we construct at
every round. By design, just like the proof of Theorem 1, P(Ec) ≤ 2/T . Substituting
the value of ρ from Lemma 14 completes the proof of the theorem.

7. Discussion. This paper presents a new algorithm for convex optimization
when only noisy function evaluations are possible. The algorithm builds on the tech-
niques of Nemirovski and Yudin [16] from zeroth-order optimization. The key contri-
bution of our work is to extend their algorithm to a noisy setting in such a way that
a low regret on the sequence of points queried can be guaranteed. The new algorithm
crucially relies on a center-point device that demonstrates the key differences between
a regret minimization and an optimization guarantee. Our algorithm has the optimal
O(

√
T) scaling of regret up to logarithmic factors. However, our regret guarantee has

a rather large dimension dependence. As noted after Theorem 2, this is unsurprising
since the algorithm of Nemirovski and Yudin [16] has a large dimension dependence
even in a noiseless case. Random walk approaches [4] have been successful to im-
prove the dimension scaling in the noiseless case, and investigating them for the noisy
scenario is an interesting question for future research.

Appendix A. Properties of pyramid constructions. We outline some prop-
erties of the pyramid construction in this appendix. Recall that ϕ = arccos(c2/d).
For simplicity, we assume d ≥ 2. In this case, cos(ϕ) = c2/d and

sin(ϕ) =
√
1− c22/d

2 ≥ cos(ϕ).

Also recall that in epoch τ , the initial simplex is contained in B(rτ), where rτ =
Rτ/(c1d

3/2).
Lemma 15. Let Πk be the kth pyramid constructed in any round of epoch τ .
1. The distance from the center of B(rτ) to the apex of Πk is rτ sin

k−1(ϕ).
2. The distance from the apex of Πk to any vertex of the base of Πk is rτ sin

k−1(ϕ)
cos(ϕ).

3. The height of Πk (distance of the apex from the base) is rτ sin
k−1(ϕ) cos2(ϕ).

Proof. The proof is by induction on k. Let x0 be the center of B(rτ), y1 be the apex
of Π1, and z1 be any vertex on the base of Π1. By construction, y1−z1 is perpendicular
to z1−x0, so we have ‖y1−x0‖ = rτ , ‖y1−z1‖ = rτ cos(ϕ), and ‖z1−x0‖ = rτ cos(ϕ).
Let p1 be the projection of y1 onto the base of Π1. The triangle with vertices y1, z1, x0

is similar to the triangle with vertices y1, p1, z1. Therefore ‖y1 − p1‖, the height of
Π1, is rτ cos

2(ϕ). This gives the base case of the induction (see Figure 13).
The inductive step follows by noting that the apex of Πk is a vertex on the base

of Πk−1, and therefore the distances scale as claimed.
Lemma 16. Let Π be any pyramid constructed in epoch τ with apex at distance

rΠ ≥ rτ/d from the center of B(rτ). Let BΠ be the largest ball in Π centered at the
center of mass c of Π.

1. BΠ has radius at least rΠ cos2(ϕ)/(d + 1) ≥ rτ c
2
2/(2d

4).
2. Let x ∈ Π, and let b ∈ Π be the point on the face of Π such that

c = αx+ (1− α)b for some 0 < α ≤ 1. Then (1− α)/α ≤ (d+ 1)d/c2.

238 AGARWAL, FOSTER, HSU, KAKADE, AND RAKHLIN

rτr
τ sin(ϕ)

rτ
cos

(ϕ)

x0

y1

z1 p1

Fig. 13. Construction of pyramids.

Proof. Let h be the height of Π. By Lemma 15, h = rΠ cos2(ϕ). The distance
from c to the base of Π is

h

d+ 1
=

rΠ cos2(ϕ)

d+ 1
,

and the distance from c to any other face of Π is

sin(ϕ)

(
1− 1

d+ 1

)
h =

√
1− cos2(ϕ)

(
1− 1

d+ 1

)
rΠ cos2(ϕ) ≥ rΠ cos2(ϕ)

2
.

(Here we have used d ≥ 2 and cos(ϕ) ≤ 1/d.) Therefore BΠ has radius at least

rΠ cos2(ϕ)

d+ 1
≥ rτ

d
· c

2
2/d

2

d+ 1
=

rτ c
2
2

d3(d+ 1)
≥ rτ c

2
2

2d4
,

which proves the first claim.
For the second claim, note that α = ‖b− c‖/(‖b− c‖+ ‖x− c‖); moreover, ‖b− c‖

is at least the radius of BΠ, and ‖x− c‖ is at most the distance from c to any vertex
of Π. By Lemma 15, the distance from c to a vertex on the base of Π is

√(
rΠ

d+ 1
cos2(ϕ)

)2

+ (rΠ cos(ϕ) sin(ϕ))2 =
rΠ cos2(ϕ)

d+ 1

√
1 +

(d+ 1)2 sin2(ϕ)

cos2(ϕ)

and the distance from c to the apex of Π is

(
1− 1

d+ 1

)
h =

(
1− 1

d+ 1

)
rΠ cos2(ϕ) =

d

d+ 1
rΠ cos2(ϕ).

STOCHASTIC CONVEX BANDIT OPTIMIZATION 239

Therefore, by the first claim and Lemma 15,

1− α

α
=

‖x− c‖
‖b− c‖ ≤ max

⎧⎨⎩
drΠ cos2(ϕ)

d+1

rΠ cos2(ϕ)
d+1

,

rΠ cos2(ϕ)
d+1

√
1 + (d+1)2 sin2(ϕ)

cos2(ϕ)

rΠ cos2(ϕ)
d+1

⎫⎬⎭
= max

{
d,

√
1 + (d+ 1)2

(
1

cos2(ϕ)
− 1

)}

≤ max

{
d,

√
(d+ 1)2

cos2(ϕ)

}

= max

{
d,

d+ 1

cos(ϕ)

}
= max

{
d,

(d+ 1)d

c2

}
=

(d+ 1)d

c2
.

Acknowledgment. Part of this work was done while the first and third authors
were at the University of Pennsylvania.

REFERENCES

[1] A. Agarwal, O. Dekel, and L. Xiao, Optimal algorithms for online convex optimization with
multi-point bandit feedback, in Proceedings of COLT, 2010.

[2] R. Agrawal, The continuum-armed bandit problem, SIAM J. Control Optim., 33 (1995),
pp. 1926–1951.

[3] P. Auer, R. Ortner, and C. Szepesvári, Improved rates for the stochastic continuum-armed
bandit problem, in Proceedings of COLT, 2007, pp. 454–468.

[4] D. Bertsimas and S. Vempala, Solving convex programs by random walks, J. ACM, 51 (2004),
pp. 540–556.

[5] S. Bubeck, R. Munos, G. Stolz, and C. Szepesvári, X -armed bandits, J. Mach. Learn. Res.,
12 (2011), pp. 1655–1695.

[6] V. V. Buldygin and Yu. V. Kozachenko, Sub-Gaussian random variables, Ukrainian Math.
J., 32 (1980), pp. 483–489.

[7] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to Derivative-Free Optimiza-
tion, SIAM, Philadelphia, 2009.

[8] E. W. Cope, Regret and convergence bounds for a class of continuum-armed bandit problems,
IEEE Trans. Automat. Control, 54 (2009), pp. 1243–1253.

[9] V. Dani, T. P. Hayes, and S. M. Kakade, Stochastic linear optimization under bandit feed-
back, in Proceedings of the 21st Annual Conference on Learning Theory (COLT), 2008.

[10] A. D. Flaxman, A. T. Kalai, and B. H. Mcmahan, Online convex optimization in the bandit
setting: Gradient descent without a gradient, in Proceedings of the 16th Annual ACM-
SIAM Symposium on Discrete Algorithms, 2005, pp. 385–394.

[11] D. Goldfarb and M. J. Todd, Modifications and implementation of the ellipsoid algorithm
for linear programming, Math. Program., 23 (1982), pp. 1–19.

[12] J. Kiefer and J. Wolfowitz, Stochastic estimation of the maximum of a regression function,
Ann. Math. Statist., 23 (1952), pp. 462–466.

[13] R. Kleinberg, Nearly tight bounds for the continuum-armed bandit problem, Adv. Neural Inf.
Process. Syst., 18 (2005).

[14] R. Kleinberg, A. Slivkins, and E. Upfal, Multi-armed bandits in metric spaces, in Proceed-
ings of the 40th Annual ACM Symposium on Theory of Computing, 2008, pp. 681–690.

[15] L. Lovász, Geometric algorithms and algorithmic geometry, in Proceedings of International
Congress of Mathematicians, 1990, pp. 139–154.

240 AGARWAL, FOSTER, HSU, KAKADE, AND RAKHLIN

[16] A. Nemirovski and D. Yudin, Problem Complexity and Method Efficiency in Optimization,
Wiley, New York, 1983.

[17] Y. Nesterov, Random Gradient-Free Minimization of Convex Functions, Technical report
2011/1, Center for Operations Research and Econometrics, Université catholique de Lou-
vain, 2011.

[18] M. Raginsky and A. Rakhlin, Information-based complexity, feedback and dynamics in convex
programming, IEEE Trans. Inform. Theory, 57 (2011), pp. 7036–7056.

[19] N. Srinivas, A. Krause, S.M. Kakade, and M. Seeger, Gaussian Process Optimization in
the Bandit Setting: No Regret and Experimental Design, arXiv:0912.3995, 2009.

[20] J. Y. Yu and S. Mannor, Unimodal bandits, in Proceedings of ICML, 2011.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

